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Abstract

Geospatial databases generally consist of measurements
related to points (or pixels in the case of raster data), lines,
and polygons. In recent years, the size and complexity of
these databases have increased significantly and they often
contain duplicate records, i.e., two or more close records
representing the same measurement result. In this paper, we
use fuzzy measures to address the problem of detecting du-
plicates in a database consisting of point measurements. As
a test case, we use a database of measurements of anoma-
lies in the Earth’s gravity field that we have compiled. We
show that a natural duplicate deletion algorithm requires
(in the worst case) quadratic time, and we propose a new
asymptotically optimal O(n-log(n)) algorithm. These algo-
rithms have been successfully applied to gravity databases.
We believe that they will prove to be useful when dealing
with many other types of point data.

1. General Introduction

The current state of remote sensing technology enables
us to acquire huge amount of geospatial data. Moreover,
the rate with which we acquire geospatial data is constantly
increasing: for example, geospatial satellites of a new gen-
eration produce images in several hundred wavelengths as
opposed to seven wavelengths for Landsat satellites. As a
result, the rate of data acquisition is much higher than the
rate with which we are able to analyze this data.

One of the natural approaches to solving this problem
is to take into account the experience of experts—geologists
and geophysicists—in processing the geospatial data. When
the experts analyze a region, they consider data about
this region coming from different sources—gravity mea-
surements, magnetic measurements, terrestrial geophysical
measurements—and combine (“fuse”) this data into a single

geological map. Therefore, to be able to process all avail-
able geospatial data, it is desirable to design a computer-
based system with the ability to fuse all this data.

There exist many useful data fusion techniques; some
of these techniques—e.g., statistical methods of data fusion—
come from the detailed mathematical analysis of the corre-
sponding problems. However, since the main objective of
our particular data fusion application is to emulate the ex-
perts, we strongly believe that a more prospective approach
is to take into consideration experts’ uncertainty and use
techniques that have been specifically designed to handle
this uncertainty—the techniques of fuzzy logic.

Fuzzy techniques have been actively used in data fu-
sion, in particular, in data fusion of geospatial images.
The traditional use of fuzzy techniques is usually based on
fuzzy logic operations, operations that have been designed
to combine (“fuse™) two sources of data. It is, in princi-
ple, possible to apply this fusion several times and thus
get a fusion of multiple data sources. It is desirable to
use more recent fuzzy techniques specifically designed for
fusing multiple sources—techniques based on fuzzy (non-
additive) measures—the fuzzy generalizations of the tradi-
tional mathematical notion of measure.

2. Case Study: Geoinformatics Motivation for
the Problem

Geospatial databases: general description.  In many ap-
plication areas, researchers and practitioners have collected
a large amount of geospatial data. For example, geophysi-
cists measure values d of the gravity and magnetic fields,
elevation, and reflectivity of electromagnetic energy for a
broad range of wavelengths (visible, infrared, and radar) at
different geographical points (z,y); see, e.g., [18]. Each
type of data is usually stored in a large geospatial database
that contains corresponding records (z;,y;,d;). Based on
these measurements, geophysicists generate maps and im-



ages and derive geophysical models that fit these measure-
ments.

Gravity measurements. case study. In particular, grav-
ity measurements are one of the most important sources of
information about subsurface structure and physical condi-
tions. There are two reasons for this importance. First,
in contrast to more widely used geophysical data like re-
mote sensing images, that mainly reflect the conditions of
the Earth’s surface, gravitation comes from the whole Earth
(e.g., [9, 10]). Thus gravity data contain valuable informa-
tion about much deeper geophysical structures. Second, in
contrast to many types of geophysical data, which usually
cover a reasonably local area, gravity measurements cover
broad areas and thus provide important regional informa-
tion.

The accumulated gravity measurement data are stored at
several research centers around the world. One of these
data storage centers is located at the University of Texas
at El Paso (UTEP). This center contains gravity measure-
ments collected throughout the United States and Mexico
and parts of Africa.

The geophysical use of gravity database compiled at
UTEP is illustrated for a variety of scales in [1, 3, 6, 8, 11,
16, 19, 20].

Duplicates. where they come from. One of the main
problems with the existing geospatial databases is that
they are known to contain many duplicate points (e.g.,
[7, 13, 17]). The main reason why geospatial databases
contain duplicates is that the databases are rarely formed
completely “from scratch”, and instead are built by com-
bining measurements from numerous sources. Since some
measurements are represented in the data from several of
the sources, we get duplicate records.

Why duplicates are a problem. Duplicate values can
corrupt the results of statistical data processing and analy-
sis. For example, when instead of a single (actual) measure-
ment result, we see several measurement results confirming
each other, and we may get an erroneous impression that
this measurement result is more reliable that it actually is.
Detecting and eliminating duplicates is therefore an impor-
tant part of assuring and improving the quality of geospatial
data, as recommended by the US Federal Standard [5].

Description in terms of a fuzzy (non-additive) measure.
It is difficult to describe duplicates in probabilistic terms. A
natural description is as follows: for any set of records S,
we define D(.S) as 1if S contains duplicates, and O if it does
not. When we combine two duplicate-free databases S; and
Sy (with D(S1) = D(S2) = 0) into a single database

S1 U Ss, then, if S; and Sy share a record, will have
D(Sl U 52) =1> D(Sl) + D(Sz) =0,

i.e., D is indeed a non-additive (fuzzy) measure.

Duplicates correspond to interval uncertainty. In the
ideal case, when measurement results are simply stored in
their original form, duplicates are identical records, so they
are easy to detect and to delete. In reality, however, differ-
ent databases may use different formats and units to store
the same data: e.g., the latitude can be stored in degrees
(as 32.1345) or in degrees, minutes, and seconds. As a re-
sult, when a record (z;, s, d;) is placed in a database, it is
transformed into this database’s format. When we combine
databases, we may need to transform these records into a
new format — the format of the resulting database. Each
transformation is approximate, so the records represent-
ing the same measurement in different formats get trans-
formed into values which correspond to close but not iden-
tical points (x;,y;) # (x;,y;). Usually, geophysicists can
produce a threshold e > 0 such that if the points (z;, y;) and
(zj,y;) aree-close—i.e., if |z; —z;| <eand|y; —y;| < ¢
— then these two points are duplicates.

=]

In other words, if a new point (x;,y;) is within a 2D inter-
val [z; — e, z; + €] x [y; — €,y; + €] centered at one of the
existing points (z;, y;), then this new point is a duplicate:

If the two points are duplicates, we should delete one of
these two points from the database. Since the difference be-
tween the two points is small, it does not matter much which
of the two points we delete. In other words, we want to
continue deleting duplicates until we arrive at a “duplicate-
free” database. There may be several such duplicate-free
databases, all we need is one of them.



Duplicatesarenot easy to detect and delete. At present,
the detection and deletion of duplicates is done mainly “by
hand”, by a professional geophysicist looking at the raw
measurement results (and at the preliminary results of pro-
cessing these raw data). This manual cleaning is very time-
consuming. It is therefore necessary to design automated
methods for detecting duplicates.

If the database was small, we could simply compare ev-
ery record with every other record. This comparison would
require n(n — 1)/2 ~ n?/2 steps. Alas, real-life geospa-
tial databases are often large, they may contain up to 108
or more records; for such databases, n? /2 steps is too long.
We need faster methods for deleting duplicates.

From interval to fuzzy uncertainty. Sometimes, instead
of a single threshold value &, geophysicists provide us with
several possible threshold values ey < g3 < ... < &, that
correspond to decreasing levels of their certainty:

o if two measurements are within £; from each other,
then we are 100% certain that they are duplicates;

e if two measurements are within 5 from each other,
then with some degree of certainty, we can claim them
to be duplicates,

e if two measurements are within €5 from each other,
then with an even smaller degree of certainty, we can
claim them to be duplicates,

e efc.

In this case, we must eliminate certain duplicates, and mark
possible duplicates (about which are not 100% certain) with
the corresponding degree of certainty.

In this case, for each of the coordinates x and y, instead
of asingle interval [z; — e, z; + €], we have a nested family
of intervals [z; — ¢, z; + ;] corresponding to different de-
grees of certainty. Such a nested family of intervals is also
called a fuzzy set, because it turns out to be equivalent to a
more traditional definition of fuzzy set [2, 12, 14, 15] (if a
traditional fuzzy set is given, then different intervals from
the nested family can be viewed as a-cuts corresponding to
different levels of uncertainty «).

In these terms, in addition to detecting and deleting du-
plicates under interval uncertainty, we must also detect and
delete them under fuzzy uncertainty.

What we are planning to do. In this paper, we propose
methods for detecting and deleting duplicates under inter-
val and fuzzy uncertainty, and test these methods on our
database of measurements of the Earth’s gravity field.

3. Geospatial Databases: Brief Introduction

Geospatial databases: formal description. In accor-
dance with our description, a geospatial database can be
described as a finite set of records r4, . . . , r,, €ach of which
is a triple r; = (z;,y;,d;) consisting of two rational num-
bers z; and y; that describe coordinates and some additional
data d;.

The need for sorting. One of the main objectives of a
geospatial database is to make it easy to find the information
corresponding to a given geographical area. In other words,
we must be able, given one or two coordinates (z and/or
y) of a geographical point (center of the area of interest),
to easily find the data corresponding to this point and its
vicinity.

It is well known that if the records in a database are not
sorted by a parameter a, then in order to find a record with a
given value of q, there is no faster way than linear (exhaus-
tive) search, in which we check the records one by one until
we find the desired one. In the worst case, linear search re-
quires searching over all n records; on average, we need to
search through n/2 records. For a large database with thou-
sands and millions of record, this takes too much times.

To speed up search, it is therefore desirable to sort the
records by the values of a, i.e., to reorder the records in
such a way that the corresponding values of a are increas-
ing: a1 <as <...<ay,.

Once the records are sorted, instead of the time-
consuming linear search, we can use a much faster binary
search (also known as bisection). At each step of the bi-
nary search, we have an interval a; < a < a,. We start
with/ = 1 and v = n. On each step, we take a mid-
point m = |(I + w)/2] and check whether a < a,. If
a < an, then we have a new half-size interval [a;, am-1];
otherwise, we have a half-size interval [a,,, a,] containing
a. Inlog,(n) steps, we can thus locates the record corre-
sponding to the desired value of a.

How to Sort: Mergesort Algorithm. Sorting can be
done, e.g., by mergesort — an asymptotically optimal sort-
ing algorithm that sorts in O(n-log(n)) computational steps

(see, e.g., [4]).

4. The Problem of Deleting Duplicates: Ideal
Case of No Uncertainty

To come up with a good algorithm for detecting and
eliminating duplicates in case of interval uncertainty, let
us first consider an ideal case when there is no uncer-
tainty, i.e., when duplicate records r; = (x;,v:,d;) and



r; = (x;,y;,d;) mean that the corresponding coordinates
areequal: z; = z; and y; = y;.

In this case, to eliminate duplicates, we can do the fol-
lowing. We first sort the records in lexicographic order, so
that r; goes before r; if either z; < z;, or z; = z; and
yi < yj;. Inthis order, duplicates are next to each other.

So, we first compare r; with r,. If coordinates in r, are
identical to coordinates in r1, we eliminate r, as a duplicate,
and compare r; with r3, etc. After the next element is no
longer a duplicate, we take the next record after ; and do
the same for it, etc.

After each comparison, we either eliminate a record as a
duplicate, or move to a next record. Since we only have n
records in the original database, we can move only n steps
to the right, and we can eliminate no more than n records.
Thus, totally, we need no more than 2n. comparison steps to
complete our procedure.

Since 2n is asymptotically smaller than the time n -
log(n) needed to sort the record, the total time for sorting
and deleting duplicates is n-log(n) +2n ~ n-log(n). Since
we want a sorted database as a result, and sorting requires
at least n - log(n) steps, this algorithm is asymptotically op-
timal.

5 Interval Modification of the Above Algo-
rithm: Description, Practicality, Worst-
Case Complexity

In the previous section, we described how to eliminate
duplicates in the ideal case when there is no uncertainty.

In real life, as we have mentioned, there is an interval
uncertainty. A natural idea is therefore to modify the above
algorithm so that it detects not only exact duplicate records
but also records that are within ¢ of each other.

In precise terms, we have a geospatial database
(ri,...,rn), where r; = (x;,v;,d;), and we are also
given a positive rational number . We say that records
ri = (24,9, d;) and r; = (z;,y;,d;) are duplicates (and
denote it by r; ~ ;) if |z; — z;| < eand|y; —y;| <e.

We say that a subset of the database is obtained by a
cleaning step if:

e it is obtained from the original database by selecting
one or several different pairs of duplicates and deleting
one duplicate from each pair, and

o from each duplicate chainr; ~ r; ~ ... ~ ry, at least
record remains in the database after deletion.

A sequence of cleaning steps after which the resulting sub-
set is duplicate-free (i.e., does not contain any duplicates) is
called deleting duplicates.

The goal is to produce a (duplicate-free) subset of the
original database obtained by deleting duplicates — and to
produce it sorted by z; (and double-sorted by y).

Similarly to the ideal case of no uncertainty, to avoid
comparing all pairs (r;,7;) — and since we need to sort
by x; anyway — we first sort the records by z, so that
1 < xy < ... < =z,. Then, first we detect and delete
all duplicates of 71, then we detect and delete all duplicates
of o (r1 is no longer considered since its duplicates have
already been deleted), then duplicates of r3 (r; and r, are
no longer considered), etc.

For each i, to detect all duplicates of r;, we check r;
for the values j = ¢+ 1,¢ 4+ 2,... while z; < z; + €.
Once we have reached the value j for which z; > z; + ¢,
then we can be sure (since the sequence z; is sorted by x)
that z, > =z; + ¢ for all ¥ > j and hence, none of the
corresponding records 7y, can be duplicates of r;.

While z; < z; + ¢, we have z; < z; < x; + € hence
|z; — x;| < e. So, for these j, to check whether r; and r;
are duplicates, it is sufficient to check whether |y; —y;| < e.

Thus, the following algorithm solves the problem of
deleting duplicates:

Algorithm 1.
1. Sortthe records by z;, sothatz; < zs < ... < z,.
2. Forifrom1ton — 1, do the following:

forj=i+1,i+2,...,whilez; <z+e
if ly; — yi| < e, delete r;.

For the gravity database, this algorithm works reasonably
well, but we cannot be sure that it will always work well, be-
cause its worst-case complexity is still n(n — 1)/2. Indeed,
if all » records have the same value of z;, and all the values
y; are drastically different (e.9., y; = y1 +2- (i — 1) - &),
then the database is duplicate-free, but the above algorithm
requires that we compare all the pairs.

For gravity measurements, this is, alas, a very realis-
tic situation, because measurements are sometimes made
when a researcher travels along a road and makes measure-
ments along the way — and if the road happens to be vertical
(x =~ const), we end up with a lot of measurements corre-
sponding to very close values of z.

We therefore need a faster algorithm for deleting dupli-
cates.

6. New Algorithm: Description, Complexity

The following algorithm starts with a database of records
r; = (x4,--.,Ys,d;) (not necessarily 2-dimensional) and a
number ¢ > 0 and deletes duplicates faster:



Algorithm 2.

1. For each record, compute the indices p; =

L:Ei/EJ,...,qi = I_.’L'z/EJ

2. Sort the records in lexicographic order < by their
index vector g; = (pi,...,q:). If several records
have the same index vector, keep only one of
these records and delete others as duplicates. As
a result, we get an index-lexicographically list of
records: r(;) < ... < rgy), Wwhere m < n.

3. Fori from 1 to n, we compare the record r; with
its immediate neighbors; if one of the immediate
neighbors is a duplicate to r(;), then we delete this
neighbor.

Let us describe Part 3 in more detail. By an immediate
neighbor to a record r; with an index vector (p;,...,q),
we mean a record ; for which the index vector ; # pj; has
the following two properties:

e p; < pj, and

o foreach index, p; € {p; —1,pi,pi +1},...,and g; €
{QZ - 17%’;%‘ + 1}

It is easy to check that if two records are duplicates, then
indeed their indices can differ by no more than 1, i.e., the
differences Ap qef Pj —DPi,-- ., Aq def g; — g; between the
indices can only take values —1, 0, and 1. To guarantee that
P; > Ps in lexicographic order, we must make sure that the
first non-zero term of the sequence (Ap, ..., Aq) is 1.
Overall, there are 3¢ sequences of —1, 0, and 1, where by
d, we denoted the dimension of the vector (z,...,y). Out

of these vectors, one is (0, ..., 0), and half of the rest — to

be more precise, Ny def (3¢ —1)/2 of them — correspond to

immediate neighbors.

To describe all immediate neighbors, during Step 3,
for each 7 and for each of N, difference vectors d =
(Ap,...,Aq), we keep the indexj(ci i) of the first record
r(;) forwhich gy > p;) +cf(here, > means lexicographic
order). Then:

o Ifpijy =Py + d, then the corresponding record ;)
is indeed an immediate neighbor of r(;), so must check
whether it is a duplicate.

o If Py > Py + d, then the corresponding record ;)
is not an immediate neighbor of r;), so no duplicate
check is needed.

We start with j(cf, 0) = 1 corresponding to 7 = 0. When
we move from i-th iteration to the next (i + 1)-th iteration,
then, since the records r ;) are lexicographically ordered,

for each of N, vectors d, we have j(d,i + 1) > j(d, ).

Therefore, to find j(d,i + 1), it is sufficient to start with
j(d,4) and add 1 until we get the first record ;) for which
Bj) 2 Pty +d.

The following result show that this algorithm is indeed
asymptotically optimal:

Proposition 1. Algorithm 2 requires O(n - log(n)) steps
in the worst case, and no algorithm with asymptotically
smaller worst-case complexity is possible.

Proof. Algorithm 2 consists of a sorting—which requires
O(n - log(n)) steps—and the main Part 3. During this part,
for each of IV, vectors d, we move the corresponding index
j one by one from 1 to m < n; for each value of the index,
we make one or two comparisons. Thus, for each vector d,
we need O(n) comparisons.

For a fixed dimension d, there is a fixed number N,
of vectors d, so we need the total of N - O(n) = O(n)
computational steps. Thus, the total time of Algorithm 2 is
O(n) + O(n -log(n)) = O(n - log(n)).

On the other hand, since our problem requires sorting,
we cannot solve it faster than in O(n - log(n)) steps that are
needed for sorting [4]. Proposition is proven.

7. Deleting Duplicates Under Fuzzy Uncer-
tainty

As we have mentioned, in some real-life situations, in
addition to the threshold ¢ that guarantees that ve-close data
are duplicates, the experts also provide us with additional
threshold values ; > e for which e;-closeness of two data
points means that we can only conclude with a certain de-
gree of certainty that one of these data points is a dupli-
cate. The corresponding degree of certainty decreases as
the value ¢; increases.

In this case, in addition to deleting records that are ab-
solutely certainly duplicates, it is desirable to mark possible
duplicates — so that a professional geophysicist can make
the final decision on whether these records are indeed du-
plicates.

A natural way to do this is as follows:

o First, we use the above algorithm to delete all the cer-
tain duplicates (corresponding to €).

e Then, we use the same algorithm to the remaining
records and mark (but not actually delete) all the du-
plicates corresponding to the next value 5. The re-
sulting marked records are duplicates with the degree
of confidence corresponding to e5.

o After that, we apply the same algorithm with the value
€3 to all unmarked records, and mark those which the
algorithm detects as duplicates with the degree of cer-
tainty corresponding to e3,



e efc.

In other words, to solve a fuzzy problem, we solve several
interval problems corresponding to different levels of uncer-
tainty. It is worth mentioning that this “interval” approach
to solving a fuzzy problem is in line with many other algo-
rithms for processing fuzzy data; see, e.g., [2, 12, 14, 15].
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