
Fast Quantum Algorithms for Handling
Probabilistic, Interval, and Fuzzy Uncertainty

Mark Martinez, Luc Longpré
Vladik Kreinovich, Scott A. Starks

NASA Pan-American Center for Earth and
Environmental Studies (PACES)
University of Texas at El Paso

El Paso, TX 79968, USA
vladik@cs.utep.edu

Hung T. Nguyen
Department of Mathematical Sciences

New Mexico State University
Las Cruces, NM 88003, USA

hunguyen@nmsu.edu

Abstract

We show how quantum computing can speed up com-
putations related to processing probabilistic, interval, and
fuzzy uncertainty.

1. Introduction

As computers become faster, quantum effects must be
more and more taken into consideration. According to
Moore’s law, computer speed doubles every 18 months.
One of the main limitations to further speedup is the com-
puter size: every communication is limited by the speed of
light � , so, e.g., a computer of a 1 ft size is bounded to have
a computation speed 1 ft/ � – which corresponds to 1 GHz.
To make faster computers, we must thus decrease the size
of computer elements. As this size reaches molecular size,
must take into consideration quantum effects.

Quantum effects add to noise, but they can also help.
Quantum effects, with their inevitably probabilistic behav-
ior, add to noise. However, it turns out that some (intuitively
counter-intuitive) quantum effects can be used to drastically
speed up computations (in spite of quantum noise).

For example, without using quantum effects, we need –
in the worst case – at least

�
computational steps to search

for a desired element in an unsorted list of size
�

. A quan-
tum computing algorithm proposed by Grover (see, e.g.,
[5, 6, 17]) can find this element much faster – in ����� ���
time.

Several other quantum algorithms have been proposed.

What we are planning to do. How can this be of use
to fuzzy data processing community? In many application

areas ranging from geosciences to bioinformatics to large-
scale simulations of complex systems, data processing algo-
rithms require a lot of time to run even with the exact input
data. As a result, very little is currently done to analyze the
effect of inevitable uncertainty of input data on the results
of data processing.

It is desirable to analyze how different types of uncer-
tainty (probabilistic, interval, and fuzzy – influence the re-
sults of data processing. In this paper, we discuss how
quantum algorithms such as Grover’s quantum search can
be used to speed up this analysis – and thus, make it possi-
ble.

We also explain that there is no need to wait until a full-
blown quantum computer appears, with all necessary quan-
tum bits (“qubits”): even without all necessary qubits, we
can still get some speedup, a speedup that gets better and
better as we add more qubits to the quantum computer.

2 What Is Known: Quantum Algorithms
That We Can Use

Grover’s algorithm for quantum search. We have al-
ready mentioned Grover’s algorithm that, given:
	 a database 
���
�������
�
�� with

�
entries,

	 a property � (i.e., an algorithm that checks whether �
is true), and

	 an allowable error probability � ,
returns, with probability ������� , either the element 
�� that
satisfies the property � or the message that there is no such
element in the database.

This algorithm requires �� � � steps (= calls to � ), where
the factor � depends on � (the smaller � we want, the larger� we must take).



General comment about quantum algorithms. For our
applications, it is important to know that for Grover’s algo-
rithm (and for all the other quantum algorithms that we will
describe and use), the entries 
�� do not need to be all physi-
cally given, it is sufficient to have a procedure that, given

�
,

produces 
 � .
	 If all the entries are physically given, then this proce-

dure simply consists of fetching the
�
-th entry from the

database.

	 However, it is quite possible that the entries are given
implicitly, e.g., 
 � can be given as the value of a known
function at

�
-th grid point; we have this function given

as a program, so, when we need 
�� , we apply this func-
tion to

�
-th grid point.

Algorithm for quantum counting. Brassard et al. used
the ideas behind Grover’s algorithm to produce a new quan-
tum algorithm for quantum counting; see, e.g., [1, 17].
Their algorithm, given:

	 a database 
���
�������
 
 � with
�

entries,

	 a property � (i.e., an algorithm that checks whether �
is true), and

	 an allowable error probability � ,
returns an approximation

� �
to the total number

�
of entries


 � that satisfy the property � .
This algorithm contains a parameter � that determines

how accurate the estimates are. The accuracy of this esti-
mate is characterized by the inequality

�� � � � � ����
�	�
�

 � ��

���
� � (1)

that is true with probability � ����� .
This algorithm requires �  �  � � steps (= calls to � ),

where the factor � depends on � (the smaller � we want, the
larger � we must take).

In particular, to get the exact value
�
, we must attain ac-

curacy
�� � � � � ��
� � , for which we need ��� � � . In this

case, the algorithm requires ��� � �  � � steps.

Quantum algorithms for finding the minimum. Dürr et
al. used Grover’s algorithm to produce a new quantum al-
gorithm for minimization; see, e.g., [2, 17]. Their algorithm
applied to the database whose entries belong to the set with
a defined order (e.g., are numbers). This algorithm, given:

	 a database 
���
�������
 
 � with
�

entries, and

	 an allowable error probability � ,

returns the index
�

of the smallest entry 
 � , with probability
of error � � .

This algorithm requires �� � � steps (= calls to � ), where
the factor � depends on � (the smaller � we want, the larger� we must take).

Main idea behind quantum computing of the minimum.
The main idea behind the above algorithm can be illustrated
on the example when all the entries 
 � are integers. The
algorithm requires that we know, e.g., a number � such
that all the entries belong to the interval � ��� 
���� . For ev-
ery value � between ��� and � , we can use Grover’s
algorithm to check whether there is an entry 
 � for which

 �
� � .

	 If such an entry exists, then ����������! #"%$ � 
 � � � � ;

	 otherwise � � �&� .

Thus, for every � , we can check, in ��� � � � steps, whether
�'� � � .

We can therefore apply bisection to narrow down the in-
terval containing the desired until it narrows down to a sin-
gle integer.

	 We start with an interval � � 
 ��� � � ��� 
(��� .
	 At each iteration, we pick a midpoint

� � � 
 �� 
 (2)

and check whether �)� � �*� .
– If � �+� � � , this means that � �+, � � 
�� � � ;
– otherwise, � �-, � � � 
 �.� .

In both cases, we get a half-size interval containing
� � .

	 After /%021 � � � � �
iterations, this interval becomes so

narrow that it can only contain one integer – which is
�'� .

Thus, in /3041 � �5� �  ��� � � � steps, we can compute the de-
sired minimum.

Quantum algorithm for computing the mean. The
above algorithms can be used to compute the average of sev-
eral numbers, and, in general, the mean of a given random
variable. The first such algorithm was proposed by Grover
in [7]; for further developments, see, e.g., [8, 15, 18].

The traditional Monte-Carlo method for computing the
mean consists of picking � random values and averaging
them. It is a well known fact [19, 21], that the accuracy of
this method is 6 �87 � � , so, to achieve the given accuracy



� , we need � � ��� � iterations. Another way to compute
the average of � given numbers is to add them up and divide
by � , which requires � steps, Thus:

	 when � � ��� � , it is faster to add all the values;

	 otherwise, it is better to use the Monte-Carlo method.

Grover’s quantum analog of the Monte-Carlo method at-
tains accuracy 6 �	7 � after � iterations; thus, for a given
accuracy � , we only need � � ��� � steps.

Similarly to the traditional Monte-Carlo methods, this
quantum algorithm can compute multi-dimensional inte-
grals

� ����� ��� �	� � 
�������

��� ��
 � � ����� 
 ��� : indeed, if we as-
sume that the vector ��� ��
�������
���� � is uniformly distributed
over the corresponding domain, then this integral is propor-
tional to the average value of

� ��� � 
�������

��� � .

3 Quantum Algorithms for Probabilistic
Analysis

In the probabilistic case, the problem of describing the
influence of the input uncertainty on the result of data pro-
cessing takes the following form (see, e.g., [19, 21]). Given:

	 the data processing algorithm
� ��� � 
�������
�� � � that trans-

forms any � input values � � 
�������

��� into the result of� � � �	� ��
�������

��� � of data processing, and

	 the mean values
�� � and standard deviations � � of the

inputs,

compute the standard deviation � of the result � of data pro-
cessing.

This standard deviation can be described as a mean (=
mathematical expectation) of the square � � � �� � � , where

�� ������ � � �� � 
�������
 ���� � 
 � ������ � ��� � 
�������
���� � 
 (3)

and each � � is normally distributed with mean
�� � and stan-

dard deviation � � . Traditional Monte-Carlo algorithm re-
quires 6 �87 � � iterations to compute this average; thus, for
accuracy 20%, we need 25 iterations; see, e.g., [20].

The quantum Monte-Carlo algorithm to compute this
mean with accuracy � in 6 �	7 � iterations; so, for accu-
racy 20%, we only need 5 iterations. Since computing

�
may take a long time, this drastic (5 times) speed-up may
be essential.

4 Quantum Algorithms for Interval Compu-
tations

Problem. In interval computations (see, e.g., [9, 10, 14]),
the main objective is as follows. Given:

	 intervals � � � 
 � � � of possible values of the inputs
� ��
�������

��� , and

	 the data processing algorithm
� ��� � 
�������
���� � that trans-

forms any � input values � � 
�������

� � into the result of� � � ��� � 
�������

� � � of data processing,

compute the exact range � � 
 � � of possible values of � .
We can describe each interval in a more traditional form

� �� � ��� � 
 �� � 
 � � � 
 (4)

where
�� � is the interval’s midpoint, and � � is its half-width.

The resulting range can also be described as � �� ��� 
 �� 
 � � ,
where

�� is determined by (3), and � is the desired largest
possible difference � � � �� � .
Case of relatively small errors. When the input errors
are relatively small, we can linearize the function

�
around

the midpoints
�� � . In this case, Cauchy distributions turn out

to be useful, with probability density

� �	� � 6 �
� 
 �	� � 
 � �

� �
� (5)

It is known [20] that if we take � � distributed according to
Cauchy distribution with a center 
 � �� � and the width
parameter � � , then the difference � � �� between the quanti-
ties (3) is also Cauchy distributed, with the width parameter
equal to the desired value � .

For Cauchy distribution, the standard deviation is infi-
nite, so we cannot literally apply the idea that worked in the
probabilistic case. However, if we apply a function � ��� �
(e.g., ��������� $ ) that reduces the entire real line to an inter-
val, then the expected value of �! � � � �� � �#" – that depends
only on � – can be computed by the quantum Monte-Carlo
algorithm; from this value, we can reconstruct � .

So, in this case, quantum techniques also speed up com-
putations.

General case. Known results about the computational
complexity of interval computations (see, e.g., [12]) state
that in the general case, when the input errors are not neces-
sarily small and the function

�
may be complex, this prob-

lem is NP-hard. This, crudely speaking, means that in the
worst case, we cannot find the exact range for � faster than
by using some version of exhaustive search of all appropri-
ate grid points.

The problem is not in exactness: it is also known that the
problem of computing the range with a given approximation
accuracy � is also NP-hard.

How can we actually compute this range? We can find,
e.g., � with a given accuracy � as follows. The function

�
is

continuous; hence, for a given � , there exists an � such that



the � � -difference in � � leads to � � change in � . Thus,
within a given accuracy � , it is sufficient to consider a grid
with step � , and take the smallest of all the values of

�
on

this grid as � .
If the linear size of the domain is

�
, then, in this grid, we

have
� 7�� values for each of the variables, hence, the total

of � � 7�� � � points.
In non-quantum computations, to compute the mini-

mum, we need to check every points from this grid, so
we must use

� � � � 7�� � � calls to
�

. The quantum algo-
rithm for computing minimum enables to use only � � �
� � 7�� � ��� � calls.

Thus, quantum algorithms can double the dimension of
the problem for which we are able to compute the desired
uncertainty.

5 Quantum Algorithms for Fuzzy Computa-
tions

Formulation of the problem. In fuzzy data processing
(see, e.g., [11, 16]), the main objective is: given:

	 fuzzy numbers � ��
�������
��!� characterizing our uncer-
tainty about the inputs � � 
�������

� � , and

	 the data processing algorithm
� ��� � 
�������
���� � that trans-

forms any n input values � � 
�������
���� into the result of� � � �	� ��
�������

��� � of data processing,

compute the fuzzy number � � � ��� ��
�������
��!� � that de-
scribes the resulting knowledge about � .

First quantum algorithm: idea. One possibility of us-
ing quantum computing to speed up fuzzy data processing
comes from the known fact that a fuzzy number can be rep-
resented as a nested family of intervals ( � -cuts correspond-
ing to different values of � ). Therefore, in principle, we
can perform fuzzy data processing by performing interval
computations on the corresponding � -cuts.

Second quantum algorithm: idea. It is also possi-
ble to use quantum computing more directly. Indeed,
the formula for computing the membership function of
� � � ��� � 
�������
�� � � – based on extension principle – re-
quires that we take  #"%$ over all possible combinations of
� � 
�������
�� � . This computation is the most time-consuming
part of fuzzy data processing; we can decrease the running
time to square root of it if we use the quantum algorithm for
computing minimum.

6 Quantum Algorithms for the Case When
We Have Several Different Types of Uncer-
tainty

Problem. How can we extend the above results to the case
when we have several different types of uncertainty? In this
section, we present preliminary result about the case when
we have both probabilistic and interval uncertainty.

When we have � measurement results � � 
�������
�� � , tra-
ditional statistical approach usually starts with computing
their sample average

	 � � � 
 ����� 
 ���
� (6)

and their sample variance


 � ��� � � 	 � � 
 ����� 
 �	��� � 	 � �
� (7)

(or, equivalently, the sample standard deviation � � � 

);

see, e.g., [19]. If we know the exact values of � � , then these
formulas require linear computation time ����� � .

As we have mentioned, in many practical situations, we
only have intervals � � � � � � 
 � � � of possible values of � � .
As a result, the sets of possible values of

	
and



are also

intervals.

What is known. The function
	

is monotonic in each � � ,
so the range � 	 
 	 � for

	
can be easily computed:

	 � � � 
 ����� 
 � �
�

� 	 � � � 
 ����� 
 ���
� � (8)

In [3, 4], we have shown that the problem of computing
the range � 
 
 
 � is, in general, NP-hard (even when we are
interested in computing this range with a given accuracy);
we have also described a quadratic-time ���	� � � algorithm


for computing



and a a quadratic-time algorithm



that
computes



for all the cases in which, for some integer � ,

no more than � “narrowed” intervals � �� � � � � 7#� 
 �� � 
 � � 7 � �
can have a common intersection.

Monte-Carlo speed-up for



. Let us first show that by
using Monte-Carlo simulations, we can compute



with

given accuracy in time �����  /3041 � ��� � ��� ����� � � ; to be more
precise, we need time �����  /3041 � �	� � � time to sort

� � values
and then ����� � steps to complete the computations.

Indeed, the algorithm



from [3, 3] is as follows:

	 First, we sort all
� � values � � , � � into a sequence

��� ��� � ��� � � � ����� � ��� � ��� .
	 Second, we compute

	
and

	
and select all zones

� ����� � 

������� ��� � that intersect with � 	 
 	 � .



	 For each of the selected small zones � � ��� � 
���� � � ��� � , we
compute the ratio � � ��� � 7 � � , where

� � ������ �
��� � �	�
����
������ � �


 �� � �����
����
�� � � 
 (9)

and
� � is the total number of such

�
s and � s. If � � ,

� ��� � � 

����� � ��� � , then we compute

��
� as

�
�
 ��� �

��� � � �
����
������ ��� � � � � � � 
 �� � �!���"�#�$
%� � � � � � � � �!&' �

If
� � �)( , we take


*�
� ������+( .

	 Finally, we return the smallest of the values

,�
� as



.

For each - , the value � � is a mean, so, by using Monte-Carlo
methods, we can compute it in time that does not depend
on � at all; similarly, we can compute


.�
� in constant time.

The only remaining step is to compute the smallest of � � �
values


��
� ; this requires ����� � steps.

Quantum speed-up for



. If quantum computing is
available, then we can compute the minimum in ��� � � �
steps; thus, we only need ��� � � � steps after sorting.

Speed-up for



. Similarly, the algorithm



is as follows:

	 First, we sort all
� � endpoints of the narrowed intervals�� � � � � 7#� and
�� � 
 � � 7#� into a sequence ��� ��� �

��� � � � ����� � ��� � � � . This enables us to divide the real
line into

� � 
 � zones � ��� � � 
������ � ��� � , where we denoted

��� � � � ���� �0/ and ��� � � � ��� ������ 
 / .

	 Second, we compute
	

and
	

and select all zones
� ��� � � 

����� � ��� � that intersect with � 	 
 	 � .

	 For each of remaining zones � � ��� � 
���� � � ��� � , for each
�

from 1 to � , we pick the following value of � � :
	 if ����� � ��� � �� � ��� � 7#� , then we pick � � � � � ;
	 if ����� ��1 �� � 
 � � 7 � , then we pick � � � � � ;
	 for all other

�
, we consider both possible values

� � � � � and � � � � � .
As a result, we get one or several sequences of � � . For
each of these sequences, we check whether the average	

of the selected values � � 
�������

��� is indeed within
the corresponding zone, and if it is, we compute the
sample variance by using the formula (7).

	 Finally, we return the largest of the computed sample
variances as



.

It is shown that we end up with � �32  � � � ����� � sample
variances.

Here also, computing
	

and



can be done in con-
stant time, and selecting the largest of ����� � variances re-
quires linear time ���	� � for non-quantum computations and
��� � � � time for quantum computing.

7 Can Quantum Computers Be Still Useful
When There Are Not Yet Enough Qubits?

Formulation of the problem. In view of the great poten-
tial for computation speedup, engineers and physicists are
actively working on the design of actual quantum comput-
ers. There already exist working prototypes: e.g., a sev-
eral mile long communication system, with simple quantum
computers used for encoding and decoding, is at govern-
ment disposal. Microsoft and IBM actively work on design-
ing quantum computers. However, at present, these comput-
ers can only solve trivial instances of the above problems,
instances that have already been efficiently solved by non-
quantum computers. Main reason: the existing quantum
computers have only a few qubits, while known quantum
algorithms require a lot of qubits. For example, Grover’s
algorithm requires a register with 4 � /3041 � � � qubits for a
search in a database of � elements.

Of course, while we only have 2 or 3 or 4 qubits, we can-
not do much. However, due to the active research and de-
velopment in quantum computer hardware, we will (hope-
fully) have computers with larger number of qubits reason-
ably soon.

A natural question is: while we are still waiting for the
qubit register size that is necessary to implement the exist-
ing quantum computing algorithms (and thus, to achieve the
theoretically possible speedup), can we somehow utilize the
registers of smaller size to achieve a partial speed up?

In this section, we start answering this question by show-
ing the following: for quantum search, even when we do not
have enough qubits, we can still get a partial speedup; for
details, see [13]. The fact that we do get a partial speedup
for quantum search makes us hope that even when we do
not have all the qubits, we can still get a partial speedup for
other quantum computing algorithms as well.

Grover’s algorithm: result. Let us assume that we are
interested in searching in an unsorted database of � ele-
ments, and that instead of all /%021 � � � qubits that are nec-
essary for Grover’s algorithm, we only have, say 90% or
50% of them. To be more precise, we only have a register
consisting of � � �  /3041 � � � qubits, where ( � � � � .
How can we use this register to speed up the search?

Grover’s algorithm enables us to use a register with �
qubits to search in a database of � � �35

elements in time



�  � � . For our available register, � � �  /3041 � � � , hence
� � � 5 � � �

, so we can use Grover’s algorithm with
this qubit register to search in a database of size

� �

in time
�  � � � �  � � � � .

To search in the original database of size
�

, we can do
the following:

	 divide this original database into
� � � �

pieces of size� �

; and then

	 consequently apply Grover’s algorithm with a given
qubit register to look for the desired element in each
piece.

Searching each piece requires �  � � � � steps, so the se-
quential search in all

� � � �

pieces requires time
� � � �  

� �  � � � � � � �  � � � � � � . Since � 1 ( , we get a speedup.
When � tends to 0, the computation time tends to �  � ,

i.e., to the time of non-quantum search; when � tends to 1,
the computation time tends to �  � ��� � , i.e., to the time of
quantum search.

Acknowledgments.

This work was supported in part by NASA grant NCC5-
209, by the AFOSR grant F49620-00-1-0365, by NSF
grants EAR-0112968 and EAR-0225670, by the ARL grant
DATM-05-02-C-0046, by a research grant from Sandia Na-
tional Laboratories as part of the Department of Energy Ac-
celerated Strategic Computing Initiative (ASCI), and by the
IEEE/ACM SC2001 and SC2002 Minority Serving Institu-
tions Participation Grants.

One of the authors (V.L.) is thankful to Bart Kosko for
valuable discussions.

References

[1] G. Brassard, P. Hoyer, and A. Tapp. Quantum count-
ing. In: Proc. 25th ICALP, Lecture Notes in Computer
Science, Vol. 1443, Springer, Berlin, 1998, 820–831.

[2] C. Dürr and P. Hoyer, A quantum algorithm for finding
the minimum, 1996; LANL arXiv:quant-ph/9607014

[3] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and
M. Aviles, Computing Variance for Interval Data is NP-
Hard, ACM SIGACT News 33(2):108–118, 2002.

[4] S. Ferson, L. Ginzburg, V. Kreinovich, and M. Aviles,
Exact Bounds on Sample Variance of Interval Data, Ab-
stracts of 2002 SIAM Workshop on Validated Comput-
ing, Toronto, Canada, May 23–25, 2002, 67–69.

[5] L. Grover, A fast quantum mechanical algorithm for
database search, Proc. 28th ACM Symp. on Theory of
Computing, 1996, 212–219.

[6] L. K. Grover, Quantum mechanics helps in searching
for a needle in a haystack, Phys. Rev. Lett., 79(2):325–
328, 1997.

[7] L. Grover, A framework for fast quantum mechanical
algorithms, Phys. Rev. Lett. 80:4329–4332, 1998.

[8] S. Heinrich, Quantum summation with an application
to integration, J. Complexity 18(1):1–50, 2002.

[9] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Ap-
plied Interval Analysis, with Examples in Parameter
and State Estimation, Robust Control and Robotics,
Springer-Verlag, London, 2001.

[10] R. B. Kearfott, Rigorous Global Search: Continuous
Problems, Kluwer, Dordrecht, 1996.

[11] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic:
Theory and Applications, Prentice Hall, Upper Saddle
River, NJ, 1995.

[12] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Com-
putational complexity and feasibility of data processing
and interval computations, Kluwer, Dordrecht, 1997.

[13] L. Longpré and V. Kreinovich, Can Quantum Com-
puters Be Useful When There Are Not Yet Enough
Qubits?”, Bull. European Association for Theoretical
Computer Science (EATCS), 79:164–169, 2003.

[14] R. E. Moore, Methods and Applications of Interval
Analysis, SIAM, Philadelphia, 1979.

[15] A. Nayak and F. Wu, The quantum query complex-
ity of approximating the median and related statistics,
Proc. Symp. on Theory of Computing STOC’99, May
1999, 384–393.

[16] H. T. Nguyen and E. A. Walker, First Course in Fuzzy
Logic, CRC Press, Boca Raton, FL, 1999.

[17] M. A. Nielsen and I. L. Chuang, Quantum computa-
tion and quantum information, Cambridge University
Press, Cambridge, U.K., 2000.

[18] E. Novak, Quantum Complexity of integration,
J. Complexity, 17:2–16, 2001.

[19] S. Rabinovich, Measurement Errors: Theory and
Practice, American Institute of Physics, N.Y., 1993.

[20] R. Trejo and V. Kreinovich, Error Estimations for Indi-
rect Measurements: Randomized vs. Deterministic Al-
gorithms. In: S. Rajasekaran et al. (eds.), Handbook on
Randomized Computing, Kluwer, 2001, 673–729.

[21] H. M. Wadsworth, Jr. (ed.), Handbook of statisti-
cal methods for engineers and scientists, McGraw-Hill
Publishing Co., N.Y., 1990.


