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Abstract

When we have only interval ranges [xi, xi] of sample values x1, . . . , xn, what is the
interval [V , V ] of possible values for the variance V of these values? We show that the
problem of computing the upper bound V is NP-hard. We provide a feasible (quadratic
time) algorithm for computing the exact lower bound V on the variance of interval data.
We also provide feasible algorithms that computes V under reasonable easily verifiable
conditions, in particular, in case interval uncertainty is introduced to maintain privacy
in a statistical database.

We also extend the main formulas of interval arithmetic for different arithmetic opera-
tions x1 op x2 to the case when, for each input xi, in addition to the interval xi = [xi, xi]
of possible values, we also know its mean Ei (or an interval Ei of possible values of the
mean), and we want to find the corresponding bounds for y = x1 op x2 and its mean.
In this case, we are interested not only in the bounds for y, but also in the bounds for
the mean of y. We formulate and solve the corresponding optimization problems, and
describe remaining open problems.

Keywords: interval computations, robust statistics, optimization.

1 Introduction: Data Processing–From Computing to Prob-
abilities to Intervals

Why data processing? In many real-life situations, we are interested in the value of
a physical quantity y that is difficult or impossible to measure directly. Examples of such
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quantities are the distance to a star and the amount of oil in a given well. Since we
cannot measure y directly, a natural idea is to measure y indirectly. Specifically, we find
some easier-to-measure quantities x1, . . . , xn which are related to y by a known relation
y = f(x1, . . . , xn); this relation may be a simple functional transformation, or complex
algorithm (e.g., for the amount of oil, numerical solution to an inverse problem). Then,
to estimate y, we first measure the values of the quantities x1, . . . , xn, and then we use
the results x̃1, . . . , x̃n of these measurements to to compute an estimate ỹ for y as ỹ =
f(x̃1, . . . , x̃n).

For example, to find the resistance R, we measure current I and voltage V , and then
use the known relation R = V/I to estimate resistance as R̃ = Ṽ /Ĩ.

Computing an estimate for y based on the results of direct measurements is called data
processing; data processing is the main reason why computers were invented in the first
place, and data processing is still one of the main uses of computers as number crunching
devices.

Comment. In this paper, for simplicity, we consider the case when the relation between
xi and y is known exactly; in some practical situations, we only known an approximate
relation between xi and y.

Why interval computations? From computing to probabilities to intervals.
Measurement are never 100% accurate, so in reality, the actual value xi of i-th measured
quantity can differ from the measurement result x̃i. Because of these measurement errors
∆xi

def= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n) of data processing is, in general, different from
the actual value y = f(x1, . . . , xn) of the desired quantity y [16].

It is desirable to describe the error ∆y
def= ỹ − y of the result of data processing. To do

that, we must have some information about the errors of direct measurements.
What do we know about the errors ∆xi of direct measurements? First, the manufacturer

of the measuring instrument must supply us with an upper bound ∆i on the measurement
error. If no such upper bound is supplied, this means that no accuracy is guaranteed,
and the corresponding “measuring instrument” is practically useless. In this case, once
we performed a measurement and got a measurement result x̃i, we know that the actual
(unknown) value xi of the measured quantity belongs to the interval xi = [xi, xi], where
xi = x̃i −∆i and xi = x̃i + ∆i.

In many practical situations, we not only know the interval [−∆i, ∆i] of possible val-
ues of the measurement error; we also know the probability of different values ∆xi within
this interval. This knowledge underlies the traditional engineering approach to estimat-
ing the error of indirect measurement, in which we assume that we know the probability
distributions for measurement errors ∆xi.

In practice, we can determine the desired probabilities of different values of ∆xi by
comparing the results of measuring with this instrument with the results of measuring
the same quantity by a standard (much more accurate) measuring instrument. Since the
standard measuring instrument is much more accurate than the one use, the difference
between these two measurement results is practically equal to the measurement error; thus,
the empirical distribution of this difference is close to the desired probability distribution
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for measurement error. There are two cases, however, when this determination is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fundamental
science. When a Hubble telescope detects the light from a distant galaxy, there is
no “standard” (much more accurate) telescope floating nearby that we can use to
calibrate the Hubble: the Hubble telescope is the best we have.

• The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration is so costly
– usually costing ten times more than the sensor itself – that manufacturers rarely
do it.

In both cases, we have no information about the probabilities of ∆xi; the only information
we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result x̃i, the
only information that we have about the actual value xi of the measured quantity is that
it belongs to the interval xi = [x̃i −∆i, x̃i + ∆i]. In such situations, the only information
that we have about the (unknown) actual value of y = f(x1, . . . , xn) is that y belongs to
the range y = [y, y] of the function f over the box x1 × . . .× xn:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on the input intervals xi is called interval
computations; see, e.g., [5, 6, 7, 12].

Interval computations as an optimization problem. The main problem of interval
computations can be naturally reformulated as an optimization problem. Indeed, y is the
solution to the following problem: f(x1, . . . , xn) → min, under the conditions

x1 ≤ x1 ≤ x1; . . . xn ≤ xn ≤ xn,

and y is the solution to the maximization problem f(x1, . . . , xn) → max under the same
conditions.

Interval computations techniques: brief reminder. Historically the first method for
computing the enclosure for the range is the method which is sometimes called “straightfor-
ward” interval computations. This method is based on the fact that inside the computer,
every algorithm consists of elementary operations (arithmetic operations, min, max, etc.).
For each elementary operation f(a, b), if we know the intervals a and b for a and b, we can
compute the exact range f(a,b). The corresponding formulas form the so-called interval
arithmetic. For example,

[a, a] + [b, b] = [a + b, a + b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b),max(a · b, a · b, a · b, a · b)].
In straightforward interval computations, we repeat the computations forming the program
f step-by-step, replacing each operation with real numbers by the corresponding operation
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of interval arithmetic. It is known that, as a result, we get an enclosure Y ⊇ y for the
desired range.

In some cases, this enclosure is exact. In more complex cases (see examples below), the
enclosure has excess width.

There exist more sophisticated techniques for producing a narrower enclosure, e.g., a
centered form method. However, for each of these techniques, there are cases when we get
an excess width. Reason: as shown in [9, 18], the problem of computing the exact range
is known to be NP-hard even for polynomial functions f(x1, . . . , xn) (actually, even for
quadratic functions f).

What we are planning to do? First, we analyze a specific interval computations prob-
lem – when we use traditional statistical data processing algorithms f(x1, . . . , xn) to process
the results of direct measurements.

Then, we extend our analysis to the case when for each input xi, in addition to the
interval xi = [xi, xi] of possible values, we have partial information about the probabilities:
specifically, we know its mean Ei (or an interval Ei of possible values of the mean).

We formulate and solve the corresponding optimization problems, and describe remain-
ing open problems.

2 First Step Beyond Intervals: Error Estimation for Tradi-
tional Statistical Data Processing Algorithms under Inter-
val Uncertainty

When we have n results x1, . . . , xn of repeated measurement of the same quantity (at differ-
ent points, or at different moments of time), traditional statistical approach usually starts
with computing their sample average E = (x1 + . . . + xn)/n and their (sample) variance

V =
(x1 −E)2 + . . . + (xn − E)2

n
(1)

(or, equivalently, the sample standard deviation σ =
√

V ); see, e.g., [16].
In this section, we consider situations when we do not know the exact values of the

quantities x1, . . . , xn, we only know the intervals x1, . . . ,xn of possible values of xi. In such
situations, for different possible values xi ∈ xi, we get different values of E and V . The
question is: what are the intervals E and V of possible values of E and V ?

The practical importance of this question was emphasized, e.g., in [13, 14] on the example
of processing geophysical data.

For E, the straightforward interval computations leads to the exact range:

E =
x1 + . . . + xn

n
, i.e., E =

x1 + . . . + xn

n
, and E =

x1 + . . . + xn

n
.

For V , straightforward interval computations lead to an excess width. For example, for
x1 = x2 = [0, 1], the variance is V = (x1−x2)2/4 and hence, the actual range V = [0, 0.25].
On the other hand, E = [0, 1], hence

(x1 −E)2 + (x2 −E)2

2
= [0, 1] ⊃ [0, 0.25].
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More sophisticated methods of interval computations also sometimes lead to an excess
width.

Reason: in the formula for the average E, each variable only occurs once, and it is known
that for such formulas, straightforward interval computations lead to the exact range (see,
e.g., [4]). In the expression for variance, each variable xi occurs several times: explicitly,
in (xi − E)2, and explicitly, in the expression for E. In such cases, often, dependence
between intermediate computation results leads to excess width of the results of straight-
forward interval computations. Not surprisingly, we do get excess width when applying
straightforward interval computations to the formula (1).

For variance, we can actually prove that the corresponding optimization problem is
difficult:

Theorem 1. Computing V is NP-hard.

Proof. By definition, a problem is NP-hard if any problem from the class NP can be reduced
to it. Therefore, to prove that a problem P is NP-hard, it is sufficient to reduce one of the
known NP-hard problems P0 to P.

In this case, since P0 is known to be NP-hard, this means that every problem from the
class NP can be reduced to P0, and since P0 can be reduced to P, thus, the original problem
from the class NP is reducible to P.

For our proof, as the known NP-hard problem P0, we take a subset problem: given n
positive integers s1, . . . , sn, to check whether there exist signs ηi ∈ {−1, +1} for which the

signed sum
n∑

i=1

ηi · si equals 0.

We will show that this problem can be reduced to the problem of computing V , i.e.,
that to every instance (s1, . . . , sn) of the problem P0, we can put into correspondence such
an instance of the V -computing problem that based on its solution, we can easily check
whether the desired signs exist.

As this instance, we take the instance corresponding to the intervals [xi, xi] = [−si, si].
We want to show that for the corresponding problem, V = C0, where we denoted C0

def=
1
n ·

n∑

i=1

s2
i , if and only if there exist signs ηi for which

∑
ηi · si = 0.

1◦. Let us first show that in all cases, V ≤ C0.

Indeed, it is known that the formula for the finite population variance can be reformulated
in the following equivalent form:

V =
1
n
·

n∑

i=1

x2
i −E2.

Since xi ∈ [−si, si], we can conclude that x2
i ≤ s2

i hence
∑

x2
i ≤

∑
s2
i . Since E2 ≥ 0, we

thus conclude that V ≤ 1
n ·

n∑

i=1

s2
i = C0. In other words, every possible value V of the sample

variance is smaller than or equal to C0. Thus, the largest of these possible values, i.e., V ,
also cannot exceed C0, i.e., V ≤ C0.

2◦. Let us now prove that if the desired signs ηi exist, then V = C0.
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Indeed, in this case, for xi = ηi · si, we have E = 0 and x2
i = s2

i , hence

V =
1
n
·

n∑

i=1

(xi − E)2 =
1
n
·

n∑

i=1

s2
i = C0.

So, the variance V is always ≤ C0, and it attains the value C0 for some xi. Therefore,
V = C0.

3◦. To complete the proof of Theorem 1, we must show that, vice versa, if V = C0, then
the desired signs exist.

Indeed, let V = C0. The variance is a continuous function on a compact set x1 × . . . ×
xn, hence its maximum on this compact set is attained for some values x1 ∈ x1 =
[−s1, s1], . . . , xn ∈ xn = [−sn, sn]. In other words, for the corresponding values of xi,
the variance V is equal to C0.

Since xi ∈ [−si, si], we can conclude that x2
i ≤ s2

i ; since E2 ≥ 0, we get V ≤ C0. If
|xi|2 < s2

i or E2 > 0, then we would have σ2 < C0. Thus, the only way to have V = C0

is to have x2
i = s2

i and E = 0. The first equality leads to xi = ±si, i.e., to xi = ηi · si for
some ηi ∈ {−1, +1}. Since E is, by definition, the (arithmetic) average of the values xi, the

equality E = 0 then leads to
n∑

i=1

ηi · si = 0. So, if V = C0, then the desired signs do exist.

The theorem is proven.

The very fact that computing the range of a quadratic function is NP-hard was first
proven by Vavasis [18] (see also [9]). We have shown that this difficulty happens even for
very simple quadratic functions frequently used in data processing.

A natural question is: maybe the difficulty comes from the requirement that the range
be computed exactly? In practice, it is often sufficient to compute, in a reasonable amount
of time, a usefully accurate estimate Ṽ for V , i.e., an estimate Ṽ which is accurate with a
given accuracy ε > 0:

∣∣∣Ṽ − V
∣∣∣ ≤ ε. Alas, a simple modification of the above proof shows

that for any ε, such computations are also NP-hard:

Theorem 2. For every ε > 0, the problem of computing V with accuracy ε is NP-hard.

It is worth mentioning that V can be computed exactly in exponential time O(2n):

Theorem 3. There exists an algorithm that computes V in exponential time.

Proof. Let x
(0)
1 ∈ x1, . . . , x

(0)
n ∈ xn be the values for which the variance V attains maximum

on the box x1 × . . .× xn.
Let us pick one of the n variables xi, and let us fix the values of all the other variables

xj (j 6= i) at xj = x
(0)
j . When we substitute xj = x

(0)
j for all j 6= i into the expression

for finite population variance, V becomes a quadratic function of xi. This function of one
variable should attain its maximum on the interval xi at the value x

(0)
i .

By definition, the variance V is a sum of non-negative terms; thus, its value is always
non-negative. Therefore, the corresponding quadratic function of one variable always has
a global minimum. This function is decreasing before this global minimum, and increasing
after it. Thus, its maximum on the interval xi is attained at one of the endpoints of this
interval.
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In other words, for each variable xi, the maximum is attained either for xi = xi, or
for xi = xi. Thus, to find V , it is sufficient to compute V for 2n possible combinations
(x±1 , . . . , x±n ), where x−i

def= xi and x+
i

def= xi, and find the largest of the resulting 2n numbers.
The theorem is proven.

For computing V , there a feasible algorithm: specifically, our algorithm is quadratic-
time, i.e., it requires O(n2) computational steps (arithmetic operations or comparisons) for
n interval data points xi = [xi, xi].

The algorithm A is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).

• Second, we compute E and E and select all “small intervals” [x(k), x(k+1)] that inter-
sect with [E, E].

• For each of the selected small intervals [x(k), x(k+1)], we compute the ratio rk = Sk/Nk,
where

Sk
def=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj ,

and Nk is the total number of such i’s and j’s If rk ∈ [x(k), x(k+1)], then we compute

Vk
def=

1
n
·

 ∑

i:xi≥x(k+1)

(xi − rk)2 +
∑

j:xj≤x(k)

(xj − rk)2

 .

If Nk = 0, we take Vk
def= 0.

• Finally, we return the smallest of the values Vk as V .

Theorem 4. The algorithm A always compute V is quadratic time.

Proof. Let us first show that this algorithm is indeed correct.

1◦. Indeed, let x
(0)
1 ∈ x1, . . . , x

(0)
n ∈ xn be the values for which the variance V attains

minimum on the box x1 × . . .× xn.
Let us pick one of the n variables xi, and let us fix the values of all the other variables

xj (j 6= i) at xj = x
(0)
j . When we substitute xj = x

(0)
j for all j 6= i into the expression

for finite population variance, V becomes a quadratic function of xi. This function of one
variable should attain its minimum on the interval xi at the value x

(0)
i .

As we have shown in the proof of Theorem 3, this function is decreasing before this global
minimum, and increasing after it. This global minimum is attained when ∂V/∂xi = 0.
Differentiating the formula (1) with respect to xi, we conclude that

∂V

∂xi
=

1
n
·

2(xi − E) +

n∑

j=1

2(E − xj) · ∂E

∂xj


 .

Since ∂E/∂xi = 1/n, we conclude that

∂V

∂xi
=

2
n
·

(xi − E) +

n∑

j=1

(E − xj) · 1
n


 .
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Here,
∑

(E − xj) = n ·E −∑
xj . By definition of the average E, this difference is 0, hence

the above formula takes the form ∂V/∂xi = (2/n) · (xi − E). So, this function attains the
minimum when xi − E = 0, i.e., when xi = E.

Since E = (1/n) · (xi +
∑′

i xj), where
∑′

i means the sum over all j 6= i, the equality
xi = E means that xi = xi/n+(1/n)·∑′

i x
(0)
j . Moving terms containing xi into the left-hand

side and dividing by the coefficient at xi, we conclude that the minimum is attained when
xi = Ei

def= 1
n− 1 ·

∑′
i x

(0)
j , i.e., when xi is equal to the arithmetic average Ei of all other

elements.

2◦. Let us now use the knowledge of a global minimum to describe where the desired function
attains its minimum on the interval xi.

In our general description of non-negative quadratic functions of one variable, we men-
tioned that each such function is decreasing before the global minimum and increasing after
it. Thus, for xi < Ei, the function V is decreasing; for xi > Ei, this function in increasing.
Therefore:

• If Ei ∈ xi, the global minimum of the function V of one variable is attained within
the interval xi, hence the minimum on the interval xi is attained for xi = Ei.

• If Ei < xi, the function V is increasing on the interval xi and therefore, its minimum
on this interval is attained when xi = xi.

• Finally, if Ei > xi, the function V is decreasing on the interval xi and therefore, its
minimum on this interval is attained when xi = xi.

3◦. Let us reformulate the above conditions in terms of the average

E =
1
n
· xi +

n− 1
n

· Ei.

• In the first case, when xi = Ei, we have xi = E = Ei, so E ∈ xi.

• In the second case, we have Ei < xi and xi = xi. Therefore, in this case, E < xi.

• In the third case, we have Ei > xi and xi = xi. Therefore, in this case, E > xi.

Thus:

• If E ∈ xi, then we cannot be in the second or third cases. Thus, we are in the first
case, hence xi = E.

• If E < xi, then we cannot be in the first or the third cases. Thus, we are the second
case, hence xi = xi.

• If E > xi, then we cannot be in the first or the second cases. Thus, we are in the
third case, hence xi = xi.

4◦. So, as soon as we determine the position of E with respect to all the bounds xi and
xi, we will have a pretty good understanding of all the values xi at which the minimum is
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attained. Hence, to find the minimum, we will analyze how the endpoints xi and xi divide
the real line, and consider all the resulting sub-intervals.

Let the corresponding subinterval [x(k), x(k+1)] by fixed. For the i’s for which E 6∈ xi, the
values xi that correspond to the minimal finite population variance are uniquely determined
by the above formulas.

For the i’s for which E ∈ xi the selected value xi should be equal to E. To determine
this E, we can use the fact that E is equal to the average of all thus selected values xi, in
other words, that we should have

E =
1
n
·

 ∑

i:xi≥x(k+1)

xi + (n−Nk) · E +
∑

j:xj≤x(k)

xj


 ,

where (n−Nk) ·E combines all the points for which E ∈ xi. Multiplying both sides of this
equality by n and subtracting n · E from both sides, we conclude that E = Sk/Nk – what
we denoted, in the algorithm’s description, by rk. If thus defined rk does not belong to the
subinterval [x(k), x(k+1)], this contradiction with our initial assumption shows that there
cannot be any minimum in this subinterval, so this subinterval can be easily dismissed.

The corresponding variance is denoted by Vk. If Nk = 0, this means that E belongs
to all the intervals xi and therefore, that the lower endpoint V is exactly 0 – so we assign
Vk = 0. So, the algorithm is indeed correct.

5◦. To complete the proof of the theorem, we must show that this algorithm indeed requires
quadratic time. Indeed, sorting requires O(n·log(n)) steps (see, e.g., [1]), and the rest of the
algorithm requires linear time (O(n)) for each of 2n subintervals, i.e., the total quadratic
time. The theorem is proven.

NP-hardness of computing V means, crudely speaking, that there are no general ways
for solving all particular cases of this problem (i.e., computing V ) in reasonable time.

However, we show that there are algorithms for computing V for many reasonable
situations. Namely, we propose an efficient algorithm that computes V for the case when
all the interval midpoints (“measured values”) x̃i = (xi + xi)/2 are definitely different
from each other, in the sense that the “narrowed” intervals [x̃i −∆i/n, x̃i + ∆i/n] – where
∆i = (xi − xi)/2 is the interval’s half-width – do not intersect with each other.

This algorithm A is as follows:

• First, we sort all 2n endpoints of the narrowed intervals x̃i − ∆i/n and x̃i + ∆i/n
into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n). This enables us to divide the real line into

2n + 1 segments (“small intervals”) [x(k), x(k+1)], where we denoted x(0)
def= −∞ and

x(2n+1)
def= +∞.

• Second, we compute E and E and pick all “small intervals” [x(k), x(k+1)] that intersect
with [E, E].

• For each of remaining small intervals [x(k), x(k+1)], for each i from 1 to n, we pick the
following value of xi:

• if x(k+1) < x̃i −∆i/n, then we pick xi = xi;
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• if x(k) > x̃i + ∆i/n, then we pick xi = xi;
• for all other i, we consider both possible values xi = xi and xi = xi.

As a result, we get one or several sequences of xi. For each of these sequences, we
check whether the average E of the selected values x1, . . . , xn is indeed within this
small interval, and if it is, compute the variance by using the formula (1).

• Finally, we return the largest of the computed variances as V .

Theorem 5. The algorithm A computes V is quadratic time for all the cases in which the
“narrowed” intervals do not intersect with each other.

This algorithm also works when, for some fixed k, no more than k “narrowed” intervals can
have a common point:

Theorem 6. For every positive integer k, the algorithm A computes V is quadratic time
for all the cases in which no more than k “narrowed” intervals can have a common point.

Proof. Let us first show that this algorithm is indeed correct.

1◦. Similarly to the proof of Theorem 4, let x1, . . . , xn be the values at which the finite
population variance attain its maximum on the box x1 × . . . × xn. If we fix the values of
all the variables but one xi, then V becomes a quadratic function of xi. When the function
V attains maximum over x1 ∈ x1, . . . , xn ∈ xn, then this quadratic function of one variable
will attain its maximum on the interval xi at the point xi.

We have already shown, in the proof of Theorem 4, that this quadratic function has
a (global) minimum at xi = Ei. Since this quadratic function of one variable is always
non-negative, it cannot have a global maximum. Therefore, its maximum on the interval
xi = [xi, xi] is attained at one of the endpoints of this interval.

An arbitrary quadratic function of one variable is symmetric with respect to the location
of its global minimum, so its maximum on any interval is attained at the point which is
the farthest from the minimum. There is exactly one point which is equally close to both
endpoints of the interval xi: its midpoint x̃i. Depending on whether the global minimum
is to the left, to the right, or exactly at the midpoint, we get the following three possible
cases:

1. If the global minimum Ei is to the left of the midpoint x̃i, i.e., if Ei < x̃i, then the
upper endpoint is the farthest from Ei. In this case, the maximum of the quadratic
function is attained at its upper endpoint, i.e., xi = xi.

2. Similarly, if the global minimum Ei is to the right of the midpoint x̃i, i.e., if Ei > x̃i,
then the lower endpoint is the farthest from Ei. In this case, the maximum of the
quadratic function is attained at its lower endpoint, i.e., xi = xi.

3. If Ei = x̃i, then the maximum of V is attained at both endpoints of the interval
xi = [xi, xi].

2◦. In the third case, we have either xi = xi or xi = xi. Depending on whether xi is equal
to the lower or to the upper endpoints, we can “combine” the corresponding situations
with Cases 1 and 2. As a result, we arrive at the conclusion that one of the following two
situations happen:
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1. either Ei ≤ x̃i and xi = xi;

2. either Ei ≥ x̃i and xi = xi.

3◦. Similarly to the proof of Theorem 4, let us reformulate these conclusions in terms of
the average E of the maximizing values x1, . . . , xn.

By definition, Ei = 1
n− 1 ·

∑′
i xj , and

∑′
j xj =

∑
j xj − xi. By definition of E, we have

∑

j

xj = n · E, therefore, Ei = n · E − xi
n− 1 . Let us apply this formula to the above three

cases.
In the first case, we have x̃i ≥ Ei. So, in terms of E, we get the inequality x̃i ≥

n · E − xi
n− 1 . Multiplying both sides of this inequality by n − 1, and using the fact that in

this case, xi = xi = x̃i + ∆i, we conclude that (n − 1) · x̃i ≥ n · E − x̃i − ∆i. Moving all
the terms but n ·E to the left-hand side and dividing by E, we get the following inequality:
E ≤ x̃i + ∆i/n.

In the second case, we similarly get the inequality E ≤ ∆̃i/n. So:

• In Case 1, we have E ≤ x̃i + ∆i/n and xi = xi.

• In Case 2, we have E ≥ x̃i −∆i/n and xi = xi.

Therefore:

• If E < x̃i −∆i/n, this means that we cannot be in Case 2. So we must be in Case 1
and therefore, we must have xi = xi.

• If E > x̃i + ∆i/n, this means that we cannot be in Case 1. So, we must be in Case 2
and therefore, we must have xi = xi.

The only case when we do not know which endpoint for xi we should choose is the case
when E belongs to the narrowed interval [x̃i −∆/n, x̃i + ∆i].
4◦. Hence, once we know where E is with respect to the endpoints of all narrowed inter-
vals, we can determine the values of all optimal xi – except for those that are within this
narrowed interval. Since we consider the case when no more than k narrowed intervals can
have a common point, we have no more than k undecided values xi. Trying all possible
combinations of lower and upper endpoints for these ≤ k values requires ≤ 2k steps.

Thus, the overall number of steps is O(2k ·n2). Since k is a constant, the overall number
of steps is thus O(n2). The theorem is proven.

3 Important Example: Interval Computations Related to
Privacy in Statistical Databases

Need for privacy. Privacy is an important issue in the statistical analysis of human-
related data. For example, to check whether in a certain geographic area, there is a gender-
based discrimination, we can use the census data to check, e.g., whether for all people from
this area who have the same same level of education, there is a correlation between salary
and gender. One can think of numerous possible questions of this type related to different
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sociological, political, medical, economic, and other questions. From this viewpoint, it is
desirable to give researches ability to perform whatever statistical analysis of this data that
is reasonable for their specific research.

On the other hand, we do not want to give them direct access to the raw census data,
because a large part of the census data is confidential. For example, for most people (those
who work in private sector) salary information is confidential. Suppose that a corporation is
deciding where to built a new plant and has not yet decided between two possible areas. This
corporation would benefit from knowing the average salary of people of needed education
level in these two areas, because this information would help them estimate how much it
will cost to bring local people on board. However, since salary information is confidential,
the company should not be able to know the exact salaries of different potential workers.

The need for privacy is also extremely important for medical experiments, where we
should be able to make statistical conclusions about, e.g., the efficiency of a new medicine
without disclosing any potentially embarrassing details from the individual medical records.

Such databases in which the outside users cannot access individual records but can
solicit statistical information are often called statistical databases.

How privacy is protected now and why it is not always sufficient. At present,
one of the main (and most efficient) methods of protecting privacy in databases is the
disaggregation of the data: instead of keeping a record with all the information about a
person, we divide this record into several subrecords. For example, instead of keeping a
single census record about a female professor leaving in New Jersey with three cats, we
split this record into several subrecords: a subrecord about a person living in New Jersey
with three cats (this subrecord will be useful for pet statistics), a subrecord about a female
professor living in New Jersey (this subrecord will be useful for gender-based employment
statistics), etc.

Such disaggregation helps to protect privacy. Indeed, if we keep the original full records,
then we can narrow down a request in such a way that only one person will qualify: e.g.,
a request about the average salary of all female professors living in New Jersey with three
cats etc. will eventually lead to an actual salary of that person. On the other hand, when
records are disaggregated, whatever query we ask, be it an average salary of all New Jersey
residents with exactly three cats or an average salary of all female professors from New
Jersey, we will most likely not narrow down to a single person.

Disaggregation is very useful for protecting privacy, but it is not sufficient. Indeed,
suppose that we keep a university salary database; for privacy protection, we keep all the
records anonymous so the only information in the database is the actual salary values. What
happens if we allow all possible statistical queries, including queries like “How many people
have salary 83.6K or smaller”? By asking appropriate queries, we can find the salary values
close to which the answer changes – and these values are exactly the actual salaries from
the database. Thus, if we know that, e.g., the university president is the highest-paying
professor, we will be able to get her salary as the largest of these actual salaries. How can
we avoid this privacy violation?

12



Privacy leads to intervals. A natural way to fully describe a single real-valued random
variable η is to provide the values of its cumulative density function (CDF)

F (x) = Prob(η ≤ x)

for all possible real numbers x. Once we know F (x), we can determine the values of all
possible statistical characteristics of this random variable – e.g., its first moment, second
moment, variance, etc. Thus, it is natural to allow the users to solicit the values of F (x) for
different x; from this information, the users will be able to reconstruct all other statistical
characteristics.

For discrete data x1, . . . , xn, the corresponding sample distribution – in which each value
xi occurs with probability 1/n – is described by the CDF F (x) for which

F (x) = (1/n) ·#{i : xi ≤ x}.

To get the full information about the data, we should allow the user to ask for the values
F (x) for all possible real numbers x. However, as we have mentioned, once we know the
values F (x) for all x, we can determine all the values xi. Thus, if we want to keep privacy,
we must only allow the users to know F (x) for some fixed values x(1) ≤ . . . ≤ x(m). This
way, instead of the actual values xi, all we know is an interval [x(k), x(k+1)] that contains xi.
Intervals corresponding to different values are almost disjoint, i.e., either disjoint (intersect
in at most one point) or identical. How can we compute statistical characteristics based on
this information?

Theorem 7. There exists a quadratic-time algorithm that computes the exact range V of
the variance V for the case when intervals xi of possible values of xi are pairwise almost
disjoint.

Proof. Since there exists an algorithm that computes V in feasible time, it is sufficient to
produce a feasible algorithm for computing V .

According to the proof of Theorems 3, 5, and 6, the values xi ∈ xi that lead to the
largest possible value of V satisfy the following property:

• if E ≤ xi, then xi = xi;

• if E ≥ xi, then xi = xi;

• if E ∈ (xi, xi), then xi = xi or xi = xi.

In order to use this property to compute V , we test all possible locations of E in relation
to the intervals xi: E = xi, E = xi, and E ∈ (xi, xi) for different i = 1, 2, . . . , n.

Let us first consider the cases when E = xi (the case when E = xi is treated simi-
larly). In these cases, since the intervals xi are almost disjoint, the above property uniquely
determines the values xi; thus, we can compute E, check whether it indeed satisfies the
corresponding condition, and if yes, compute the corresponding value V .

Let us now consider the cases when E ∈ (xi, xi). Let k denote the number of different
intervals of such type, and let nj , j = 1, . . . , k denote the number of intervals xi that coincide
with j-th interval. Then, n = n1 + . . . + nk. For each of these k intervals xj , the values
of xi are uniquely determined when xj ≤ xi or xi ≤ xj ; for the remaining nj values xi, we
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have xi = xi or xi = xi. Modulo transposition, the resulting set of values {x1, . . . , xn} is
uniquely determined by how many of these nj xi’s are equal to xi. The number of such xi’s
can be 0, 1, 2,. . . , nj + 1. Thus, the total number of such combinations is equal to nj + 1.

Overall, for all j from 1 to k, we have
k∑

j=1

(nj + 1) =
k∑

j=1

nj + k = n + k ≤ 2n resulting sets

{x1, . . . , xn}. For each of these sets, we compute E, check that the resulting E is indeed
inside the corresponding interval xi, and if it is, we compute V .

Thus, we have ≤ 2n + n = 3n cases, for each of which we need O(n) computations to
compute V . The largest of these V is the desired V , and we compute it in time ≤ 3n·O(n) =
O(n2). The proposition is proven.

Comment. Similar algorithms can be provided for computing the exact range of covariance
between two interval-valued data sequences; in general, the problem of computing the range
for covariance is NP-hard [15].

4 Second Step Beyond Intervals: Extension of Interval
Arithmetic to Situations with Partial Information about
Probabilities

Practical problem. In some practical situations, in addition to the lower and upper
bounds on each random variable xi, we know the bounds Ei = [Ei, Ei] on its mean Ei.

Indeed, in measurement practice (see, e.g., [16]), the overall measurement error ∆x is
usually represented as a sum of two components:

• a systematic error component ∆sx which is defined as the expected value E[∆x], and

• a random error component ∆rx which is defined as the difference between the overall
measurement error and the systematic error component: ∆rx

def= ∆x−∆sx.

In addition to the bound ∆ on the overall measurement error, the manufacturers of the
measuring instrument often provide an upper bound ∆s on the systematic error component:
|∆sx| ≤ ∆s.

This additional information is provided because, with this additional information, we
not only get a bound on the accuracy of a single measurement, but we also get an idea of
what accuracy we can attain if we use repeated measurements to increase the measurement
accuracy. Indeed, the very idea that repeated measurements can improve the measurement
accuracy is natural: we measure the same quantity by using the same measurement instru-
ment several (N) times, and then take, e.g., an arithmetic average x̄ = (x̃(1) + . . .+ x̃(N))/N
of the corresponding measurement results x̃(1) = x + ∆x(1), . . . , x̃(N) = x + ∆x(N).

• If systematic error is the only error component, then all the measurements lead to
exactly the same value x̃(1) = . . . = x̃(N), and averaging does not change the value –
hence does not improve the accuracy.
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• On the other hand, if we know that the systematic error component is 0, i.e., E[∆x] =
0 and E[x̃] = x, then, as N →∞, the arithmetic average tends to the actual value x.
In this case, by repeating the measurements sufficiently many times, we can determine
the actual value of x with an arbitrary given accuracy.

In general, by repeating measurements sufficiently many times, we can arbitrarily decrease
the random error component and thus attain accuracy as close to ∆s as we want.

When this additional information is given, then, after we performed a measurement and
got a measurement result x̃, then not only we get the information that the actual value x of
the measured quantity belongs to the interval x = [x̃−∆, x̃ + ∆], but we can also conclude
that the expected value of x = x̃ − ∆x (which is equal to E[x] = x̃ − E[∆x] = x̃ − ∆sx)
belongs to the interval E = [x̃−∆s, x̃ + ∆s].

If we have this information for every xi, then, in addition to the interval y of possible
value of y, we would also like to know the interval of possible values of E[y]. This additional
interval will hopefully provide us with the information on how repeated measurements
can improve the accuracy of this indirect measurement. Thus, we arrive at the following
problem.

Resulting optimization problem. In more optimization terms, we want to solve the
following problem: given an algorithm computing a function f(x1, . . . , xn) from Rn to R;
and values x1, x1, . . . , xn, xn, E1, E1, . . . , En, En, we want to find

E
def= min{E[f(x1, . . . , xn)] | all distributions of (x1, . . . , xn) for which

x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn], E[x1] ∈ [E1, E1], . . . E[xn] ∈ [En, En]};
and E which is the maximum of E[f(x1, . . . , xn)] for all such distributions.

In addition to considering all possible distributions, we can also consider the case when
all the variables xi are independent.

Analog of straightforward interval computations. The main idea behind straight-
forward interval computations can be applied here as well. Namely, first, we find out how
to solve this problem for the case when n = 2 and f(x1, x2) is one of the standard arith-
metic operations. Then, once we have an arbitrary algorithm f(x1, . . . , xn), we parse it and
replace each elementary operation on real numbers with the corresponding operation on
quadruples (x,E,E, x).

To implement this idea, we must therefore know how to, solve the above problem for
elementary operations.

Solution. For addition, the answer is simple. Since E[x1 + x2] = E[x1] + E[x2], if y =
x1 + x2, there is only one possible value for E = E[y]: the value E = E1 + E2. This
value does not depend on whether we have correlation or nor, and whether we have any
information about the correlation. Thus, E = E1 + E2.

Similarly, the answer is simple for subtraction: if y = x1 − x2, there is only one possible
value for E = E[y]: the value E = E1 −E2. Thus, E = E1 −E2.
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For multiplication, if the variables x1 and x2 are independent, then E[x1 · x2] = E[x1] ·
E[x2]. Hence, if y = x1 · x2 and x1 and x2 are independent, there is only one possible value
for E = E[y]: the value E = E1 · E2; hence E = E1 ·E2.

The first non-trivial case is the case of multiplication in the presence of possible corre-
lation. When we know the exact values of E1 and E2, the solution to the above problem is
as follows:

Theorem 8. For multiplication y = x1 · x2, when we have no information about the
correlation,

E = max(p1 + p2 − 1, 0) · x1 · x2 + min(p1, 1− p2) · x1 · x2 + min(1− p1, p2) · x1 · x2+

max(1− p1 − p2, 0) · x1 · x2;

and

E = min(p1, p2) · x1 · x2 + max(p1 − p2, 0) · x1 · x2 + max(p2 − p1, 0) · x1 · x2+

min(1− p1, 1− p2) · x1 · x2,

where pi
def= (Ei − xi)/(xi − xi).

Proof. Let us show that a general distribution with E[xi] = Ei can be simplified without
changing the values E[xi] and E[x1 · x2]. Thus, to describe possible values of E[x1 · x2],
we do not need to consider all possible distributions, it is sufficient to consider only the
simplified ones.

We will describe the simplification for discrete distributions that concentrate on finitely
many points x(j) = (x(j)

1 , x
(j)
2 ), 1 ≤ j ≤ N . An arbitrary probability distribution can be

approximated by such distributions, so we do not lose anything by this restriction.
So, we have a probability distribution in which the point x(1) appears with the probabil-

ity p(1), the point x(2) appears with the probability p(2), etc. Let us modify this distribution
as follows: pick a point x(j) = (x(j)

1 , x
(j)
2 ) that occurs with probability p(j), and replace it

with two points: x(j) = (x1, x
(j)
2 ) with probability p(j) · p(j) and x(j) = (x1, x

(j)
2 ) with

probability p(j) · p(j), where p(j) def= (x(j)
1 − x1)/(x1 − x1) and p(j) def= 1− p(j) :

@¡
x(j)

¾
x(j) x(j)

-

Here, the values p(j) and p(j) = 1−p(j) are chosen in such a way that p(j) ·x1 +p(j) ·x1 =

x
(j)
1 . Due to this choice, p(j) ·p(j) ·x1+p(j) ·p(j) ·x1 = p(j) ·x(j)

1 , hence for the new distribution,
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the mathematical expectation E[x1] is the same as for the old one. Similarly, we can prove
that the values E[x2] and E[x1 · x2] do not change.

We started with a general discrete distribution with N points for each of which x
(j)
1

could be inside the interval x1, and we have a new distribution for which ≤ N − 1 points
have the value x1 inside this interval. We can perform a similar replacement for all N points
and get a distribution with the same values of E[x1], E[x2], and E[x1 · x2] as the original
one but for which, for every point, x1 is equal either to x1, or to x1.

For the new distribution, we can perform a similar transformation relative to x1 and
end up – without changing the values x1 – with the distribution for which always either
x2 = x1 or x2 = x2:

@¡

?

6

x(j)

x(j)

x(j)

Thus, instead of considering all possible distributions, it is sufficient to consider only
distributions for which x1 ∈ {x1, x1} and x2 ∈ {x2, x2}. In other words, it is sufficient to
consider only distributions which are located in the four corner points (x1, x2), (x1, x2),
(x1, x2), and (x1, x2) of the box x1 × x2.

Such distribution can be characterized by the probabilities of these four points. These
four probabilities must satisfy 3 conditions: that their sum is 1, that E[x1] is E1, and
that E[x2] = E2. Thus, we only have one parameter left; optimizing with respect to this
parameter, we get the desired formulas for E and E. The theorem is proven.

When we only know the intervals Ei of possible values of Ei, instead of the values pi,
we have the corresponding intervals pi = (Ei − xi)/(Ei − xi). In terms of these intervals,
we get the following results:

Theorem 9. For multiplication under no information about dependence, to find E, it is
sufficient to consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1 and p2 = p2;

• p1 = max(p
1
, 1− p2) and p2 = 1− p1 (if 1 ∈ p1 + p2); and

• p1 = min(p1, 1− p
2
) and p2 = 1− p1 (if 1 ∈ p1 + p2).

The smallest value of E for all these cases is the desired lower bound E.

Theorem 10. For multiplication under no information about dependence, to find E, it is
sufficient to consider the following combinations of p1 and p2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2; p1 = p1 and p2 = p

2
; p1 = p1 and p2 = p2;
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• p1 = p2 = max(p
1
, p

2
) (if p1 ∩ p2 6= ∅); and

• p1 = p2 = min(p1, p2) (if p1 ∩ p2 6= ∅).
The largest value of E for all these cases is the desired upper bound E.

Proof. We will prove Theorem 10; the proof of Theorem 9 is similar. The formula for E
given in Theorem 8 can be simplified if we consider two cases: p1 ≤ p2 and p1 ≥ p2. To find
the largest possible value E of E, it is sufficient to consider the largest possible values for
each of these cases, and then take the largest of the resulting two numbers.

In each case, for a fixed p2, the formula is linear in p1. To find the maximum of a
linear function on an interval, it is sufficient to consider this interval’s endpoints. Thus, the
maximum in p1 is attained when either p1 attains its smallest possible value p

1
, or when

p1 attains the largest possible value within this case; depending on p2, this value is either
p1 = p1 or p1 = p2.

Thus, to find the maximum for each cases, it is sufficient to consider only the following
cases: p1 = p

1
, p1 = p1, and p1 = p2. Similarly, it is sufficient to consider only the following

cases for p2: p2 = p
2
, p2 = p2, and p1 = p2.

When p1 = p2, the probability p1 = p2 can take all possible values from the intersection
p1 ∩ p2. the formula for E is linear in p1, so to find its maximum, it is sufficient to
consider the endpoints of the interval p1 ∩ p2, i.e., the values p1 = p2 = max(p

1
, p

2
) and

p1 = p2 = min(p1, p2). The theorem is proven.

For the inverse y = 1/x1, the finite range is possible only when 0 6∈ x1. Without losing
generality, we can consider the case when 0 < x1. In this case, methods presented in [17]
lead to the following bound:

Theorem 11. For the inverse y = 1/x1, the range of possible values of E is E =
[1/E1, p1/x1 + (1− p1)/x1].

(Here p1 denotes the same value as in Theorem 8).

Proof. For x1 > 0, the function f(x1)
def= 1/x1 is convex: for every x1, x′1, and α ∈ [0, 1],

we have f(α · x1 + (1 − α) · x′1) ≤ α · f(x1) + (1 − α) · f(x′1). Hence, if we are looking for
a minimum of E[1/x1], we can replace every two points from the probability distribution
with their average, and the resulting value of E[1/x1] will only decrease:

- ¾@¡ @¡@¡

x1 x′1

So, the minimum is attained when the probability distribution is concentrated on a single
value – which has to be E1. Thus, the smallest possible value of E[1/x1] is 1/E1.

Due to the same convexity, if we want maximum of E[1/x1], we should replace every
value x1 ∈ [x1, x1] by a probabilistic combination of the values x1, x1:

¾ -@¡ @¡@¡

x1 x1 x1

So, the maximum is attained when the probability distribution is concentrated on these two
endpoints x1 and x1. Since the average of x1 should be equal to E1, we can, similarly to
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the proof of Theorem 8, conclude that in this distribution, x1 occurs with probability p1,
and x1 occurs with probability 1 − p1. For this distribution, the value E[1/x1] is exactly
the upper bound from the formulation of the theorem. The theorem is proven.

Theorem 12. For minimum y = min(x1, x2), when x1 and x2 are independent, we have
E = min(E1, E2) and

E = p1 · p2 ·min(x1, x2) + p1 · (1− p2) ·min(x1, x2) + (1− p1) · p2 ·min(x1, x2)+

(1− p1) · (1− p2) ·min(x1, x2).

Theorem 13. For maximum y = min(x1, x2), when x1 and x2 are independent, we have
E = max(E1, E2) and

E = p1 · p2 ·max(x1, x2) + p1 · (1− p2) ·max(x1, x2) + (1− p1) · p2 ·max(x1, x2)+

(1− p1) · (1− p2) ·max(x1, x2).

Proof. We will prove Theorem 12; the proof of Theorem 13 is similar. Since min(x1, x2) ≤
x1, we have E[min(x1, x2)] ≤ E[x1] = E1. Similarly, E[min(x1, x2)] ≤ E2, hence,
E[min(x1, x2)] ≤ min(E1, E2). The value min(E1, E2) is possible when x1 = E1 with
probability 1 and x2 = E2 with probability 1. Thus, min(E1, E2) is the exact upper bound
for E[min(x1, x2)].

For each x2, the function x1 → min(x1, x2) is concave; therefore, if we replace each point
x(j) = (x(j)

1 , x
(j)
2 ) by the corresponding probabilistic combination of the points (x1, x

(j)
2 )

and (x1, x
(j)
2 ) (as in the proof of Theorem 11), we preserve E[x1] and E[x2] and decrease

the value E[min(x1, x2)]. Thus, when we are looking for the smallest possible value of
E[min(x1, x2)], it is sufficient to consider only the distributions for which x1 is located at
one of the endpoints x1 or x1. Similarly to the proof of Theorem 8, the probability of x1 is
equal to p1.

Similarly, we can conclude that to find the largest possible value of E[min(x1, x2)], it is
sufficient to consider only distributions in which x2 can take only two values: x2 and x2.
To get the desired value of E2, we must have x2 with probability p1 and x2 with probability
1− p2.

Since we consider the case when x1 and x2 are independent, and each of them takes two
possible values, we can conclude that x = (x1, x2) can take four possible values (x1, x2),
(x1, x2), (x1, x2), and (x1, x2), and the probability of each of these values is equal to the
product of the probabilities corresponding to x1 and x2. For this distribution, E[min(x1, x2)]
is exactly the expression from the formulation of the theorem. Theorem 12 is proven.

Theorem 14. For minimum y = min(x1, x2), when we have no information about the
correlation between x1 and x2, we have E = min(E1, E2),

E = max(p1 + p2 − 1, 0) ·min(x1, x2) + min(p1, 1− p2) ·min(x1, x2)+

min(1− p1, p2) ·min(x1, x2) + max(1− p1 − p2, 0) ·min(x1, x2).
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Theorem 15. For maximum y = max(x1, x2), when we have no information about the
correlation between x1 and x2, we have E = max(E1, E2) and

E = min(p1, p2) ·max(x1, x2) + max(p1 − p2, 0) ·max(x1, x2)+

max(p2 − p1, 0) ·max(x1, x2) + min(1− p1, 1− p2) ·max(x1, x2).

Proof. We will prove Theorem 14; the proof of Theorem 15 is similar. Similarly to the
proof of Theorem 12, we can conclude that min(E1, E2) is the attainable upper bound for
E[min(x1, x2)]. Due to convexity, to find the lower bound for E[min(x1, x2)], it is sufficient
to consider distributions located at the four corners of the box x1 × x2. Similar to the
proof of Theorem 8, we conclude that such distribution can be characterized by a single
parameter. Optimizing with respect to this parameter, we get the desired formula for E.
The theorem is proven.

Similar formulas can be produced for the cases when there is a strong correlation between
xi: namely, when x1 is (non-strictly) increasing or decreasing in x2.

From Elementary Arithmetic Operations to General Algorithms When we have
a complex algorithm f , then a step-by-step approach leads to excess width. How can we
find the actual range of E = E[y]?

At first glance, the exact formulation of this problem requires that we use infinitely
many variables, because we must describe all possible probability distributions on the box
x1 × . . .× xn (or, in the independent case, all possible tuples consisting of distributions on
all n intervals x1, . . . ,xn). It turns out, however, that we can reformulate these problems
in equivalent forms that require only finitely many variables:

Theorem 16. For a general continuous function f(x1, . . . , xn), E is a solution to the

following optimization problem:
n∑

j=0

p(j) · f(x(j)
1 , . . . , x(j)

n ) → min under the conditions

n∑

k=0

p(k) = 1; p(j) ≥ 0; xi ≤ x
(j)
i ≤ xi; Ei ≤

n∑

j=0

p(j) · x(j)
i ≤ Ei (for all i, j),

and E is a solution to
n∑

j=0

p(j) · f(x(j)
1 , . . . , x(j)

n ) → max under the same constraints.

Proof. In terms of the unknown probabilities p(j), we are minimizing a linear function
under linear constraints (equalities and inequalities). Geometrically, the set of all points
that satisfy several linear constraints is a polytope. It is well known that to find the
minimum of a linear function on a polytope, it is sufficient to consider its vertices (this idea
is behind linear programming). In algebraic terms, a vertex can be characterized by the
fact that for N variables, N of the original constrains are equalities. Thus, in our case, all
but n probabilities p(j) must be equal to 0. The theorem is proven.
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5 Open Problems

So far, we have provided explicit formulas for the elementary arithmetic operations
f(x1, . . . , xn) for the case when we know the first order moments. What if, in addition
to that, we have some information about second order (and/or higher order) moments of
xi? What will we be then able to conclude about the moments of y? Partial answers to
this question are given in [11, 17, 19]; it is desirable to find a general answer.

Similarly to Theorem 16, we can reduce the corresponding problems to the constraint
optimization problems with finitely many variables. For example, when, in addition to
intervals Ei that contain the first moments E[xi], we know the intervals Eik that contain the
second moments E[xi·xk], then the corresponding bounds E and E on E[y] can be computed

by solving the problems
N∑

j=0

p(j) · f(x(j)
1 , . . . , x(j)

n ) → min(max) under the conditions

N∑

j=0

p(j) = 1; p(j) ≥ 0; xi ≤ x
(j)
i ≤ xi; Ei ≤

n∑

j=0

p(j) · x(j)
i ≤ Ei;

Eik ≤
n∑

j=0

p(j) · x(j)
i · x(j)

k ≤ Eik,

where N = n(n + 1)/2.
It is desirable to find explicit analytical expressions for these bounds, at least for the

case when n = 2 and f(x1, . . . , xn) is an elementary arithmetic operation.
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