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Abstract

In many application areas, it is important to detect out-
liers. Traditional engineering approach to outlier detec-
tion is that we start with some ““normal’ values =1, ..., z,,
compute the sample average E, the sample standard varia-
tion o, and then mark a value z as an outlier if z is outside
the ko-sigma interval [E — ko - 0, E + ko - o] (for some
pre-selected parameter k). In real life, we often have only
interval ranges [z;, Z;] for the normal values 1, . .., 5. In
this case, we only have intervals of possible values for the
bounds E — kg - o and E + kg - 0. We can therefore identify
outliers as values that are outside all ko-sigma intervals.

In this paper, we analyze the computational complexity
of these outlier detection problems, and provide efficient al-
gorithms that solve some of these problems (under reason-
able conditions).

We also provide algorithms that estimate the degree of
*““outlier-ness™ of a given value z — measured as the largest
value &, for which z is outside the corresponding ko-sigma
interval.

1. Introduction

Detecting outliersisimportant. In many application ar-
eas, it is important to detect outliers, i.e., unusual, abnormal
values; e.g.:

e in medicine, unusual values may indicate disease (see,
e.g., [7]);

e in geophysics, abnormal values may indicate a mineral
deposit or an erroneous measurement result (see, e.g.,
[5, 9, 13, 16));

e in structural integrity testing, abnormal values may in-
dicate faults in a structure [2, 6, 7, 10, 11, 17]).
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Traditional approach to outlier detection. Traditional
engineering approach to outlier detection (see, e.g., [1, 12,
15]) is as follows:

o first, we collect measurement results z, . . ., x,, corre-
sponding to normal situations;

e then, we compute the sample average F def

w of these normal values and the (sam-

ple) standard deviation ¢ = +/V, where v %

(1 —EY?+... 4+ (z, — E)?.

o finally, a new measurement result z is classified as an

outlier if it is outside the interval [L, U] (i.e., if either

x < Lorx > U), where L défE—ko-a,Udéf

E + kg -0, and kg > 1 is some pre-selected value
(most frequently, ko = 2, 3, or 6).

Fuzzy uncertainty. Instead of arbitrarily selecting ko and
classifying a value as an outlier or not an outlier, it is rea-
sonable to treat the set of outliers as a fuzzy set and to return
the degree of confidence to which each value is an outlier:
if the corresponding kg is 6, this degree is close to 1; if the
corresponding kq is 1, this degree is close to 0.

Interval uncertainty. In some practical situations, we
only have intervals x; = [z;, ;] of possible values of z;.
This happens, for example, if instead of observing the ac-
tual value z; of the random variable, we observe the value
x; measured by an instrument with a known upper bound
A; on the measurement error; then, the actual (unknown)
value is within the interval x; = [Z; — A;,%; + A;]. For
different values x; € x;, we get different bounds L and
U. Possible values of L form an interval — we will denote
it by L def [L, L]; possible values of U form an interval
U =[U,U].



Possible and guaranteed outliers. How do we now de-
tect outliers? There are two possible approaches to this
question: we can detect possible outliers and we can detect
guaranteed outliers:

¢ avalue z is a possible outlier if it is located outside one
of the possible ko-sigma intervals [L, U] (but is may be
inside some other possible interval [L, U]);

e avalue z is a guaranteed outlier if it is located outside
all possible kq-sigma intervals [L, U].

Which approach is more reasonable depends on a possible
situation:

e if our main objective is not to miss an outlier, e.g., in
structural integrity tests, when we do not want to risk
launching a spaceship with a faulty part, it is reason-
able to look for possible outliers;

o if we want to make sure that the value x is an outlier,
e.g., if we are planning a surgery and we want to make
sure that there is a micro-calcification before we start
cutting the patient, then we would rather look for guar-
anteed outliers.

The two approaches can be described in terms of the end-
points of the intervals L and U:

A value z guaranteed to be normal —i.e., it is not a pos-
sible outlier — if 2 belongs to the intersection of all possi-
ble intervals [L, U]; the intersection corresponds to the case
when L is the largest and U is the smallest, i.e., this inter-
section is the interval [L, U]. So, if z > U or z < L, then
x is a possible outlier, else it is guaranteed to be a normal
value.

If a value z is inside one of the possible intervals [L, U],
then it can still be normal; the only case when we are sure
that the value « is an outlier is when z is outside all possible
intervals [L, U], i.e., is the value z does not belong to the
union of all possible intervals [L, U] of normal values; this
union is equal to the interval [L, U]. So, ifz > U orz < L,
then z is a guaranteed outlier, else it can be a normal value.

Comment. In real life, the situation may be slightly more
complicated because, as we have mentioned, measurements
often come with interval inaccuracy; so, instead of the exact
value z of the measured quantity, we get an interval x =
[z, Z] of possible values of this quantity.

In this case, we have a slightly more complex criterion
for outlier detection:

e the actual (unknown) value of the measured quantity
is a possible outlier if some value 2 from the interval
[z, 7] is a possible outlier, i.e., is outside the intersec-
tion [L, U]; thus, the value is a possible outlier if one
of the two inequalities hold: z < L or U < 7.

o the actual (unknown) value of the measured quantity
is guaranteed to be an outlier if all possible values x
from the interval [z, %] are guaranteed to be outliers
(i.e., are outside the union [L, U]); thus, the value is a
guaranteed outlier if one of the two inequalities hold:

z< LorU < z.
In all these cases:

e to detect possible outliers, we must be able to compute
the values L and U;

e to detect guaranteed outliers, we must be able to com-
pute the values L and U.

What we are planning to do. In this paper, we ana-
lyze the computational complexity of these outlier detection
problems and provide efficient algorithms that solve these
problems (under reasonable conditions).

2. What Was K nown Before

As we discussed in the introduction, to detect outliers
under interval uncertainty, we must be able to compute the
range L = [L, L] of possible values of L = E — ko - o and
the range U = [U, U] of possible values of U = E + kg - 0.

In [3, 4], we have shown how to compute the intervals
E = [E, E] and [o, 5] of possible values for E and o. In
principle, we can use the general ideas of interval compu-
tations to combine these intervals and conclude, e.g., that
L always belongs to the interval E — kq - [o,7]. However,
as often happens in interval computations, the resulting in-
terval for L is wider than the actual range — wider because
the values E and ¢ are computed based on the same inputs
z1,...,%, and cannot, therefore, change independently.

We mark a value z as an outlier if it is outside the in-
terval [L,U]. Thus, if, instead of the actual ranges for L
and U, we use wider intervals, we may miss some outliers.
It is therefore important to compute the exact ranges for L
and U. In this paper, we show how to compute these exact
ranges.

3. Detecting Possible Outliers

To find possible outliers, we must know the values U and
L. In this section, we design feasible algorithms for com-
puting the exact lower bound U of the function U and the
exact upper bound L of the function L. Specifically, our
algorithms are quadratic-time, i.e., require O(n?) compu-
tational steps (arithmetic operations or comparisons) for n
interval data points x; = [z;,Z;].

The algorithms A;, for computing U and Az, for com-
puting L are as follows:



¢ In both algorithms, first, we sort all 2n values z;, Z;
into a sequence z(1) < T(2) < ... < T(ap); take
T(g) = —00 and (2 41) = +00. Thus, the real line is
divided into 2n + 1 zones (x (o), T(1)], [Z(1), Z(2)], -+
[$(2n—1)7$(2n)]1 [x(Zn);$(2n+1))-

e For each of these zones [z(),Zmk4n)), kB =
0,1,...,2n, we compute the values

ern = Z z; + Z Tj, @)

BT 2T (o) MR

def
meE

E2; 2T (h41)

@)+ > @) @

7T <T(k)

and ny = the total number of such ¢’s and j’s. Then,
we solve the quadratic equation

where
Adéfei'(1+a2)—a2-mk'n; Otd:efl/koa (4)

Bd§f2-ek-((1+a2)-nk—a2-n); (5)

Cdéfnk-((1+a2)-nk—a2-n). (6)
For computing U, we select only those solutions for
which p - ng < er and p € [k, T(r41)]; for com-
puting L, we select only those solutions for which
peng > e and p € @k, (r41)]. FOr each selected
solution, we compute the values of

e n—n m n—n
Ek = _k+ k':“’; Mk = _k+ k'lu’za (7)
n n n
and, correspondingly,
Ur = Ep + ko - / My, — (E)? (8)
or
Ly = Ey — ko - /My — (Ey)? ©)

o Finally, if we are computing U, we return the smallest
of the values Uy;
if we are computing L, we return the smallest of the
values Ly,.

Theorem 1 The algorithms A;; and Az, always compute U
and L in quadratic time.

Comment. The main idea of this proof is given in the
last (Proofs) section. The detailed proofs are given in
http://www.cs.utep.edu/vladik/2003/tr03-10c.ps.gz and
in http://www.cs.utep.edu/vladik/2003/tr03-10c.pdf

4. In General, Detecting Guaranteed Outliers
isNP-Hard

As we have mentioned in Section 1, to be able to detect
guaranteed outliers, we must be able to compute the values
Land U. In general, this is an NP-hard problem:

Theorem 2 For every kg > 1, computing the upper end-
point U of the interval [U, U] of possible values of U =
E + kg - o is NP-hard.

Theorem 3 For every ko > 1, computing the lower end-

point L of the interval [L, L] of possible values of L =
E — ko - o is NP-hard.

Comment. For interval data, the NP-hardness of comput-
ing the upper bound for ¢ was proven in [3] and [4]. The
general overview of NP-hardness of computational prob-
lems in interval context is given in [8].

5. How Can We Actually Detect Guaranteed
Outliers?

How can we actually compute these values? First, we
will show that if 1+ (1/ko)? < n (whichistrue, e.g., if ko >
landn > 2), then the maximum of U (correspondingly, the
minimum of L) is always attained at some combination of
endpoints of the intervals x;; thus, in principle, to determine
the values U and L, it is sufficient to try all 2™ combinations
of values z; and z;:

Theorem 4 If 1 + (1/kg)? < n, then the maximum of the
function U and the minimum of the function L on the box
X1 X...X X, are attained at its vertices, i.e., when for every
i, either z; = z; or z; = m;.

NP-hard means, crudely speaking, that there are no gen-
eral ways for solving all particular cases of this problem
(i.e., computing V) in reasonable time.

However, we show that there are algorithms for comput-
ing U and L for many reasonable situations. Namely, we
propose efficient algorithms that compute U and L for the

case when all the interval midpoints (“measured values™)
T; def (z; + T;)/2 are definitely different from each other,

in the sense that the “narrowed” intervals

. 1+a? 1+a?

i —

AT+ WAV (10)

n

—where a = 1/kg and A; def (z; — %;)/2 is the interval’s
half-width — do not_intersect with each other.
The algorithms 4 and A, are as follows:



¢ Inboth algorithms, first, we sort all 2n endpoints of the
2 2

narrowed intervals z; — HTO‘ -Ajand T; + 1 7;0‘ .

A; into a sequence z(1) < 2y < ... < Tap). This

enables us to divide the real line into 2n + 1 seg-

ments (“small intervals”) [z;), (;+1)], where we de-

noted zq) 4f _ o and T(2nt1) 4 1o

e For each of small intervals [z (;), 7 (;41)], we do the fol-
lowing: for each j from 1 to n, we pick the following

value of z;:
2
o ifzg) <z;— 1 ﬁlo‘ -A;, then we pick z; =
T,
2
o ifzy >7;+ 1 J;LO‘ -Aj, then we pick z; =
Z

T,
o for all other j, we consider both possible values
T; =T and zj=2;.

As a result, we get one or several sequences of «; for
each small interval.

e To compute U, for each of the sequences z;, we check
whether, for the selected values z1, . .., z,, the value
of E — a - ¢ is indeed within the corresponding small
interval, and if it is, compute the value U = E + kg - 0.
Finally, we return the largest of the computed values U
asU.

¢ To compute L, for each of the sequences z ;, we check
whether, for the selected values z1, ..., z,, the value
of E + « - o is indeed within the corresponding small
interval, and if it is, compute the value L = E — kg - o.
Finally, we return the smallest of the computed values
LasL.

Theorem 5 Let 1/n + 1/k3 < 1. The algorithms .4y and
Ay compute U and L in quadratic time for all the cases in
which the ““narrowed” intervals do not intersect with each
other.

These algorithms also work when, for some fixed C,
no more than C “narrowed” intervals can have a common
point:

Theorem 6 Let 1 + (1/ko)*> < n. For every positive in-
teger C, the algorithms Ay and A; compute U and L in
quadratic time for all the cases in which no more than C
“narrowed” intervals can have a common point.

The corresponding computation times are quadratic in n
but grow exponentially with C. So, when C' grows, this
algorithm requires more and more computation time. It is
worth mentioning that the examples on which we prove NP-
hardness correspond to the case when n/2 out of n nar-
rowed intervals have a common point.

6. Solution to the Fuzzy-Related Problem:
Computing Degree of Outlier-ness

Formulation of the problem. As we have mentioned in
the Introduction, instead of classifying a given value x as an
outlier or not an outlier, it is desirable to return a degree to
which z is an outlier. As a characteristic of this degree, it
is natural to take the largest value kq for which z is outside
the corresponding ko-sigma interval [E — kg - 0, E + ko - 0].

If we know the exact values of the measurement results
z1,- - -, Ty, then we can compute the exact values of £ and
o and thus, determine this “degree of outlier-ness” as the

ratio r |z — E|/o. If we only know the intervals x;
of possible values of x;, then different values z; € x; may
lead to different values of this ratio. In this situation, it is
desirable to know the interval of possible values of r.

Reduction toasimpler problem. The value of » does not
change if, instead of the original variables x; with values

from intervals x;, we consider new variables z def T;— T
and a new value ' = 0. Indeed, in thiscase, E' = E —
z hence E' — 2/ = E — z, and the standard deviation ¢
does not change if we simply shift all the values z;. Thus,
without losing generality, we can take assume that = 0,
and we are interested in the ratio | E|/o.

The lower bound of this ratio is attained when the reverse
ratio 1/r = o/|E| is the largest, and vice versa. Thus, to
find the interval of possible values for | E| /o, it is sufficient
to find the interval of possible values of o/|E|. Comput-
ing this interval is, in its turn, equivalent to computing the
interval for the square V//E? of the reverse ratio 1/r.

def

Finally, since V. = M — E2?, where M =
z2 + ...+ z2 .
=L ——————mn is the second moment, we have V/E? =
M/E? — 1, so computing the bounds for V/E? is equiva-
lent to computing the bounds for the ration R def M/E?.
In this section, we will describe how to compute the bounds
R and R for the ratio R; based on these bounds, we can
compute the desired bounds on k&q.

Theorem 7 The following algorithm A, always computes
R in quadratic time.

If all the original intervals have a common point, then the
smallest value of V' is 0, and R = 1. If not all n intervals
x; intersect, then, first, we sort all 2n values z;, Z; into a
sequence z(1) < T(z) < ... < T(ap); take ;) = —o0
and x(2p41) = +oo. Thus, the real line is divided into
2n + 1 zones (:L'(O),.’U(l)], [.’L‘(l), :U(g)], ey [:E(gn_l),ll?(gn)],
[Z(2n), T(2n41))-

For each of these zones [z, T(k4+1)], £ = 0,1,...,2n,
we compute the values ey, my, and ny as in Algorithm



Ay, then compute the value A\, = my/ep. If Ay €
[%(k), Z(k+1)], We compute Ry = My /E7, where
Ekd:efek—f-)\k'nk. Mkdifmk—i-)\i-nk (11)
n ’ - ’

The smallest of the corresponding values Ry, is the desired
bound R.

Computing R. We are able to compute R if the “nar-
rowed” intervals [z , ;"] have few intersections, where:

At
_def  Ti 4 def T
I+ 75 =5

andp Lt T Ly + T * 2

Theorem 8 For every positive integer C, the following al-
gorithm 4z computes R in quadratic time for all the cases
in which no more than C “narrowed” intervals can have a
common point.

In this algorithm, we sort 2n values z, and Z; into a se-
quence z(1y < Za) < ... < Tap); take zg) = —o0
and T(2,41) = +oo, and thus divide the real line into
2n + 1 zones (.’U(O),.’E(l)], [:U(l),x(Q)], ce [33(2"_1),.'17(2")],
[Z(2n), T(2n41))-

For each of these zones [z, T(r4+1)], £ = 0,1,...,2n,
and for each variable z;, we take:

o z; =gz;ifzl <z
o z; =7; ity > x(341);
o both values z; = z; and z; = T; otherwise.

Since no more than C' intervals have a common intersection,
for each zone, we thus create have no more than 2¢ differ-
ent combinations (z1,...,z,). For each of these combi-
nations, we compute E and M and check whether M /E
belongs to this zone. If it belongs, we compute M/ E2.

The largest of thus computed values M/ E? is the desired
upper endpoint R.

7. Proofs; Main ldea

Our proof of Theorem 2.1 is based on the fact that
when the function U(zy,...,x,) attains its smallest pos-
sible value at some point (25, ..., z9P), then, for every i,
the corresponding function of one variable

def t t t
Ui(z:) = U™, ... 221, o, 200, -, 2pPt)  (13)

— the function that is obtained from U (z1, . . ., z,,) by fixing
the values of all the variables except for x; — also attains its
minimum at the value z; = z°P*.

%

A differentiable function of one variable attains its mini-
mum on a closed interval either at one of its endpoints or at
an internal point in which its first derivative is equal to 0.

This first derivative is equal to Owhen o + ko - (z; — E) =
0, ie,whenz; = E —a-o, where a = 1/ko. Thus,
for the optimal values z1, ..., z, for which U attains its
minimum, for every 4, we have either z; = z;, or z; = T;,
orx;=F—a-o.

We then show that if the open interval (z;,Z;) contains
the value E — « - o, then the minimum of the function can-
not be attained at points z; or z; and therefore, has to be
attained at the value z; = E — o - 0.

We also show that:

o when E —a- o < z;, the minimum cannot be attained
for z; = 7, and therefore, it is attained when z; = z;;

e whenz; < E — «a -0, the minimum cannot be attained
for z; = z; and therefore, it is attained when z; = ;.

Due to what we have proven, once we know how the

value u ' £ — a0 is located with respect to all the inter-
vals [z;,T;], we can find the optimal values of z;. Hence,
to find the minimum, we need to analyze how the endpoints
z,; and z; divide the real line, and consider all the resulting
sub-intervals.

8. Conclusions

In many application areas, it is important to detect out-
liers. Traditional engineering approach to outlier detection
is that we start with some “normal” values z4, . . . , z,,, coOm-
pute the sample average F, the sample standard variation o,
and then mark a value z as an outlier if z is outside the kq-
sigma interval [E — ko - o, E + kg - o] (for some pre-selected
parameter ko).

In real life, we often have only interval ranges x; =
[z;, Z;] for the normal values z1, . .., z,,. For different val-

ues z; € x;, we get different values of L g ko -0

and U % E + kg -0 —and thus, different ky-sigma intervals

[L, U]. We can therefore identify guaranteed outliers as val-
ues that are outside all kq-sigma intervals, and possible out-
liers as values that are outside some kq-sigma intervals. To
detect guaranteed and possible outliers, we must therefore
be able to compute the range L = [L, L] of possible values
of L and the range U = [U, U] of possible values of U.

In our previous papers [3, 4], we have shown how to
compute the intervals E = [E, E] and [g, ] of possible
values for E and o. In principle, we can combine these
intervals and conclude, e.g., that L always belongs to the
interval E — ko - [, @]. However, the resulting interval for
L is wider than the actual range — wider because the values
FE and o are computed based on the same inputs z1, . .., z,

and are, therefore, not independent from each other.



If, instead of the actual ranges for L and U, we use wider
intervals, we may miss some outliers. It is therefore impor-
tant to compute the exact ranges for L and U.

In this paper, we showed that computing these ranges is,
in general, NP-hard, and we provided efficient algorithms
that compute these ranges under reasonable conditions.

We also provide algorithms that estimate the degree of
“outlier-ness” of a given value z — measured as the largest
value kg for which z is outside the corresponding ko-sigma
interval.
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