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Abstract

One of the most efficient non-destructive techniques for
finding hidden faults in a plate is the use of ultrasonic Lamb
waves. These waves are reflected by faults, and from this re-
flection, we can locate the faults. For that, we need to know
how the Lamb waves propagate. Their propagation is de-
termined by the dynamic elastic constants Cj,,, so we must
find these constants. These constants cannot be measured
directly; instead, we measure the dependence of the speed
on frequency c(f), and we must reconstruct C},, from the
measured values of ¢(f). In this paper, we show how this
can be done in the presence of probabilistic, interval, and
fuzzy uncertainty.

1. Formulation of the Problem

Composite materials are very important. Engineers of-
ten use composites, i.e., materials obtained by combining
several layers of different materials. Composites are be-
coming main materials for aerospace and submarine ap-
plications, where, e.g., an internal layer provides struc-
tural strength while the outside layer guarantees protection
against the surrounding media.

To apply non-destructive testing to materials, we must
know their elastic characteristics. Since composite ma-
terials are often intended for use in dangerous environments
it is important to periodically test the structural integrity
of the corresponding structures. For example, we send an
ultrasonic wave into the corresponding structure and see
whether any faults are causing the wave to differ fromits in-
tended path. To reconstruct the faults from the resulting sig-
nal, we must know how the sound propagates in this plate.
This propagation is determined by the dynamic elastic con-
stants Cy, .

paragraphWe must determine elastic characteristics from
the dispersion curve. In view of the intended use, a reason-
able way to measure these constants is by measuring how
the ultrasound waves propagate in this composite material,
and to reconstruct the values C,, from the results of these
measurements.

In the absence of faults, a wave travels in a straight line,
so the only information we can get is the wave’s velocity ¢
at different frequencies f; the dependence ¢(f) is called a
dispersion curve.

There is a known algorithm ¢(f, C;,, ) that describes how
c(f) depends on C7,,; see below. We must therefore recon-
struct C;,, by solving the system of equations c(f,C},) =
¢(f) for measured values ¢(f).

There exist methods for reconstructing the elastic con-
stants from the dispersion curve c¢(f) (see, e.g., [3]), but
these methods assume that we can measure the velocity ¢
for frequencies up to 8 MHz. Experiments with such high-
frequency ultrasound are very difficult and expensive, so it
is desirable to find out what we can compute based on a
more easily accessible measurements for f < 2 MHz.

Why probabilistic, interval, and fuzzy uncertainty.
Uncertainty comes from the fact that the values ¢(f) come
from measurements, and measurements are never 100% ac-
curate:

e there is a random measurement error component,
which corresponds to a probabilistic uncertainty; see,
e.g., [11];

o there are known bounds on a systematic error com-
ponent, which correspond to interval uncertainty; see,
e.g., [2 4, 6];

e in addition to these bounds in which experts are abso-
lutely sure, experts have smaller bounds with reason-
able but not absolute certainty; these bounds are natu-
rally described by fuzzy techniques; see, e.g., [1, 5, 10].



2. Case Study:
| sotropic Material

Monoclinic Transverse

Let us first recall how the dispersion curve depends on
the elastic constants; this dependence is described, e.g., in
[8] (see also [7]).

In elastic materials, usually, stress o;; is linearly related
to strain e}, i.e.,

3 3
1 ! i
O35 = E , § Cijkl * Ukl> (1)

k=11=1

where ¢}, are constants called elastic material constants.

From the purely mathematical viewpoint, we can have
3x3x3x3x3= 81 different constants c;,,,. Due to phys-
ical arguments like energy conservation law, we must have
a relation between these coefficients, e.g., i, = ¢y =
Ciakt = Ciju- A good way to take these relations into con-
sideration is to consider pairs of coordinates (i, j) instead
of single coordinates. In general, there are 3 x 3 = 9 pos-
sible pairs, but since ¢’ does not change if we swap 7 and j,
it is sufficient to only consider pairs for which ¢ < j. These
are six such pairs: 11, 22, 33, 23, 13, and 12. These pairs
are usually numbered so that 11 < 1, 22 < 2, 33 < 3,
23 & 4,13 & 5,12 + 6. In these terms, each value
c; 1 1S described as Cj,,, where p corresponds to 45 and ¢
corresponds to kl. For example, ¢}, becomes Cig. Thus,
the elastic material constants form a 6 x 6 matrix. Since
Ciiki = Cpaij» We conclude that €, = Cy,, i.e., the matrix
C,, 1s symmetric.

In general, we need 6 - (6 + 1)/2 = 21 parameters to
describe a general symmetric 6 x 6 matrix. Most materi-
als, however, have additional symmetry that enables us to
further restrict the number of parameters.

In this paper, we consider the case when the material
is monoclinic and transverse isotropic. Monoclinic means
that Oz, is a plane of mirror symmetry, and transverse
isotropic means that the x| axis is orthogonal to the plane
of isotropy. In this case, we have only five independent con-
stants: C1;, C1y, Chs, Chs, and CL,. Once we know these
constants, we can reconstruct the entire matrix C,,, as fol-
lows:

Cis C3 Ciy 0 0 0
Cis C3 Ciy 0 0 0

r Y 2
0 0 0 Cor — Cg 5 Cas 0 0 @)
0O 0 0 0 Cl 0
0O 0 0 0 0 Ci

Let ¢ denote the angle between the direction of the wave
and the zj axis. It turns out that it is convenient to use an
auxiliary orthogonal coordinate system x1, 22, 23 in which

x3 is the same but 1 and z, are obtained from z} and z,
by a rotation by the angle . The corresponding coordinate

3
transformation can be described as z; = Z Bij - @'y, where

7j=1
cos(p) sin(p) 0

Bij = | —sin(p) cos(p) 0 |. @)
0 0 1

The values of the elastic coefficients in the new coordinates
can be determined as

3 3 3 3
i =D, Y > Y Bivr B -Brw B -caryrrnr- (4)

i'=1j'=1k'=10'=1

Let us now describe the formulas for finding ¢(f). Letd
denote the thickness of the plate, p the density. Then, for a
symmetric wave, the ratio

efCU‘d

Y= 9. ®)

=%

where w & 27 . f is an angular frequency, satisfies the

equation

D1 -Gy - COt(’}/ . 041) + D13 -Gs - COt(’Y . Oé3)+

D5 -Gs - cot(y-as) =0, (6)
where
G1 % Dy - Dss — Das - Das, ()
G3 ' Dy - Das — Doy - Das, ®)
G5 ® Dyy - Dss — Dy - Das, 9)
Dy, ' Cs + Cag Vg +Cs3-aq - W, (10)
def

ng = (s - (Oéq + Wq) + Cys - Qg - le (11)
D3, e Cus - (ag + Wy) + Cas - g - Vg, (12)

v def Ki1(ag) - Kaz(ay) — Ki2(ay) - Kiz(ay) (13)
17 Kis(ag) - Kaa(ag) — Kia(ag) - Kas(ag)’

. der Kui(ag) - Kas(ag) — Kiz(aq) - Kis(ayg) (14)
1 Kis(ay) - Kss(ag) — Kag(ag) - Kiz(a,)’

Ku(a) déf Ci — p- c + Css - Oé2, (15)

Kiz(a) ¥ Cig + Cus - o2, (16)

Ki3(a) ¥ (Cis + Css) - 7

K (a) ™ Cog — p-* + Cu - 2, (18)

Kos(a) 2 (Cs6 + Cis) - a, (19)

Ks3(a) 4 Oy — p-c+Cs3-a’, (20)



and o are the roots of the equation
ab+ A0+ 4 0®+A45=0, (21)
ordered in such a way that
g = —Q, 04 = —03, Qg = —Qs, (22)

and
A - A Oy O Ca = Oy - Caa +2C13 - Csg - Cug—
2C13 - Cusg - Cs5 + 2C13 - Ci5 — 2C16 - Caz - Cas+
Css - Css - Cog — Cg - Css—

(C33 - Caqg + C33 - Cs5 + Cyg - Cs5 — Cfs) -p-c%, (23)
A+ A E Oy - Cs3 - Cog — Crr - C — 2011 - Csg - Cas—
Ch1 - Cus - Cs5 — Ch1 - Oy — Cfy - Cog+
2C13 - Ci6 - C36 + 2013 - Css - Co6—

C% - C33 + 2C16 - C36 - Cs5—
(C11-Cs33+Cy1 - Cag — C123 —2C3-Cs5) - p -+
(—Ci6 - Cu5 + Cs3 - Cg6 — 0326 —2C36-Cys) - p- +
(Cas - Cs5 — Ci5 + Cs5 - Ceg) - p -+

(Cs3 + Cuaa + Cs3) - p* - %, (24)
A3 - A Cyy - Css - Cos — C2 - Css—
(C11 - Cs5 + C11 - Ces + Cig + Css - Ceg) - p- €+
(Ci1+ Cs5 + Ceg) - p* - ¢ = p* - 5, (25)

A Y Cy3-Cuy - Cs5 — Caz - C2. (26)

3. Forward Problem: Auxiliary Algorithm

Why forward problem. Our objective is to find the elas-
tic constants C;,, that explain the observed dispersion curve
¢(f). To achieve this objective, we must be able, given the
constants C;,, to determine the corresponding dispersion
curve.

In terms of applied mathematics, in order to solve the
inverse problem of finding Cj,, from ¢(f), we must first be
able to solve the forward problem: given C,,, find c(f).

Even solving this forward problem is not easy because
the above formulas only provide us with an implicit relation
between C},, and ¢(f). Itis, however, possible to extract an

algorithm from the above formulas.

Natural idea. A seemingly natural idea is, given f, to
determine ¢ for this f. Then, when we repeat the corre-
sponding computations for different values f = f~ =~ 0,
f=f"+Af, f=f"+2Af, ..., ft =2MHz, we get
the desired dispersion curve. This was the first algorithm
we implemented.

Limitations of the natural idea. It turns out that, due to
implicitness of the above relations, this algorithm requires
solving a lot of implicit equations and runs for hours on a
PC.

New idea. It turns out that we get a much faster algorithm
for reconstructing a dispersion curve (which runs for min-
utes instead of hours) if we start with different values of
velocity ¢ = ¢7, ¢ = ¢~ + Ag, ..., ¢ = ct, and look
for frequencies that correspond to these different values of
velocity. For f < 2 MHZ, the velocity range [¢—,c*] is
usually between 1 and 4 km/sec.

Input to the forward algorithm. The input to the new
algorithm consists of:

o the constants C4,, C,, Cbsy, Chs, and Cly;

o the density p;

¢ the angle ¢; and

o the velocity c.
New algorithm: description. The algorithm consists of
the following steps:

1. compute §;; by using the formula (3);

2. compute all the elements of the matrix Cj,, by using
the formula (2);

3. compute the values Cy,, by using the formula (4);
4. compute A by using the formula (26);

5. compute the values A;, A, and A3 by using the for-
mulas (23)-(25);

6. solve the equation (21); we use NSolve program from
the Mathematica package; this program produces six
rootsri,...,rs;

7. order the roots so that they satisfy the property (22);
for this, we do the following:
e as ay, we take rq;
e as ay, We take —rq;

e as as, we take the first of the values r; that is
different from ry and —rq;

e as ay, We take —ags;

e as asx, we take the first of the values r; that is
different from =« and +as;

e as ag, We take —as.



8. for each of the six roots a;y,...ag, We compute the
following:

e we compute K,,,(ay) by using the formulas
(15)-(20);
e we compute V, and W, by using the formulas
(13)-(14);
e we compute D;, by using the formulas (10)—
(12);
9. then, we compute G; by using the formulas (7)-(9);

10. next, we solve the equation (6) with the unknown ~;
for this, we also use a Mathematica equation solver;

11. based on ~y, we reconstruct w as (2c¢ - y)/d and then f
asw/(2m).

Interpolation leads to a dispersion curve. Once we
know the values f(c™), f(¢c™ + Ac¢), ..., f(c” + k- Ac),
..., corresponding to different ¢, then, for a given f, we can
find ¢(f) as follows:

o first, by using bisection, we find & for which
flem+k-Af) > f> flc +(k+1)-Ac); (27)

e we can now use the linear interpolation on the interval
[flce+Ek-Af), f(c” + (k+1)-Ac)] and determine
the value ¢ corresponding to f as follows:

- for f = f(¢™ + k- Af), we have
c(fy=c +k-Af);
- for f = f(c” + (k+1)- Af), we have
c(fy=c +(k+1)-Af);
therefore,
c=c¢ +k-Act
f—fle +k-Ac)
flee+(k+1)-Ac)— flc-+k-Ac)’

Ac- (28)

4. Inverse Problem Under Probabilistic Uncer-
tainty: Formulation and Challenges

Formulation of the problem in precise terms. We
measure the velocity for different values of frequency
f1, f2,---; based on the resulting values ¢, = ¢(f%), we
must reconstruct the parameters C;,,. In the probabilistic
setting (see, e.g., [11]), a natural idea is to use the least
squares method, i.e., to look for the values C,, for which

def .
S = Z(ck —c(fr,Cpp))? — rgi?, (29)

k

where c(f, C},,) denotes the result of the forward algorithm.

In addition to these “most probable” values C;,,, we may
also want to describe all the values that are consistent with
the given measurement results, i.e., all the values C;,, for

which
S=> (k= c(fr: Cp))* < X5 (30)
k

where the constant x depends on the measurement accu-
racy, on the number of measurements, and on the desired
confidence level.

This problem is difficult to solve. There are known
methods for solving optimization problems, starting with
the gradient techniques.

It turns out that due to a complex character of the depen-
dence c(f, C,,), the function S has a lot of local minima,
so gradient method gets stuck in them, without going to the
desired global minimum.

A known modification of gradient descent, specifically
designed for such situations, is to start several times with a
random starting point, and find the smallest of the resulting
(local) minima. Alas, the dependence ¢(f, C;,,) is so com-
plex that this modification requires up to 10,000 iterations—
and takes several days to run.

Yet another alternative is to apply exhaustive search:
choose grid so that the change from a point to the next is
smaller than the measurement error (this way, we do not
miss the correct value), and test all values C;,, from the
grid. The main problem with this approach is that is still
takes too much time.

5. Inverse Problem Under Interval and Fuzzy
Uncertainty: Formulation

Case of interval uncertainty. For interval uncertainty
(see, e.g., [2, 4, 6]), the only information that we have about
the error with which we measure velocity ¢ is the upper
bound § on this measurement error. In this case, it is natural
to look for the values C,,, for which, for every measure-
ment k,

ek = e(fr, Cpy)| < 0. (31)

Comment on interval uncertainty. In the probabilistic
approach, we know the probability of different possible val-
ues of the measurement error. As a result, it makes sense
to select a single set of values C;,, as the “most probable”
ones.

In case of interval uncertainty, we do not have any in-
formation about the relative frequency of different values of
measurement error. So, all we can do is return the interval
of possible values of each of the elastic constants, without
specifying any values within these intervals.



Case of fuzzy uncertainty. Fuzzy uncertainty corre-
sponds to the case when, in addition to the upper bound
& on the measurement error, experts provide us with sev-
eral bounds § = §; > d2 > ... > §,, that correspond to
decreasing levels of their certainty:

e an expert is 100% certain that the measurement error
is bounded by §;

e with a certain degree of certainty 8> < 100%, an ex-
pert is sure that the error cannot exceed d,;

o with a somewhat smaller degree of certainty 83 < (s,
an expert is sure that the error cannot exceed d3;

e efc.

In this case, for each possible set of elastic constants C',,
we can determine the degree & = 1 — 3 with which these
values are possible as 8 = (;, where i is the largest integer
for which

ek = c(fry Cpy)| < 0 (32)

for all measurement results ¢;.

Thus, instead of simply providing a user with the set of
all possible combinations C;,,, we provide the user, for each
combination, with a degree with which this combination is
possible. In other words, instead of a (crisp) set of possible
combinations, we get a fuzzy set.

To be more precise, we get a nested family of sets corre-
sponding to different levels of certainty; such a nested fam-
ily of sets is indeed equivalent to a more traditional defini-
tion of fuzzy set [1, 5, 10]: if a traditional fuzzy set is given,
then different sets from the nested family can be viewed as
a-cuts corresponding to different levels of uncertainty «.

6. Solution: Probabilistic and Interval Cases

What can we reconstruct? An experimental analysis.
Before designing algorithms for solving these problems, we
first decided to check whether it is possible to reconstruct
all the elastic constants C},, from the measurements of the
dispersion curve ¢(f) limited to f < 2 MHz.

To check that, for each angle ¢, we fixed the values of
all the constants but one, changed the selected C;,, from its
smallest possible value C,, to its largest possible value C},,
and checked how much this change affects ¢(f). It turns out
that for each angle, for some of the constants, the resulting
change in ¢(f) is less than 2%. Since the most accurate
measurements provide an accuracy of 2%, this means that
by measuring ¢(f) for f < 2 MHz, we cannot reconstruct
the corresponding constants Cj, .

As a result, for each angle, instead of trying to find all
five elastic constants, we fix the values of those that we can-
not determine, and only try to find the values of the remain-

ing constants.

Basis for this solution: sensitivity analysis. In the pro-
cess of determining whether each elastic constant C,, af-
fects the dispersion curve, we not only decide which con-
stants affect ¢(f) and which constants do not. For those
elastic constants that do affect ¢(f), we also get some nu-
merical information on their effect, i.e., an information on
how sensitive c¢(f) is to each of these constants.

Before solving the inverse problem, we extended this
sensitivity analysis as follows. From the literature, we se-
lected several representative combinations of elastic con-
stants. Then, for each angle ¢, and for each constant C,,,
we did the following:

o for each representative combination », we computed
the values ¢(f) with this combination and the values
c'(f) when the value of the selected constant is in-
creased by 10%;

¢ based on these computations, we computed the guar-
anteed relative effect of this constant as

def | (fk) — c(fi)l
drpg = max —— 7 (33)

for the interval case and

def L ¢(fr) = e(fu)\
Groe = | R ;( ) e

for the probabilistic case;

o we took the largest of these values: dp, 4 max dr pq-
T

The meaning of d,, is simple: if C,, changes by 10%, then
c(f) changes by < d,,; similarly, if C;,, changes by, say,
5%, then ¢(f) changes by < 0.5 - dp,, etc.

In particular, for each variable C,,,, if we go from the
center of the full range [CI;I,C;;]] of its possible values to
the entire range, we can determine the largest possible rela-
tive change c,q in ¢(f). If we allow all constants to change,

then the largest possible change in ¢(f) cannot thus exceed

def
c= E Cpq-
pq

Resulting algorithm. This algorithm is based on the
branch and bound idea well known in numerical optimiza-
tion; see, e.g., [2, 4, 6].

We want to find values within the box-shaped domain
[C1, O] % ... x[Css, O ]. Ateach step of this algorithm,
we will have a set of boxes that are guaranteed to contain all
possible solutions C;, .

Initially, we have only one box-the original domain. At
each step, we first take each box and divide each side of this
box in half (“bisect” each box). As a result, for the case



when we can determine all 5 constants, we get 2° = 32 new
boxes; for the case when we can only determine 3 variables,
we get 2% = 8 new boxes, etc.

For each new box, we find its center C;,, and apply the
forward algorithm to find the values ¢(f) corresponding to
this center.

After k bisections, the size of each resulting box along
each axis C,, is exactly 2~* of the original size; thus, the
effect of change of Cj,, within this box cannot exceed the
2~* of the original change, i.e., is < 27F - ¢,,. Hence,
when all variables are allowed to change within the box,
the resulting change in c(f) cannot exceed >~(27% - ¢,,) =
27k . ¢

Thus, if the central value of ¢(f) differs from the ob-
served dispersion curve by > 27% . ¢, this means that none
of the values from this box are possible and thus, this box
can be dismissed.

We repeat this elimination procedure until the error
27k . ¢ corresponding to the box size becomes smaller
than the measurement error (2%); then, all resulting central
points C;,, are returned as possible values of elastic con-
stants that are consistent with measurement results.

On a standard PC, the new method takes hours instead of
days.

7. Solution: Fuzzy Case

Natural idea. In fuzzy case, instead of a single error
bound §, we have several error bounds corresponding to dif-
ferent certainty levels ;.

A natural idea is therefore to apply the above algorithm
to each of these levels. As a result, for each level, we get
the set of all combinations C7,, that are, within this level,
consistent with the measurement results. In other words,
for each level, we get an a-cut of the desired fuzzy set.

Limitations of the natural idea. The main problem with
this idea is that to handle the fuzzy case, we need to repeat
the interval algorithm as many times as there are different
fuzzy levels. For a reasonable case of 10 levels, we thus
need 10 times more computations time than for the interval
case.

Thus, if an interval algorithm required hours, we need
days. This is too long. How can we speed up these compu-
tations?

New idea. The possibility to decrease the computation
time is based on the fact that the level sets are nested; thus,
if we already know that a point belongs to a set, we know
for sure that it belongs to the larger level set. Thus, we can
speed up computations as follows:

In the above interval algorithm, at each iteration, in ad-
dition to dismissing the boxes, we mark the remaining ones
by the corresponding level o, and update these markings as
we decrease the box size.
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