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Scott Ferson2, and Lev Ginzburg2

1Computer Science Department, University of Texas at El Paso
El Paso, TX 79968, USA, {vladik,longpre}@cs.utep.edu

2Applied Biomathematics, 100 North Country Road
Setauket, NY 11733, USA, {scott,lev}@ramas.com

Abstract

Higher central moments are very useful in statistical analysis: the third
moment M3 characterizes asymmetry of the corresponding probability
distribution, the fourth moment M4 describes the size of the distribution’s
tails, etc. When we know the exact values x1, . . . , xn, we can use the
known formulas for computing the corresponding sample central moments.
In many practical situations, however, we only know intervals x1, . . . ,xn

of possible values of xi; in such situations, we want to know the range of
possible values of Mm. In this paper, we propose algorithms that compute
such ranges.

1 Formulation of the Problem

Higher moments are important. In engineering and science, when we have
n measurement results x1, . . . , xn, traditional statistical approach (see, e.g., [5,
21]) usually starts with computing their (sample) average

E = x̄ =
x1 + . . . + xn

n

and their (sample) variance

V =
(x1 − E)2 + . . . + (xn − E)2

n
.
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(Often, a standard deviation σ
def=

√
V is used instead of V .) Variance is a

particular case of a central moment

Mm =
(x1 − E)m + . . . + (xn − E)m

n
(1)

corresponding to m = 2. Higher moments – i.e., moments corresponding to
m = 3, 4, . . . – are also used in engineering and science. For example, the third
central moment M3 is used to describe the asymmetry of the corresponding
probability distribution, and the fourth central moment M4 is used to describe
the size of the distribution’s tails. To be more precise, skewness M3/σ3 is used
to characterize asymmetry, and kurtosis M4/σ4 − 3 is used to characterize the
size of the tails (3 is subtracted so that kurtosis be equal to 0 for the practically
frequent case of a normal distribution).

In addition to central moments, sometimes, non-central moments are also
used:

M ′
m =

xm
1 + . . . + xm

n

n
.

Case of interval data. When we know the exact values of xi, then we can
compute each moment by using the explicit formula (1). In some practical
situations, however, we only have intervals xi = [xi, xi] of possible values of xi.

This happens, for example, if instead of observing the actual value xi of the
random variable, we observe the value x̃i measured by an instrument with a
known upper bound ∆i on the measurement error (and no information about
probabilities of different possible values of measurement error); then, the actual
(unknown) value is within the interval xi = [x̃i − ∆i, x̃i + ∆i]. The practical
importance of this question was emphasized, e.g., in [17, 18] on the example of
processing geophysical data.

Another case is when we try to maintain privacy in statistical databases (see,
e.g., [14]). If we collect a lot of data about people, we can extract important
information that can be useful both to these people and to the economy. How-
ever, even if we strip off names and IDs from individual records, there is still
enough information in, say, individual census records to enable a researcher to
pinpoint a person and thus, to learn information about this person that would
rather be private. Thus, while we should allow statistical queries, we cannot
allow unrestricted statistical queries – they will violate privacy.

There exist many methods for maintaining privacy; most of these methods,
however, do not provide an absolute guarantee that privacy will be maintained
– only probabilistic guarantee. Besides, in these methods, each access to the
statistical database restricts the potential future uses of this data.

One way to guarantee privacy is that, instead of keeping exact values of
salary, age, weight, etc., we select a partition, and only keep the interval that
contains the actual data. For example, we only keep the information that the
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age is between 40 and 50, or between 50 and 60, etc. Then, no matter how many
queries we ask, we will never pinpoint the individual data more accurately.

In this case, if we are interested in a statistical characteristic A(x1, . . . , xn)
and we only know the intervals xi that contain the actual (unknown) values xi,
then it is natural to return the range of A, i.e., the interval

{A(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.
There are other practical cases when we need to apply statistical analysis to

interval-valued data. For example, when we study the effect of a water pollutant
on the fish life expectancy, we usually check on the fish, say, once a day. As a
result, if, e.g., a fish was alive on Day 5 but dead on Day 6, all we know about
the actual lifetime xi of this fish i is that xi ∈ [5, 6]. The problem of statistical
analysis of such interval data (called “censored data” in statistics) is exactly the
same as for the privacy case.

Computing moments for interval data is a particular case of a general
problem of combining interval and probabilistic uncertainty. In all
the above cases, we know the values x1, . . . , xn with interval uncertainty and
therefore, the sets of possible values of E, V , and Mk are also intervals. How
can we compute these intervals?

This is a specific problem related to a combination of interval and proba-
bilistic uncertainty. Such problems – and their potential applications – have
been described, in a general context, in the monographs [12, 22]; for further
developments, see, e.g., [1, 2, 3, 4, 6, 9, 13, 16, 19, 20, 23] and references therein.

The specific problem of estimating the range of a moment under interval
uncertainty was formulated by C. Manski; his research is summarized in [14]
(see also [10]).

Case of non-central moments. For the first moment E, the solution is easy:
since E is an increasing function of each of the variables xi, it is easy to compute
the interval E = [E, E] of possible values of E:

E =
x1 + . . . + xn

n
; E =

x1 + . . . + xn

n
.

For example, for three intervals x1 = x2 = x3 = [−1, 1], we have E = [−1, 1].
This result makes sense: e.g., since all we know about the values xi is that
xi ∈ [−1, 1], it is quite possible that all three values xi are equal to 1, in which
case E = 1. Similarly, it is possible that x1 = x2 = x3 = −1, so the resulting
value E = −1 is also possible. On the other hand, since |xi| ≤ 1, the average E
of the three values xi must always lie within the interval [−1, 1].

Similarly, we can easily compute the exact bounds for non-central moments
M ′

m for odd m:

M ′
m =

(x1)
m + . . . + (xn)m

n
; M

′
m =

(x1)m + . . . + (xn)m

n
.
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For example, for m = 3 and x1 = x2 = x3 = [−1, 1], we get M′
3 = [−1, 1].

For even m, it is known (see, e.g., [11, 15]) that the range of xm when
x ∈ [x, x] is equal to [(min(|x|, |x|))m, (max(|x|, |x|))m] when 0 6∈ [x, x] and to
[0, (max(|x|, |x|))m] otherwise. Thus,

M ′
m =

Fm(x1, x1) + . . . + Fm(xn, xn)
n

,

where F (a, b) = 0 if a ≤ 0 ≤ b and min(|a|, |b|) otherwise, and

M
′
m =

(max(|x1|, |x1|))m + . . . + (max(|xn|, |xn|))m

n
.

For example, for [−1, 1] and m = 4, we have [−1, 1]4 = [0, 1] hence M′
4 = [0, 1]

– which again makes perfect sense: this moment can be 0 if all the values xi are
equal to 0; it can be equal to 1 if all the values are equal to 1; and it cannot be
larger than 1 because it is the average of three values x4

i , each of which is ≤ 1.

Case of central moments: what is known? What is the interval
[Mm,Mm] of possible values for the central moment Mm? In [7, 8], we have ana-
lyzed this problem for the case of variance (m = 2). In this case, we have shown
that the general problem of computing the interval [V , V ] exactly is NP-hard.
We also showed:

• that there exists a quadratic-time algorithm for computing V ; and

• that there exists a quadratic-time algorithm for computing V for the case
when the intervals do not all group together, i.e., crudely speaking, when
for some C, every C different intervals xi1 , . . . ,xiC

have an empty inter-
section.

In particular, for the above three intervals xi = [−1, 1], we get the range M2 =
[0, 8/9]. The smallest value 0 is attained when all xi are equal, the largest value
8/9 is attained, e.g., when x1 = x2 = 1 and x3 = −1 – and one can check that
for all other values xi ∈ [−1, 1], the central moment M2 is always within the
interval [0, 8/9].

In this paper, we extend these algorithms to higher central moments.

2 First Result: Computing Mm for Even m

Theorem 1. For every even m, there exists an algorithm that computes Mm

in quadratic time.

This algorithm is as follows:
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• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).
This sequence divides the real line into 2n+1 segments [x(k), x(k+1)], where

k = 0, . . . , 2n, x(0)
def= −∞, and x(2n+1)

def= +∞.

• For each of these segments [x(k), x(k+1)], we do the following:

– First, we define x1, . . . , xn as the following linear functions of a new
auxiliary variable α:

∗ if xi ≥ x(k+1), we take xi = xi (independent of α);
∗ if xi ≤ x(k), we take xi = xi (independent of α);
∗ in all other cases, we take xi = α.

– Based on these expressions for xi, we find the expression for

E =
x1 + . . . + xn

n

as a linear function of α.

– Then, we substitute these expressions for xi and E into the equation

1
n
·

n∑

i=1

(xi − E)m−1 = (α− E)m−1.

This equation is is a polynomial equation of order ≤ m− 2 in terms
of the unknown α (terms proportional to αm−1 cancel out), so it has
≤ m− 2 solutions. We compute these solutions.

– For each of the solutions that is inside the segment [x(k), x(k+1)], we
substitute the corresponding value α into the formulas for xi and E,
thus, we compute xi and E; based on these values, we compute

Mm =
1
n
·

n∑

i=1

(xi − E)m.

• The smallest of thus computed values Mm is the desired lower bound Mm.

In particular, when x1 = x2 = x3 = [−1, 1] and m = 4, this algorithm
produces the correct bound M4 = 0 – that is attainable if, e.g., x1 = x2 = x3 =
0.

For reader’s convenience, the proof that this algorithm always computes Mm

correctly, and that it requires quadratic time is placed (as well as all other
proofs) in the special Proofs section at the end of this paper.
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3 Second Result: Computing Mm for Even m in
Time 2n

For small number of measurements, we can use the following algorithm to com-
pute Mm:
Theorem 2. For every even m, there exists an algorithm that computes Mm

in time O(2n).

The algorithm is as follows: for each i, we select either xi = xi or xi = xi. For
each i from 1 to n, there are two options, so totally, we have 2n combinations
to try. For each of these combinations, we compute Mm; the largest of the
resulting 2n values is the desired upper bound Mm.

In particular, for x1 = x2 = x3 = [−1, 1] and m = 4, this algorithm produces
the bound M4 = 32/27 ≈ 1.19 – that is attainable if, e.g., x1 = x2 = 1 and
x3 = −1. Once can check that for all other combinations xi ∈ [−1, ], we get
smaller (or equal) value of the 4th central moment M4.

4 Third Result: Computing Mm for Even m in
Quadratic Time (Case When Intervals Do Not
Group Together)

Sets S1, . . . , Sn are called pairwise disjoint if every pair has an empty intersec-
tion, i.e., if Si∩Sj = ∅ for all i 6= j. We can generalize this definition from pairs
to tuples of arbitrary size C:

Definition 1. Let C ≥ 2 be an integer. We say that a sequence of sets
S1, . . . , Sn is C-wise disjoint if for every C different indices i1, . . . , iC , we have
Si1 ∩ . . . ∩ SiC

= ∅.
Theorem 3. For every even m and for every C ≥ 2, there exists an algorithm
that computes Mm in quadratic time when the input intervals x1, . . . ,xn are
C-wise disjoint.

This algorithm is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).
This sequence divides the real line into 2n+1 segments [x(k), x(k+1)], where

k = 0, . . . , 2n, x(0)
def= −∞, and x(2n+1)

def= +∞.

• For each of these segments [x(k), x(k+1)], we do the following:

– First, we describe several combinations (x1, . . . , xn) as follows:

∗ if xi < x(k), we take xi = xi;
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∗ if xi > x(k+1), we take xi = xi;
∗ for all other indices i (there are ≤ C of them), we consider all

possible combinations of xi = xi and xi = xi.

As a result, we get ≤ 2C different combinations.

– For each resulting combination (x1, . . . , xn), we compute E as the
average of all the values xi, then we compute

Mm−1 =
1
n
·

n∑

i=1

(xi − E)m−1,

and α = E + M
1/(m−1)
m−1 .

– For each combination for which the resulting value α is within the
segment [x(k), x(k+1)], we compute

Mm =
1
n
·

n∑

i=1

(xi − E)m.

• The largest of thus computed values Mm is the desired upper bound Mm.

In particular, for x1 = x2 = x3 = [−1, 1], m = 4, and C = 4, we get the
correct bound M4 = 32/27 ≈ 1.19.

5 Fourth Result: Computing Mm and Mm for
Odd m in Cubic Time (Case When Intervals
Do Not Group Together)

Theorem 4. For every odd m and for every C ≥ 2, there exists an algorithm
that computes Mm in cubic time when the input intervals x1, . . . ,xn are C-wise
disjoint.

The algorithm for computing Mm is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).
This sequence divides the real line into 2n+1 segments [x(k), x(k+1)], where

k = 0, . . . , 2n, x(0)
def= −∞, and x(2n+1)

def= +∞.

• For each pair of segments [x(k), x(k+1)] and [x(l), x(l+1)], k ≤ l, we do the
following:

– First, we describe several combinations (x1, . . . , xn) as linear func-
tions of α− and α+ as follows:

∗ if xi < x(k), we take xi = xi;
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∗ if xi > x(k+1), we take xi = xi;
∗ for all other indices i (there are ≤ 2C of them), we consider

all possible combinations of xi = xi, xi = xi, xi = α− (if
[x(k), x(k+1)] ⊆ xi) and xi = α+ (if [x(l), x(l+1)] ⊆ xi).

As a result, we get ≤ 42C different combinations.

– For each resulting combination (x1, . . . , xn), we find the expression
for E as the average of all the values xi. Then, we substitute the
expressions for xi and E into the system of equations

1
n
·

n∑

i=1

(xi − E)m−1 = (E − α−)m−1;

1
n
·

n∑

i=1

(xi − E)m−1 = (α+ − E)m−1.

We compute all solutions of this system of polynomial equations with
unknowns α− and α+.

– For each of the solutions for which α− ∈ [x(k), x(k+1)] and α+ ∈
[x(l), x(l+1)], we substitute the corresponding values α− and α+ into
the formulas for xi and E, thus, we compute xi and E; based on
these values, we compute

Mm =
1
n
·

n∑

i=1

(xi − E)m.

• The smallest of thus computed values Mm is the desired lower bound Mm.

Theorem 5. For every odd m and for every C ≥ 2, there exists an algorithm
that computes Mm in cubic time when the input intervals x1, . . . ,xn are C-wise
disjoint.

Since m is odd, the m-th central moment of the values x1, . . . , xn is equal to
minus the m-th moment of the values −x1, . . . ,−xn. Turning to −xi changes
largest and smallest values and vice versa. Thus, to compute Mm for the in-
tervals xi = [xi, xi], it is sufficient to compute the lower bound Mm for the
intervals −xi = [−xi,−xi], and then change the sign of the resulting bound.
Since we can use the above cubic-time algorithm to compute Mm, we thus get
a cubic-time algorithm for computing Mm.

In particular, for x1 = x2 = x3 = [−1, 1], m = 3, and C = 4, we get the
bounds M3 = 80/81 ≈ 0.988 and M3 = −80/81. The largest value M3 is
attained when x1 = x2 = 1 and x3 = −1; the smallest value M3 is attained,
e.g., when x1 = x2 = −1 and x3 = 1.
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6 Proofs

Proof of Theorem 1. The central moment Mm is a continuous function of
n variables; thus, its smallest possible value on a compact box x1 × . . .× xn is
attained at some point (x(0)

1 , . . . , x
(0)
n ). Since the function Mm is also smooth, for

each variable i for which the interval xi is non-degenerate (i.e., of finite width),
the minimum is attained either when xi is inside the corresponding interval
(xi, xi) and the derivative ∂Mm/∂xi is equal to 0, or when x

(0)
i coincides with

one of the endpoints of this interval. To be more precise, we must have one of
the following three situations:

• either x
(0)
i ∈ (xi, xi) and ∂Mm/∂xi = 0;

• or x
(0)
i = xi and ∂Mm/∂xi ≥ 0;

• or x
(0)
i = xi and ∂Mm/∂xi ≤ 0.

Differentiating Mm w.r.t. xi, and taking into consideration that ∂E/∂xi = 1/n,
we conclude that

∂Mm

∂xi
=

1
n
·m · (xi − E)m−1 +

1
n
·

n∑

j=1

m · (xj − E)m−1 ·
(
− 1

n

)
.

The sum in this formula is proportional to the (m−1)-st central moment Mm−1,
so the above formula can be simplified into:

∂Mm

∂xi
=

m

n
· ((xi − E)m−1 −Mm−1). (2)

Due to this formula:

• if ∂Mm/∂xi = 0, then (xi − E)m−1 = Mm−1, hence xi = α
def= E +

M
1/(m−1)
m−1 ;

• if ∂Mm/∂xi ≥ 0, then (xi − E)m−1 ≥ Mm−1, hence (since the function
z → z1/(m−1) is increasing for even m) xi ≥ α;

• if ∂Mm/∂xi ≤ 0, then (xi − E)m−1 ≤ Mm−1, hence xi ≤ α.

Therefore, the above conditions on x
(0)
i can be reformulated as follows:

• either x
(0)
i ∈ (xi, xi) and x

(0)
i = α; in this case, xi < α < xi;

• or x
(0)
i = xi and x

(0)
i = xi ≥ α;

• or x
(0)
i = xi and x

(0)
i = xi ≤ α.

Hence, once we know α, we can determine all n values x
(0)
i as follows:
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• if xi ≤ α, then we cannot have the first case (when α < xi) or the second
case (when α ≤ xi hence α < xi); therefore, we can only have the third
case, when x

(0)
i = xi;

• similarly, if α ≤ xi, then we must have x
(0)
i = xi;

• finally, when xi < α < xi, then we must have x
(0)
i = α.

The only thing that remains is to find α. Once we know to which of 2n + 1
segments [x(k), x(k+1)] the value α belongs, we can uniquely describe all the
values xi as linear functions of α, and then define α from the condition that
α = E +M

1/(m−1)
m−1 , i.e., equivalently, that Mm−1 = (α−E)m−1. This is exactly

what our algorithm does.
This proves that our algorithm is correct. To complete the proof, we must

also show that this algorithm requires quadratic time.
Indeed, sorting requires O(n · log(n)) steps, and the rest of the algorithm

requires linear time (O(n)) for each of 2n segments, i.e., the total quadratic
time. The theorem is proven.

Proof of Theorem 2. Similarly to the proof of Theorem 1, we an conclude
that for every i, the maximum of Mm over the interval xi is attained either
inside the interval (when the partial derivative is 0) or at one of the endpoint of
this interval. Thus, to prove that our algorithm is correct, we must show that
the maximum of Mm cannot be attained for xi ∈ (xi, xi), when ∂Mm/∂xi = 0.
Indeed, in the maximum point, the second derivative ∂2Mm/∂x2

i must be non-
positive. In the proof of Theorem 1, we have already derived an explicit formula
(2) for ∂Mm/∂xi. The formula (2) describes this derivative in terms of Mm−1,
so when we differentiate both sides of the formula (2), we can use the same
expression for the derivative of Mm−1. As a result, we get the following:

∂2Mm

∂x2
i

=
m

n
· T,

where
T = (m− 1) · (xi − E)m−2 − (m− 1) · (xi − E)m−2 · 1

n
−

m− 1
n

· (xi − E)m−2 +
m− 1

n
·Mm−2 =

m− 1
n

· ((n− 2) · (xi − E)m−2 + Mm−2

)
.

In the trivial case of n = 1, all central moments are 0. When n ≥ 2, both
terms are non-negative, so the second derivative is non-negative. We know that
the second derivative must be non-positive, so it must be equal to 0. Since the
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sum of two non-negative numbers is equal to 0, both numbers are equal to 0, in
particular,

Mm−2 =
1
n
·

n∑

i=1

(xi − E)m−2 = 0.

Therefore, all the values xi are identically equal to E. In this case, Mm = 0,
so this cannot be where the largest possible value of Mm is attained. This
contradiction shows that the maximum cannot be attained inside the interval
xi, hence it attained at the endpoints. The theorem is proven.

Proof of Theorem 3. We have already proven, in Theorem 2, that maximum
can only be attained at one of the endpoints of the interval [xi, xi], i.e., when
x

(0)
i = xi or x

(0)
i = xi. Hence, for each i, we have one of the following two

situations:

• either x
(0)
i = xi and ∂Mm/∂xi ≤ 0;

• or x
(0)
i = xi and ∂Mm/∂xi ≥ 0.

We already know, from the proof of Theorem 1, that the condition ∂Mm/∂xi ≤ 0
is equivalent to xi ≤ α, and the condition ∂Mm/∂xi ≥ 0 is equivalent to xi ≥ α.
Thus, the above two situations can be reformulated a follows:

• either x
(0)
i = xi and x

(0)
i = xi ≤ α;

• or x
(0)
i = xi and x

(0)
i = xi ≥ α.

Hence:

• if xi < α, then we cannot have the second case (when xi ≥ α) and
therefore, we can only have the first case, when x

(0)
i = xi;

• similarly, if α < xi, then we must have x
(0)
i = xi.

The only case when the knowledge of α does not help us determine xi is the
case when xi ≤ α ≤ xi, i.e., when α ∈ xi.

Since intervals are C-wise disjoint, for each α, there can be no more than C
such intervals, so we can try all 2C possible assignments for each segment. In
other words, the time increases by a constant (≤ 2C) over the running time of
the algorithm described in Theorem 1. This justifies the algorithm and proves
that it runs in quadratic time.

Proof of Theorem 4. Similarly to the proof of Theorem 1, we conclude that
for the point where the function Mm attains its minimum, we have:

• either x
(0)
i ∈ (xi, xi) and ∂Mm/∂xi = 0;

11



• or x
(0)
i = xi and ∂Mm/∂xi ≥ 0;

• or x
(0)
i = xi and ∂Mm/∂xi ≤ 0.

Here, the derivative ∂Mm/∂xi is described by the same formula (2) as in the
proof of Theorem 1. The difference is that m is now odd, so:

• if ∂Mm/∂xi = 0, then (xi−E)m−1 = Mm−1, hence |xi−E| = M
1/(m−1)
m−1 ,

so either xi is equal to α− def= E − M
1/(m−1)
m−1 , or xi is equal to α+ def=

E + M
1/(m−1)
m−1 ;

• if ∂Mm/∂xi ≥ 0, then (xi−E)m−1 ≥ Mm−1, hence |xi−E| ≥ M
1/(m−1)
m−1 ,

so xi ≤ α− or xi ≥ α+;

• if ∂Mm/∂xi ≤ 0, then (xi−E)m−1 ≤ Mm−1, hence |xi−E| ≤ M
1/(m−1)
m−1 ,

so α− ≤ xi ≤ α+.

Therefore, the above conditions on x
(0)
i can be reformulated as follows:

• in the first case, x
(0)
i ∈ (xi, xi) and either x

(0)
i = α− or x

(0)
i = α+; in this

case, either xi < α− < xi or xi < α+ < xi;

• in the second case, x
(0)
i = xi and either x

(0)
i = xi ≤ α− or x

(0)
i = xi ≥ α+;

• in the third case, x
(0)
i = xi and α− ≤ x

(0)
i = xi ≤ α+.

Hence, once we know α− and α+, we can determine (at least some) some values
x

(0)
i as follows:

• if α− < xi < xi < α+, then we cannot have the first case (when α− > xi

or α+ < xi), and we cannot have the second case (when xi ≤ α− or
xi ≥ α+); therefore, we can only have the third case, when x

(0)
i = xi;

• if α+ ≤ xi, then we cannot have the first case (when either α+ > xi,
or α− > xi hence α+ > xi), and we cannot have the third case (when
xi ≤ α+ hence xi < α+); therefore, we can only have the second case,
when x

(0)
i = xi;

• similarly, if xi < α−, then we cannot have the first case (when either
α− < xi, or α+ < xi hence α− < xi), and we cannot have the third
case (when α− ≤ xi); therefore, we can only have the second case, when
x

(0)
i = xi.

We have described all the cases in which neither of the two auxiliary values α−

and α+ is in the interval xi; in all these cases, we can uniquely determine the
value x

(o)
i . The only cases when we cannot uniquely determine the value x

(0)
i

are the cases when either α− or α+ is within the interval xi.

12



Once we choose segments that contain α− and α+, we have no more than
C intervals xi that contain α− and no more than C intervals that contain α+.
Thus, for the remaining ≥ n− 2C indices i, we can uniquely determine xi. For
the 2C indices, we try all possible combinations. This is exactly what we do in
our algorithm. Thus, the algorithm is indeed correct.

The algorithm requires linear time O(n) for each pair of segments; there are
O(n2) pairs of segments, hence the algorithm requires cubic time. The theorem
is proven.
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