Robust Methodology for Characterizing
System Response to Damage:
Approach Based on Partial Order

Paul J. Tanenbaum', Carlos de la Mora?2, Piotr WojciechowskiZ2,
Olga Kosheleva?, Vladik Kreinovich?, Scott A. Starks?, and
Alexandr V. Kuzminykh?®

! U.S. Army Research Laboratory, Attn: AMSRL-SL-BE
Aberdeen Proving Ground, MD 21005-5068, USA
pjt@arl.army.mil
2 NASA Pan-American Center for Earth
and Environmental Studies (PACES)
University of Texas at El Paso, El Paso, TX 79968, USA
contact email vladik@cs.utep.edu
3 Department of Mathematics, Purdue University
W. Lafayette, IN 47907, USA
akuzmin@math.purdue.edu

Abstract. To describe the response of engineering complex systems to
various damage mechanics, engineers have traditionally use probability-
based reliability approach. For complex components and/or systems,
the failure or damage probabilities cannot be directly statistically de-
termined, they are not probabilities in the frequentist sense but rather
“subjective” probabilities—scalar quantities that characterize our knowl-
edge and which are treated like frequentist (“physical”) probabilities. In
this paper, we describe a new approach based on partial order.

1 Introduction

To describe the response of engineering complex systems to various damage me-
chanics, engineers have traditionally use probability-based reliability approach.
For complex components and/or systems, the failure or damage probabilities
cannot be directly statistically determined, they are not probabilities in the
frequentist sense but rather “subjective” probabilities—scalar quantities that
characterize our knowledge and which are treated like frequentist (“physical”)
probabilities.

There are several different techniques for describing our uncertainty by a
numerical value, and it is a known fact that different techniques lead to somewhat
different numerical values. The traditional statistical approach is not “robust”:
by using slightly different values of subjective probability (which describe the
experts’ uncertainty as well as the original values), we may end up with radically
different conclusions.
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It is therefore desirable to develop robust methodologies for characterizing
response of systems to various damage mechanisms. The probabilistic approach
to decision making is based on a solid foundations: there are axioms, principles
that—if true—uniquely lead to probabilities and probability-based techniques
for decision making. Most of these principles are pretty reasonable, with the
exception of one: that the corresponding ordering of alternatives is “total” (“lin-
ear”). Traditional decision theory (see, e.g., [1,2]) is based on the assumption
that a person whose preferences we want to describe can always (linearly) order
his preferences, i.e., that for every two alternatives a and a’, he can decide:

— whether a is better than a' (we will denote it by a' < a);

— or whether a' is better than a (a < a');

— or whether a and a’ are (for this person) of the same quality (we will denote
it by a ~ a’).

A similar assumption (often implicit) underlies the traditional description of
degrees of belief (“subjective probabilities”) by numbers from the interval [0,1].
In real life, an expert may not be able to always compare two different alter-
natives. In this paper, we provide an exact description of decision making under
partial ordering of alternatives. In turns out that in general, the uncertainty of
each situation is characterized not by a scalar linearly ordered quantity (proba-
bility), but by a matrix-type partially ordered quantity (ordered operator).
Important particular cases are interval-valued probabilities and more general
algebraic structures described by S. Markov and his group; see, e.g., [7], [8].
Our results were partially published in [5] and [6].

2 Traditional Utility Theory: A Brief Reminder

In this section, we will mainly follow standard definitions (see, e.g., [1,2]), but
we will not always follow them exactly: in some cases, we will slightly rephrase
these definitions (without changing their mathematical contents) so as to make
the following transition to partially ordered preferences as clear as possible.

Definition 1. Let A be a set; this set will be called the set of alternatives (or
the set of pure alternatives). By a lottery on A we understand a a probability
measure on A with finite support.

In other words, a lottery is a pair (A, p), where A = {a1,...,a,} C Aisa
finite subset of A, and p is a mapping p : A — [0,1] for which p(a;) > 0 and
>~ p(a;) = 1. A lottery will also denoted as p(a1) -a1 + ...+ p(a,) - an. We do not
consider lotteries with infinite numbers of alternatives, because every real-life
randomizing device, be it a dice or a computer-based random number generator,
produces only finitely many possibilities.

The set of lotteries will be denoted by L. On this set L, we can naturally
define an operation of probability combination as a convex combination of the
corresponding probability measures: namely, if we have m values ¢1,...,¢y €
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[0,1] with > ¢; = 1, and m lotteries £; = (A;,p;), then we can define the
probability combination £ = ¢ - €1 + ... + g - £ as a lottery £ = (A, p) with
A = UA; and p(a) = )" g; - pj(a), where the sum is taken over all j for which
a € A]

Definition 2. Let A be a set, and let L be the set of all lotteries over A. By a
preference relation, we mean a pair (<, ~), where < is a (strict) order on L, ~
is an equivalence relation on L, and for every £, 0',0" € L and every p € (0,1),
the following conditions hold:

ifb~L and 0! < 0", then £ < {";
if €<l and ' ~ 0", then £ < (";
if £ <0, thenp-L+(1—p)- " <p-L'"+(1—p)- -
ifp-L+(1—p)-£"<p-£'+(1—p)-L", thent < {';
ifb~0, thenp- L+ (1—p)- " ~p-L'+(1—p)- L'
ifp-l+(1—p)- L' ~p-'+(1—p)-L" then £~ 1.

S T Lo do =

Definition 3. A preference relation is called linearly ordered (or linear, for
short) if for every £,0' € L, either £ <X {', or £' < £ (where £ < {' means that
either £ < 0 or £~ 1').

It is known that linearly ordered preference relations can be characterized in
terms of special functions called wtility functions:

Definition 4. A function u from the set L of all lotteries to an ordered set 'V is
called a utility function. For each £ € L, u(f) will be called a value of the utility
function. We say that a utility function u describes the preference relation if for
every £,0' € L, the following two conditions hold:

— £ if and only if u(f) < u(l');
— £~ if and only if u(f) = u(l").

Definition 5. A wutility function u : L — V is called convexity-preserving if on
the set V, convex combination py -v1 + ...+ Py - Uy 15 defined for all p; > 0,
> pi = 1, and if for every p; and £;, we have u(py - b1 + ... + pm - b)) =
proull) + .+ p - ulln).

To describe linearly ordered preference relations, we use scalar utility func-
tions, i.e., convexity-preserving utility functions for which V' = R. It is known
that for every convexity-preserving function v : L — R, the relations u(£) < u(¢')
and u(f) = u(¢') define a linearly ordered preference relation. It is also known
that this utility function is determined uniquely modulo a linear transformation,
ie.

— If two different scalar utility functions u : L — R and u' : L — R describe the
same preference relation, then there exists a linear function T'(z) = k-z +m,
with k£ > 0, such that for every lottery £, u'(£) = T'(u(f)).
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— Vice versa, if a scalar utility function u : L — R describes a preference
relation, and k¥ > 0 and m are real numbers, then the function u'(f) =
T(u(f)) (where T(z) = k- z + m) is also a scalar utility function which
describes the same preference relation.

One can also show that every Archimedean (in some reasonable sense) linearly
ordered preference relation (<,~) can be described by an appropriate scalar
utility function.

In other words, each (Archimedean) linearly ordered preference relation can
be described by a utility function, and this utility function is determined uniquely
modulo a linear transformation. This is not necessarily true for non-Archimedean
preference relations, e.g., for a lexicographic ordering (x1,x2) > (y1,y2) iff either
21 >y or (1 = y; and 2 > y3). It turns out that non-Archimedean linearly
ordered preferences can be described by utilities with values in linearly ordered
affine spaces (for a general introduction into ordered algebraic structures, see,

e.g., [3]):

3 Utilities with Values in Linearly Ordered Affine Spaces:
Brief Reminder

An affine space (see, e.g., [4] and references therein) is “almost” a vector space,
the main difference between them is that in the linear space, there is a fixed
starting point (0), while in the affine space, there is no fixed point. More formally:

— A linear space is defined as a set V' with two operations: addition v +v' and
multiplication A - v of elements from V' by real numbers A € R (operations
which must satisfy some natural properties). With this two basic operations,
we can define an arbitrary linear combination Ay -vy +...4+ Ay, -v, of elements
Vi,...,0n €V.

— In the affine space, we can only define those linear combination which are
shift-invariant, i.e., linear combinations with Y \; = 1.

The relation between a linear space and an affine space is rather straightforward:

— if we have an affine space V, then we can pick an arbitrary point vy € V, are
define a linear space in which this point is 0. Namely, we can define v + v’
asl-v+1-v" —1-v: since we took vy as 0, this linear combination will be
exactly v + v'.

— Vice versa, if we have a hyperplane H in a linear space, then (unless this
hyperplane goes through 0) this hyperplane is not a linear space, but it is
always an affine space.

Definition 6. A vector space V with a strict order < is called an ordered vector
space if for every v,v',v" € V, and for every real number X > 0 the following
two properties are true:

—ifv <, thenv+v" <v +";
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—ifo<v, then \-v < X-v'.

Since this ordering does not change under shift, it, in effect, defines an or-
dering on the affine space.

Definition 7. By a vector utility function, we mean a convezity-preserving util-
ity function with values in an ordered affine space V.

To analyze uniqueness of vector utility functions, we must consider isomor-
phisms. A mapping T between two affine spaces is called affine if it preserves
the affine structure, ie., if TQ X - v;) = Y. A - T(v;) whenever > \; = 1.
For finite-dimensional affine spaces, affine mappings are just linear transforma-
tions (z1,---,%n) = (Y1,---,Ym), i-e., transformations in which each resulting
coordinate y; is determined by a linear function y; = a; + ) b;; - z;.

Definition 8. A one-to-one affine transformation T : V. — V' of two ordered

affine spaces is called an isomorphism if for every vi,vs € V, v <v' if and only
if T(v) < T(v").

Recall that for every subset S C V of an affine space, its affine hull A(S) can
be defined as the smallest affine subspace containing S, i.e., equivalently, as the
set of all affine combinations > A; - s; (D A; = 1) of elements from S.

Theorem 1. Let A be a set, and let L be the set of all lotteries over A.

— (consistency) For every convexity-preserving function u : L — V from L to
a linearly ordered affine space V, the relations u(f) < u(€") and u(€) = u(f")
define a linearly ordered preference relation.

— (existence) For every linearly ordered preference relation (<, ~), there exists
a vector utility function (with values in a linearly ordered affine space) which
describes this preference.

— (uniqueness) The utility function is determined uniquely modulo an isomor-
phism:

o If two different vector utility functions uw : L - V and v : L — V'
describe the same linearly ordered preference relation, then there exists
an isomorphism
T : A(u(L)) — A(u'(L)) between the affine hulls of the images of the
functions, such that for every lottery £, u'(£) = T (u(¥)).

o Vice versa, if a vector utility function u: L — V describes a preference
relation, and T : A(u(L)) — V' is an isomorphism of ordered affine
spaces, then the function u'(£) = T'(u(f)) is also a vector utility function,
and it describes the same preference relation.

4 New Approach: Utility Theory for Partially Ordered
Preferences

It turns out that a similar result holds for partially ordered references as well:
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Theorem 2. Let A be a set, and let L be the set of all lotteries over A.

— (consistency) For every convexity-preserving function w : L — V from L to
an ordered affine space, the relations u(f) < u(f') and u(f) = u(¢') define a
preference relation.

— (existence) For every preference relation (<, ~), there exists a vector utility
function which describes this preference.

— (uniqueness) The utility function is determined uniquely modulo an isomor-
phism:

o If two different vector utility functions uw : L - V and u' : L — V'
describe the same preference relation, then there exists an isomorphism
T : A(u(L)) = A(u'(L)) between the affine hulls of the images of the
functions, such that for every lottery £, u'(£) = T (u(¥)).

o Vice versa, if a vector utility function u : L — V describes a preference
relation, and T : A(u(L)) — V' is an isomorphism of ordered affine
spaces, then the function u'(€) = T'(u(f)) is also a vector utility function,
and it describes the same preference relation.

Ezample. Let us consider a simple case in which the quality of each alternative a
is described by the value of a single quantity g(a) (e.g., profit), and the partialness
of the preference relation is caused by the fact that we do not know the exact
values of this quantity; instead, for each alternative a, we know the interval
[¢~ (a), g (a)] of possible values of this quantity. In such a case, it is natural to
define preference as follows:

—a=d if and only if ¢ (a) <

-
— a ~ da if and only if ¢~ (a) = ¢~ (a') and ¢*(a)

5 How to Describe Degrees of Belief (“Subjective
Probabilities”) for Partially Ordered Preferences?

In traditional (scalar) utility theory, it is possible to describe our degree of belief
ps(E) in each statement E, e.g., as follows: We pick two alternatives ap and a;
with utilities 0 and 1, and as the degree of belief in E, we take the utility of
a conditional alternative “if E then a; else ag” (or (E|ai|ag), for short). This
utility is also called subjective probability because if E is a truly random event
which occurs with probability p, then this definition leads to ps(E) = p: Indeed,
according to the convexity-preserving property of a utility function, we have

ps(BE) = u(Elai|ao) = p-u(ar) + (1 —p)-ulao) =p-1+(1-p)-0=p. (1)

How can a similar description look like for partially ordered preferences? Before
we formulate our result, let us first explain our reasoning that led to this re-
sult. The linear-ordered case definition of subjective probability ps(E) can be
rewritten as follows: for every two lotteries £, ¢' € L, we have

w(ElLE") = ps(E) - u(f) + (1 = ps(E)) - u(l'), (2)
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or, equivalently,
u(EL|') = ps(E) - (u(€) — u(l)) + u(l'). 3)

In other words, we can interpret ps(E) as a linear operator which transforms the
utility difference u(£) — u(£') into an expression

u(E|0E) = u(l') = ps(E) - (u(f) — u(l)). (4)

It is, therefore, reasonable to expect that for partially ordered preferences, when
we have multi-dimensional (vector) utilities with values in a vector space V,
ps(E) would also be a linear operator, but this time from V to V' (and not from
R to R). We will now show that this expectation is indeed true.

Definition 9. Let A be a set, let L be the set of all lotteries over A, and let E
be a formula (called event). By a conditional lottery, we mean an expression of
the type Y- pi- i + 3 qr - (E|G|L;), where Y opi+ > qr =1, and &;, £}, and £}
are lotteries. We will denote the set of all conditional lotteries by L(E).

The meaning of a conditional lottery is straightforward: with probability p;,
we run a lottery ¢;, and with probability g, we run a conditional event “if E
then £}, else £}”.

Definition 10. Let A be a set, and let L(E) be the set of all conditional lotteries
over A. By a preference relation, we mean a pair {<,~), where < is a (strict)
order on L(E), ~ is an equivalence relation on L(E), which satisfies conditions
1)-6) from Definition 2 plus the following additional conditions:

if £~ ', then (E|L|0") ~ (E|L'|€");

if ¢ ~ 0", then (E|L|L") ~ (E|L|0");

(ElE]) ~ ¢;

(Elp-L+ (1 —p)-L'[e") ~p-(E|L|") + (1 —p) - (B[C']L");
(Eltlp-€' + (1 —p)-£") ~p-(ElL|t') + (1 —p) - (E|£]£");
(Ep-t+(Q—=p)-l'lp-£'+Q=p)-") ~p-(E|L) + (1 —p)-L";
if L=< 0, then £ = (E|L)') < 0.

NS T o~

The meaning of all these conditions is straightforward; e.g., 7) means that
(E|L|¢") is better (or of the same quality) than ¢ because in the conditional
alternative, both possibilities £ and ¢’ are at least as good as A.

In accordance with our Theorem 2, the utility of such events can be described
by a vector utility function.

Definition 11. Let V be an ordered vector space.

— A linear operator T : V — V is called non-negative (denoted T >0) if z >0
implies Vz > 0.

— A linear operator T is called o probability operator if both T and 1 —T are
non-negative (where 1 is a unit transformation v — v).
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Theorem 3.

— Letuw : L — V be a vector utility function and let T : V — V be a strict

probability operator. Then, a function u* : L(E) = V defined as

u” (Zpi i+ Y g (E%W)) = piul)+ Y qe-u (BG4, (5)
i k i k

with w*(E|L|0') = Tu(f) + (1 — T)u(?'), is a vector utility function which
describes a preference relation on L(E).

— Let {(<,~) be a preference relation on L(E), and let u : L(E) — V be a

vector utility function which describes this preference. Then, there ezists a
probability operator T : A(u(L)) = V for which

w(E|l) = Tu(l) + (1 — T)u(l') (6)
for all £ and ¢'.

Thus, we get a generalization of subjective probabilities, from scalar values

p € [0,1] (which, in our description, correspond to scalar matrices) to general
linear probability operators. It can be shown that for a fixed order on an n-
dimensional space, the set of all such matrices is at most n-dimensional.
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