
DETECTING CRACKS IN THIN PLATES
BY USING LAMB WAVE SCANNING:

GEOMETRIC APPROACH
Roberto Osegueda, Vladik Kreinovich,
Enrique Roldan, and Rodrigo Mares
FAST Center for Structural Integrity

of Aerospace Structures
University of Texas at El Paso

El Paso, TX 79968, USA
contact email vladik@cs.utep.edu

Abstract. A crack in a thin plate reflects ultrasonic waves; therefore,
it is reasonable to determine the location of the crack by measuring
the reflected waves. The problem of locating the crack can be re-
formulated in purely geometric terms. Previously, time-consuming
iterative numerical methods were used to solve the resulting geo-
metric problem. In this paper, we show that explicit (and fast to
compute) formulas can be used instead.

Formulation of the engineering problem. One of the most com-
mon problems in aging aircraft structures is the presence of cracks.
These cracks are often not visible because they are hidden inside the
structure or covered with paint. It is therefore necessary to use tech-
niques of non-destructive testing (NDT) such as ultrasonic Lamb
waves.

Lamb waves in thin plates are very convenient in detecting
cracks in large-scale structures because these waves can propagate
long distances and thus, can help us explore large portions of the
plate; see, e.g., (Viktorov 1967).

In a faultless plate, a Lamb wave can travel long distances with-
out dispersion or reflection. Defects reflect and scatter these waves;
as a result, the very presence of a reflected wave indicates a defect.
It is reasonable to determine the location of the crack by measuring
the reflected waves.

Reduction to a geometric problem.To locate the crack, we gener-
ate a wave pulse that is sent, via a transmitter T, to the plate. This
pulse propagates through the plate and reaches a sensor S.



In a faultless plate, the only signal we receive at S is a signal
that goes directly from T to S; this signal is received at a timet1 =
t0 + d0/v, wheret0 is the moment of time when the original signal
was sent,d0 is the distance between T and S, andv is the (known)
velocity with which the Lamb waves propagate.

In a plate with defects, in addition to this direct signal, we also
observe the signal reflected from a defect; this reflected signal ar-
rives at S at a momentt2 = t0 + d/v, whered is the length of the
path TFS = TF + FS from T to S via a reflecting point F on the
fault. Since we measuret2 and we know the valuest0 andv, we can
therefore determine the distanced asv · (t2 − t0).

If we move the sensor a little bit, to a new location S′ at a small
distances from the old one, then the reflection point shifts a little
bit to a new point F′, and the path length changes fromd to a new
valued′.

On a large scale, a crack is usually reasonably smooth. There-
fore, between the two close points F and F′, the shape of a crack can
be approximated by a straight line segment. Thus, we arrive at the
following geometric problem (see Fig. 1):

• We know the location of three points T, S, and S′ on the plane.

• We know that there is a segment FF′ of a straight linè on the
same plane.

• We know the lengthd of the two-line-segment path that starts
at T, gets reflected bỳat a point F∈ `, and ends at S.

• We also know the lengthd′ of the two-line-segment path that
starts at T, gets reflected by` at a point F′ ∈ `, and ends at S′.

• Our objective is to locate the points F and F′.

How this problem was solved before.For the (unknown) reflection
point F, we know the sum TF + FS of the distances from two known
points: T and S. It is a known geometrical fact that for any given
two points T and S, the set of all points F with a given sum TF +
FS is an ellipse. Due to Snell’s law describing wave reflection, the



angle between the incoming wave and the crack must be the same as
between the crack and the outcoming wave.
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Fig. 1

Due to the properties of an ellipse, we can conclude that the
crack is tangent to this ellipse at the reflection point F. Similarly,
the crack is tangent to an ellipse of all the points F′ for which TF′ +
F′S = d′. Thus, the crack can be determined as a common tangent
to two known ellipses. In (De Villa et al., 2001), this idea was used
to determine the crack location: explicit equation for tangents were
written down, and the resulting system of equations was solved by a
numerical technique.

What is main deficiency of the known solution.In (De Villa et al.,
2001), a (time-consuming) iterative numerical methods were used to
solve the resulting geometric problem. It is desirable to use (if pos-
sible) an explicit, faster-to-compute method instead. Such a method
is presented in this paper.

Main ideas. The first idea is to take into consideration that the path
d = TF + FS is equal to the distance between the sensor S and the
reflection R of the transmitter T in the straight line` that extends the
fault segment FF′ (see Fig. 2):
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Indeed, TF = RF, and due to Snell’s law, RF is a continuation of
FS, so RS = RF + FS = TF + FS= d. Similarly, RS′ = d′. In the
triangle4RSS′, we thus know all three sides and hence, we can use
the Law of Cosines to determine the angle6 RSS′ = π − γ:

(d′)2 = d2 + s2 − 2d · s · cos(π − γ),

hence, sincecos(π − γ) = − cos(γ), we conclude that

cos(γ) =
(d′)2 − d2 − s2

2d · s . (1)

We now know the direction from the sensor S to the fault point F;
to determine the distancer from S to F, we can apply the Law of
Cosines to the triangle4TFS. In this triangle, we know the angle
6 TSF= α + γ and we know that TS= d0, SF= r, and TF= d− r
(see Fig. 3):

Therefore,

(d− r)2 = r2 + d2
0 − 2r · d0 · cos(α + γ).

Opening parentheses and canceling the termsr2 in both sides, we
get a linear equation forr, hence

r =
d2 − d2

0

2(d− d0 · cos(α + γ))
. (2)
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New algorithm and results. The resulting new algorithm is as fol-
lows: We know the propagation speedv of the Lamb waves. Based
on the known location of the points T, S, and S′, we compute the
distanced0 = TS, the distances = SS′, and the angleα. We send a
pulse signal at timet0, we measure the timet2 when the second pulse
arrives at the sensor S, and we compute the distanced = v ·(t2− t0).
We move S to a new location S′ at a known distances from S, repeat
the experiment and compute the new distanced′. Then, we use the
formula (1) to compute the angleγ between the known line SS′ and
the direction to the fault, and we compute the distancer = SF by
using the formula (2). Once we know the angle and the distance, we
can find the location of the fault point F.

Similarly, we can find the location of F′. As we move the sensor
along the line SS′, we can find several points on the fault and thus,
the location and shape of the fault.

We have successfully used this algorithm to find cracks, in par-
ticular, to find cracks near rivet holes where other methods have dif-
ficulty finding these cracks; see, e.g., (Osegueda et al. 2002) and
(Osegueda et al. 2003).

Alternative geometric set-up. In the previous set-up, we fix the
location of the transmitter T, and moved the senor S. As we move



the sensor further away from T, the signal fades, and the sensitivity
of this method decreases. An alternative idea is therefore to fix the
connection between T and S and to move both T and S at the same
time (in the direction SS′ which is orthogonal to TS), so that TS =
T′S′ = d0. How can we now find the fault location?

Geometric analysis of the new set-up.In the new set-up, the path
d = TFS measured by the first sensor is equal to the distance SR
between S and the reflection R of the point T in the fault FF′. Simi-
larly, the pathd′ = T′F′S′ measured by the second sensor is equal to
the distance S′R′ between S′ and the reflection R′ of the point T′ in
the fault FF′.

Let β denote the angle between the fault FF′ and the direction
SS′ in which the sensor moves. We know that TS⊥ SS′, and, due
to the properties of reflection, RT⊥ FF′; therefore, the angle6 RTS
between RT and TS is also equal toβ. Similarly, 6 R′T′S′ = β.

Due to the properties of reflection, the distance RR′ is equal to
TT′ = s. Since TT′ ‖ SS′, the line TT′ is at angleβ to the reflecting
line FF′, hence RR′ is also at angleβ from the reflecting line; see
Fig. 4. If from R and T we draw the lines RR′′ and TT′′ that are
parallel to FF′ (and which are hence orthogonal to RT and R′T′),
then we conclude that R′R′′ = T′T′′ = s · sin(β) hence

R′T′ − RT = R′R′′ + T′T′′ = 2s · sin(β).

If we denote an average of RT and R′T′ by M , we can thus conclude
that RT= M − d · sin(β) and R′T′ = M + d · sin(β).
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In the triangle4RTS, RT= M − s · sin(β), 6 RTS= β, TS = d0,
and RS= d; therefore, the Law of Cosines leads to:

d2 = (M − s · sin(β))2 + d2
0 − 2(M − s · sin(β)) · d0 · cos(β). (3)



Similarly,

(d′)2 = (M +s · sin(β))2 +d2
0−2(M +s · sin(β)) ·d0 · cos(β). (4)

Subtracting (3) from (4), we conclude that:

(d′)2 − d2 = 4M · s · sin(β)− 4s · d0 · sin(β) · cos(β),

hence for

z1
def
=

(d′)2 − d2

4s
(5)

we get the formula

z1 = sin(β) · (M − d0 · cos(β)). (6)

Averaging (3) and (4), we conclude that for

z2
def
=

(d′)2 + d2

2
, (7)

we get the formula

z2 = M2 + s2 · sin2(β) + d2
0 − 2M · d0 · cos(β). (8)

From (6), we conclude that

z2
1 = sin2(β) · (M2 − 2M · d0 · cos(β) + d2

0 · cos2(β)), (9)

and from (8), that

z2·sin2(β) = sin2(β)·(M2+s2·sin2(β)+d2
0−2M ·d0·cos(β)). (10)

Subtracting (9) from (10), we conclude that

z2 · sin2(β)− z2
1 = s2 · sin4(β) + d2

0 · sin4(β),

i.e., that

(s2 + d2
0) · sin4(β)− z2 · sin2(β) + z2

1 = 0.



This is a quadratic equation in terms of the unknownsin2(β), so

sin2(β) =
z2 −

√
z2
2 − 4z2

1 · (s2 + d2
0)

2(s2 + d2
0)

. (11)

One we know the angleβ, we can use the formula (6) to determine
M = z1/ sin(β) + d0 · cos(β) and hence, RT= M − s · sin(β) as

RT =
z1

sin(β)
+ d0 · cos(β)− s · sin(β). (12)

Let us select the coordinate system in which the x-axis is parallel to
SS′, and the y-axis is parallel to ST. We know the coordinatesxT

andyT of the point T, we know the angleβ between TS (i.e., the
y-axis) and the direction TR, and we know the distance RT; thus, we
can find the coordinates(xR, yR) of the point R as

xR = xT − RT · sin(β); yR = yT − RT · cos(β). (13)

The midpointm between the point T and its reflection R in the line
that extends FF′ is a point on this extended linè; its coordinates are

xm =
xT + xR

2
; ym =

yT + yR

2
. (14)

By definition of the angleβ, the fault segment FF′ forms an angle
β with the line SS′ (i.e., with the x-axis). Therefore, the linègoes
through this pointm at the angleβ with the x-axis, hence the linè
is described by the equation:

y = ym − tan(β) · (x− xm). (15)

The fault point F is the intersection between the line` and the line
SR. The point S has coordinates

xS = xT ; yS = yT − d0; (16)

therefore, the equations of the line SR can be described as:

y = yR +
yS − yR

xS − xR

· (x− xR). (17)



We can therefore find the coordinatesx andy of the fault point F as
the solution to the system of two linear equations (15) and (17) with
two unknowns – a solution that can be obtained explicitly in terms
of the coefficients.

Resulting algorithm for the alternative set-up. We know the prop-
agation speedv of the Lamb waves, we know the distanced0 be-
tween the transmitter T and the sensor S. We send a pulse signal at
timet0, we measure the timest2 when the second pulse arrives at the
sensor S, and we compute the distanced = v · (t2 − t0). Then, we
move the combination of T and S to a new location T′S′ at a distance
s from TS, repeat the experiment and compute the new distanced′.

We computez1 andz2 by using the formulas (5) and (7), then
the angleβ by using the formula (11), then RT from the formula
(12), and the coordinates of the points R,m, and S from formulas
(13), (14), and (16). After that, we solve the system of two linear
equations (15) and (17) with two unknownsx andy and find the
coordinates of the point F on the fault.

Similarly, we can find the location of F′. As we move the trans-
mitter and the sensor, we can find several points on the fault and
thus, the location and shape of the fault.

Open problem. In the above algorithms, we approximated (locally)
a smooth-shaped crack as a straight line segment. The closer the
sensor locations S and S′ are to each other, the better this approx-
imation. However, if we make these locations too close, then the
difference between the signals received at these locations will get
below the noise level and thus, we will be unable to locate the fault.
So, to increase the approximation accuracy – and thus, to increase
the accuracy of fault location – it is desirable to use a more accurate
approximation to the fault shape.

A natural idea is to take second order (curvature) terms into con-
sideration and represent a crack as a circular arc. For this repre-
sentation, can we still get explicit formulas for reconstructing fault
location?
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