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Abstract

Higher central moments are very useful in statistical analysis: the third
moment M3 characterizes asymmetry of the corresponding probability
distribution, the fourth moment M4 describes the size of the distribution’s
tails, etc. When we know the exact values z1,...,Z,, we can use the
known formulas for computing the corresponding sample central moments.
In many practical situations, however, we only know intervals x1,...,xp
of possible values of z;; in such situations, we want to know the range of
possible values of M,,. In this paper, we propose algorithms that compute
such ranges.

1 Formulation of the Problem

In engineering and science, when we have n measurement results z1,...,Z,,
traditional statistical approach (see, e.g., [1, 4]) usually starts with computing
their (sample) average
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and their (sample) variance
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(Often, a standard deviation o 4 \/V is used instead of V.) Variance is a

particular case of a central moment
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corresponding to m = 2. Higher moments — i.e., moments corresponding to
m = 3,4, ... — are also used in engineering and science. For example, the third
central moment M3 is used to describe the asymmetry of the corresponding
probability distribution, and the fourth central moment M, is used to describe
the size of the distribution’s tails. To be more precise, skewness M3 /o is used
to characterize asymmetry, and kurtosis My/o* — 3 is used to characterize the
size of the tails (3 is subtracted so that kurtosis be equal to 0 for the practically
frequent case of a normal distribution).

In addition to central moments, sometimes, non-central moments are also
used: m m
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n

When we know the exact values of x;, then we can compute each moment
by using the explicit formula (1). In some practical situations, however, we only
have intervals x; = [z;, Z;] of possible values of z;. This happens, for example,
if instead of observing the actual value z; of the random variable, we observe
the value Z; measured by an instrument with a known upper bound A; on the
measurement error (and no information about probabilities of different possible
values of measurement error); then, the actual (unknown) value is within the
interval x; = [Z; — A, Z; + Ay

As a result, the sets of possible values of E, V, and M} are also intervals.
Since FE is an increasing function of each of the variables z;, it is easy to compute

the interval E = [E, E] of possible values of E:

E= §1+...+§n; Yo El+...+fn‘
n n
Similarly, we can easily compute the exact bounds for non-central moments M, .
What is the interval [M,,,, M,] of possible values for the central moment M,,?
In [2, 3], we have analyzed this problem for the case of variance (m = 2). In
this case, we have shown the that the general problem of computing the interval
[V, V] exactly is NP-hard. We also showed:

e that there exists a quadratic-time algorithm for computing V'; and

e that there exists a quadratic-time algorithm for computing V for the case
when the intervals do not all group together, i.e., crudely speaking, when
for some C, every C different intervals x;,,...,X;, have an empty inter-
section.

In this paper, we extend these algorithms to higher central moments.

2 First Result: Computing M,, for Even m

Theorem 1. For every even m, there exists an algorithm that computes M,,
in quadratic time.



This algorithm is as follows:

e First, we sort all 2n values z;, T; into a sequence z(1) < T(2) < ... < T(2p)-
This sequence divides the real line into 2n+1 segments [z (), T(+1)], where

k=0,...,2n, z( def —00, and T(apy1) RS

e For each of these segments [z, T(y+1)], we do the following:

First, we define z1,...,z, as the following linear functions of a:
* if 2; > m(p11), We take z; = z; (independent of a);
* if Z; < m(y), we take z; = Z; (independent of a);
+ in all other cases, we take z; = a.

— Based on these expressions for z;, we find the expression for

B = 1+ ...+ xp
n
as a linear function of a.

— Then, we substitute these expressions for z; and E into the equation
1 n
— - Z(az, —E)" 1l =(a-E)™ L
n
i=1

This equation is is a polynomial equation of order < m — 2 in terms
of the unknown « (terms proportional to a™~! cancel out), so it has
< m — 2 solutions. We compute these solutions.

— For each of the solutions that is inside the segment [z (1), Z(x41)], We
substitute the corresponding value « into the formulas for z; and E,
thus, we compute z; and E; based on these values, we compute

o The smallest of thus computed values My, is the desired lower bound M ,,.

For reader’s convenience, the proof that this algorithm indeed computes V'
in quadratic time (and all other proofs) is placed in the special Proofs section
at the end of this paper.

3 Second Result: Computing M,, for Even m in
Time 2"

For small number of measurements, we can use the following algorithm to com-
pute M,,:



Theorem 2. For every even m, there exists an algorithm that computes M,,
in time O(2").

The algorithm is as follows: for each i, we select either x; = z; or ; = T;. For
each i from 1 to n, there are two options, so totally, we have 2" combinations
to try. For each of these combinations, we compute M,,; the largest of the
resulting 2" values is the desired upper bound M,,.

4 Third Result: Computing M,, for Even m in
Quadratic Time (Case When Intervals Do Not
Group Together)

Sets S1,...,9, are called pairwise disjoint if every pair has an empty intersec-
tion, i.e., if S;NS; = 0 for all i # j. We can generalize this definition from pairs
to tuples of arbitrary size C:

Definition 1. Let C > 2 be an integer. We say that a sequence of sets
S1,y...,8, is C-wise disjoint if for every C different indices i1, ... ,ic, we have
Si, ﬂ...ﬂsic ={.

Theorem 3. For every even m and for every C > 2, there exists an algorithm
that computes M,, in quadratic time when the input intervels x1,...,X, are
C-wise disjoint.

This algorithm is as follows:

e First, we sort all 2n values z;, T; into a sequence z(1) < T(2) < ... < T(2p).
This sequence divides the real line into 2n+1 segments [z (), T(+1)], where
k=0,...,2n, 2 def —00, and T(2p41) e} .

e For each of these segments [z (), Z(k41)], we do the following:

— First, we describe several combinations (z1,...,%,) as follows:
* if Tp < x(p), we take z; = z;;
* if ¢, > T(k41), We take z; = T;;
x for all other indices ¢ (there are < C of them), we consider all
possible combinations of z; = z; and z; = T;.

As a result, we get < 2¢ different combinations.

— For each resulting combination (x1,...,%,), we compute E as the
average of all the values z;, then we compute

1 n
Mp1=~—- Z(mz - E)™ 1,

n <
=1

and o = E + MY 71,



— For each combination for which the resulting value a is within the
segment [Ty, T(k+1)], We compute

o The largest of thus computed values M,, is the desired upper bound M,,.

5 Fourth Result: Computing M,, and M,, for
Odd m in Cubic Time (Case When Intervals
Do Not Group Together)

Theorem 4. For every odd m and for every C > 2, there exists an algorithm
that computes M, in cubic time when the input intervals x1,...,%x, are C-wise
disjoint.

The algorithm for computing M, is as follows:

e First, we sort all 2n values z;, T; into a sequence z(1) < T(2) < ... < T(2p)-
This sequence divides the real line into 2n+1 segments [z (), Z(g+1)], where

k=0,...,2n, 2 def —00, and T(apn41) def +00.

e For each pair of segments [z (1), Z(r+1)] and [Ty, T41)], k& < I, we do the
following:

— First, we describe several combinations (z1,...,%,) as linear func-
tions of &~ and a™ as follows:
* if Ty < z(r), we take z; = z;;
* if x; > T(pq1), we take z; = Tj;
* for all other indices ¢ (there are < 2C' of them), we consider
all possible combinations of z; = z;,, z; = T;, x; = a (if
[Ty, Trty] C x3) and z; = at (if [z(), 241)] C X3)-
As a result, we get < 42¢ different combinations.
— For each resulting combination (z1,...,,), we find the expression
for E as the average of all the values z;. Then, we substitute the
expressions for z; and E into the system of equations

n
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We compute all solutions of this system of polynomial equations with
unknowns o~ and a™.

— For each of the solutions for which o~ € [z, z41)] and at €
[*(1), T(141)], we substitute the corresponding values ™~ and ot into
the formulas for z; and E, thus, we compute z; and E; based on
these values, we compute

o The smallest of thus computed values My, is the desired lower bound M ,.

Theorem 5. For every odd m and for every C > 2, there exists an algorithm

that computes M, in cubic time when the input intervals X1, . .. ,X,, are C-wise
disjoint.

Since m is odd, the m-th central moment of the values 1, ..., z, is equal to
minus the m-th moment of the values —z1,...,—2x,. Turning to —z; changes

largest and smallest values and vice versa. Thus, to compute M, for the in-
tervals x; = [z;,T;], it is sufficient to compute the lower bound M,, for the
intervals —x; = [—%;, —z;], and then change the sign of the resulting bound.
Since we can use the above cubic-time algorithm to compute M, , we thus get
a cubic-time algorithm for computing M,,.

6 Proofs

6.1 Proof of Theorem 1

The central moment M,, is a continuous function of n variables; thus, its small-
est possible value on a compact box x; X ... X X, is attained at some point
(x&o), e 7$$lo))_ Since the function M, is also smooth, for each variable i for
which the interval x; is non-degenerate (i.e., of finite width), the minimum is
attained either when z; is inside the corresponding interval (z;,Z;) and the
derivative OM,, /0z; is equal to 0, or when mgo) coincides with one of the end-
points of this interval. To be more precise, we must have one of the following
three situations:
e cither 1% ¢ (z;,T;) and OM,, /0x; = 0;

i
e or azgo) = g; and OM,,/0z; > 0;

e orz\¥ = z; and OM,,/0z; < 0.

%



Differentiating M,, w.r.t. z;, and taking into consideration that 0E/d0z; = 1/n,

we conclude that

oM, 1 a1 _ 1
T =—.m-(x; - E)™ 1+E‘Zm‘($]’—E)m L. (——).

dz; n

The sum in this formula is proportional to the (m —1)-st central moment M,,_1,
so the above formula can be simplified into:
OM,, m

o = 2 (@i = )™ = M) @

Due to this formula:

o if OM,,/0x; = 0, then (z; — E)™ ! = M,,_1, hence z; = « L o

1/(m—1
M,
o if OM,,/0x; > 0, then (z; — E)™ ! > M,,_1, hence (since the function
z — 2'/(m=1) ig increasing for even m) z; > ;

o if OM,,/0z; <0, then (z; — E)™~! < M,,_1, hence z; < a.
(0)

Therefore, the above conditions on z; ~ can be reformulated as follows:

(

e cither a:io) € (z;,7;) and mgo) = @; in this case, z; < a < T;;
e or mgo) =z,; and mgo) =z; >0
e or xgo) =7; and mgo) =7; < a.

Hence, once we know a, we can determine all n values x§°) as follows:
¢ if T; < @, then we cannot have the first case (when a < T;) or the second
case (when a < z; hence a < T;); therefore, we can only have the third

0 _ _
case, when 371( ) = T;;

0
z():%';

o finally, when z; < a < T;, then we must have 5’7,(

o similarly, if o < z;, then we must have z
9= a.

The only thing that remains is to find a. Once we know to which of 2n + 1
segments [T(r),Z(x+1)] the value a belongs, we can uniquely describe all the
values z; as linear functions of a, and then define a from the condition that
a= E+M71n/£71"_1), i.e., equivalently, that M,, | = (a— E)™~!. This is exactly
what our algorithm does.

This proves that our algorithm is correct. To complete the proof, we must
also show that this algorithm requires quadratic time.

Indeed, sorting requires O(n - log(n)) steps, and the rest of the algorithm
requires linear time (O(n)) for each of 2n segments, i.e., the total quadratic
time. The theorem is proven.



6.2 Proof of Theorem 2

Similarly to the proof of Theorem 1, we an conclude that for every i, the maxi-
mum of M, over the interval x; is attained either inside the interval (when the
partial derivative is 0) or at one of the endpoint of this interval. Thus, to prove
that our algorithm is correct, we must show that the maximum of M,, cannot
be attained for z; € (z;,T;), when OM,,/0z; = 0. Indeed, in the maximum
point, the second derivative 8?M,,/0x? must be non-positive. In the proof of
Theorem 1, we have already derived an explicit formula (2) for 0M,,/0z;. The
formula (2) describes this derivative in terms of M,,_1, so when we differentiate
both sides of the formula (2), we can use the same expression for the derivative
of M,,_1. As a result, we get the following;:

0?M,, m
crm _ "
ox? n
where 1
T= (m—l)-(:c,-—E)m_2—(m—1)-($z~—E)m_2-E—

m—1

“Mpy—a =

mTl ((n=2)- (2i = )™ + My_s) .
In the trivial case of n = 1, all central moments are 0. When n > 2, both
terms are non-negative, so the second derivative is non-negative. We know that
the second derivative must be non-positive, so it must be equal to 0. Since the
sum of two non-negative numbers is equal to 0, both numbers are equal to 0, in
particular,

Therefore, all the values z; are identically equal to E. In this case, M,, = 0,
so this cannot be where the largest possible value of M,, is attained. This
contradiction shows that the maximum cannot be attained inside the interval
X;, hence it attained at the endpoints. The theorem is proven.

6.3 Proof of Theorem 3

We have already proven, in Theorem 2, that maximum can only be attained at
one of the endpoints of the interval [z;,T;], i.e., when wgo) =gz, or xgo) = T;.
Hence, for each i, we have one of the following two situations:

o cither (¥ = z; and OM,,/0z; < 0;

%

e or xEO) =7; and OM,,/0z; > 0.



We already know, from the proof of Theorem 1, that the condition M, /dz; < 0
is equivalent to z; < a, and the condition M, /dz; > 0 is equivalent to z; > a.
Thus, the above two situations can be reformulated a follows:

e cither mz@ =gz; and mgo) =z; < a;

(

%

(0)

0 _ — _
e orx ):xiandxi =7; > a.

Hence:

e if T; < «, then we cannot have the second case (when Z; > «) and
(0)

therefore, we can only have the first case, when z;

(0)

o similarly, if o < z;, then we must have z; ' = ;.

= Z;;

The only case when the knowledge of o does not help us determine z; is the
case when 2, < a <7, i.e., when a € x;.

Since intervals are C-wise disjoint, for each «, there can be no more than C
such intervals, so we can try all 2¢ possible assignments for each segment. In
other words, the time increases by a constant (< 2¢) over the running time of
the algorithm described in Theorem 1. This justifies the algorithm and proves
that it runs in quadratic time.

6.4 Proof of Theorem 4

Similarly to the proof of Theorem 1, we conclude that for the point where the
function M, attains its minimum, we have:

o either m(O) € (Ezafz) and a]\/[m/aflfz = 0,

i
e or mgo) = z; and OMy,/0z; > 0;

e orz¥ = Z; and OM,,/0z; < 0.

i
Here, the derivative OM,, /Ox; is described by the same formula (2) as in the
proof of Theorem 1. The difference is that m is now odd, so:
o if OM,,/0z; = 0, then (z; — E)™~! = M,, 1, hence |z; — E| = MTIH/ET_I),
so either z; is equal to a~ Ey o M,ln/_(T_l), or z; is equal to at def
E+ M7,

o if O9M,,/0z; > 0, then (z; — E)™ 1 > M,,_1, hence |z; — E| > M}n/f’ln‘”,
soz; <a” orx; >at;

o if OM,,/0z; < 0, then (z; — E)™~' < M,,_y, hence |z; — E| < M7,
soa” <z; <at.



(0)

Therefore, the above conditions on z; "’ can be reformulated as follows:

e in the first case, 7. € (z;,%:) and either z\”) = o~ or z{”) = a*; in this
case, either z; < a™ < T; or z; < a® < Ty;
(0)

. . 0 _ 0
¢ in the second case, x; © = z; and either a:E ) = z; <a” or :cz( ) = z; > at;

(0)

%

(0)

e in the third case, z; ' =Z; and o™ <z; =T; <a™.

Hence, once we know o~ and at, we can determine (at least some) some values
x§°) as follows:
e if a” <z, <T; < a', then we cannot have the first case (when a~ > g,

or at < T;), and we cannot have the second case (when z; < a~ or
z; > aT); therefore, we can only have the third case, when x§°) =T

e if ot < z,, then we cannot have the first case (when either a®™ > z;,
or a= > z; hence a™ > z;), and we cannot have the third case (when

Z; < am hence z; < a™); therefore, we can only have the second case,
(0)

when z;”’ = z;;
e similarly, if Z; < o, then we cannot have the first case (when either
a < z;, or at < T; hence a~ < Z;), and we cannot have the third

case (when a~ < T;); therefore, we can only have the second case, when
(0 _

z;

Z;-

We have described all the cases in which neither of the two auxiliary values o~
and a7 is in the interval x;; in all these cases, we can uniquely determine the
value mgo). The only cases when we cannot uniquely determine the value x§°’
are the cases when either a~ or at is within the interval x;.

Once we choose segments that contain o~ and o', we have no more than
C intervals x; that contain a~ and no more than C intervals that contain a™.
Thus, for the remaining > n — 2C indices i, we can uniquely determine x;. For
the 2C indices, we try all possible combinations. This is exactly what we do in
our algorithm. Thus, the algorithm is indeed correct.

The algorithm requires linear time O(n) for each pair of segments; there are
O(n?) pairs of segments, hence the algorithm requires cubic time. The theorem
is proven.
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