
Novel Approaches to Numerical Software with Result
Verification

Laurent Granvilliers
�
, Vladik Kreinovich

�
, and Norbert Müller

�
�

IRIN, University of Nantes, France
granvilliers@irin.univ-nantes.fr�

Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA

vladik@cs.utep.edu�
Abteilung Informatik, Universität Trier

D-54286 Trier, Germany, mueller@uni-trier.de

Abstract. Traditional design of numerical software with result verification is
based on the assumption that we know the algorithm

���
	 ����
�
�
�� 	���� that trans-
forms input

	 ����
�
�
�� 	�� into the output ��� ���
	 ����
�
�
�� 	���� , and we know the
intervals of possible values of the inputs. Many real-life problems go beyond this
paradigm. In some cases, we do not have an algorithm

�
, we only know some

relation (constraints) between
	��

and � . In other cases, in addition to knowing
the intervals � � , we may know some relations between

	��
; we may have some

information about the probabilities of different values of
	 �

, and we may know
the exact values of some of the inputs (e.g., we may know that

	 � �����!).
In this paper, we describe the approaches for solving these real-life problems. In
Section 2, we describe interval consistency techniques related to handling con-
straints; in Section 3, we describe techniques that take probabilistic information
into consideration, and in Section 4, we overview techniques for processing exact
real numbers.

1 Introduction

Why data processing? In many real-life situations, we are interested in the value of a
physical quantity " that is difficult or impossible to measure directly. Examples of such
quantities are the distance to a star and the amount of oil in a given well. Since we cannot
measure " directly, a natural idea is to measure " indirectly. Specifically, we find some
easier-to-measure quantities # �%$'&(&'&)$ #�* which are related to " by a known relation
",+.-0/1# �2$'&(&'&3$ #�*�4 ; this relation may be a simple functional transformation, or complex
algorithm (e.g., for the amount of oil, numerical solution to an inverse problem). Then,
to estimate " , we first measure the values of the quantities # � $'&(&'&)$ # * , and then we
use the results 5# � $'&(&'&)$ 5# * of these measurements to to compute an estimate 5" for " as
5",+.-0/65# � $'&(&'&3$ 5# * 4 .

For example, to find the resistance 7 , we measure current 8 and voltage 9 , and then
use the known relation 7:+;9=<%8 to estimate resistance as 57>+ 59?< 58 .

Computing an estimate for " based on the results of direct measurements is called
data processing; data processing is the main reason why computers were invented in

2 L. Granvilliers, V. Kreinovich, N. Müller

the first place, and data processing is still one of the main uses of computers as number
crunching devices.

Traditional approach to numerical software with result verification: from com-
puting with numbers to probabilities to intervals. Measurement are never 100%
accurate, so in reality, the actual value # � of

�
-th measured quantity can differ from the

measurement result 5# � . Because of these measurement errors �?# �������+ 5# �
	 # � , the re-
sult 5",+;-0/65# �2$'&'&(&3$ 5#�*�4 of data processing is, in general, different from the actual value
",+.-0/1# �2$'&(&'&3$ #�*�4 of the desired quantity " [60].

It is desirable to describe the error �?" �����+ 5" 	 " of the result of data processing. To
do that, we must have some information about the errors of direct measurements.

What do we know about the errors �?# � of direct measurements? First, the manu-
facturer of the measuring instrument must supply us with an upper bound � � on the
measurement error. If no such upper bound is supplied, this means that no accuracy is
guaranteed, and the corresponding “measuring instrument" is practically useless. In this
case, once we performed a measurement and got a measurement result 5# � , we know
that the actual (unknown) value # � of the measured quantity belongs to the interval� � +
� # � $ # ��� , where # � +;5# � 	 � � and # � +.5# ��� � � .

In many practical situations, we not only know the interval � 	 � � $ � ��� of possible
values of the measurement error; we also know the probability of different values �?# �
within this interval. This knowledge underlies the traditional engineering approach to
estimating the error of indirect measurement, in which we assume that we know the
probability distributions for measurement errors �?# � .

In practice, we can determine the desired probabilities of different values of �?# � by
comparing the results of measuring with this instrument with the results of measuring
the same quantity by a standard (much more accurate) measuring instrument. Since the
standard measuring instrument is much more accurate than the one use, the difference
between these two measurement results is practically equal to the measurement error;
thus, the empirical distribution of this difference is close to the desired probability dis-
tribution for measurement error. There are two cases, however, when this determination
is not done:

– First is the case of cutting-edge measurements, e.g., measurements in fundamental
science. When a Hubble telescope detects the light from a distant galaxy, there is
no “standard" (much more accurate) telescope floating nearby that we can use to
calibrate the Hubble: the Hubble telescope is the best we have.

– The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration is so
costly – usually costing ten times more than the sensor itself – that manufacturers
rarely do it.

In both cases, we have no information about the probabilities of �?# � ; the only informa-
tion we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result 5# � ,
the only information that we have about the actual value # � of the measured quantity
is that it belongs to the interval � � +�� 5# � 	 � � $ 5# ��� � ��� . In such situations, the only

Novel Approaches to Numerical Software with Result Verification 3

information that we have about the (unknown) actual value of " + -0/ # � $'&(&'&)$ # * 4 is
that " belongs to the range � + � " $ " � of the function - over the box � ��� &'&(& � � * :

� + � " $ " � +��%-0/ # � $'&(&'&3$ # * 4�� # ��� � � $(&'&(&)$ # * � � *
	 &
The process of computing this interval range based on the input intervals � � is called
interval computations; see, e.g., [31–33, 50].

Limitations of the traditional approach. Traditional design of numerical soft-
ware with result verification is based on the assumption that we know the algorithm
-0/ # � $'&(&'&3$ # * 4 that transforms input # � $(&'&(&)$ # * into the output " + -0/ # � $(&'&'&3$ # * 4 ,
and we know the intervals � � $(&'&'& $ � * of possible values of the inputs. Many real-life
problems go beyond this paradigm:

– In some cases, we do not have an algorithm - , we only know some relation (con-
straints) between # � and " .

– In other cases, in addition to knowing the intervals � � of possible values of # � , we
may have some additional information:� we may have know some relation between different quantities # � ;� we may also have some additional information about each of these quantities:� we may have some information about the probabilities of different values

of # � ;� in some cases, we may even know the exact values of some of the inputs
(e.g., we may know that # � +�
 <��).

What we are planning to do. In this paper, we describe the approaches for solving
these real-life problems:

– In Section 2, written by L. Granvilliers, we describe interval consistency techniques
related to handling constraints–both constraints that are known instead of the algo-
rithm - and in addition to the algorithm - .

– In Section 3, written by V. Kreinovich, we describe techniques that take probabilis-
tic information into consideration.

– Finally, in Section 4, written by N. Müller, we overview techniques for processing
exact real numbers.

2 Interval Consistency Techniques

Mathematical modeling is heavily used to simulate real-life phenomena from engineer-
ing, biology or economics. This is a mean for analysis of behavior, optimization or sim-
ulation of extreme situations. In many applications the problem is to solve (in)equality
or differential equation systems, which may be parametric. Moreover observed data
are often uncertain. Uncertainty can be efficiently handled by interval methods [49, 53,
52], implementing set computations over real numbers to derive global information on
systems. Recently constraint propagation using consistency techniques [5, 67, 20] have
been shown to enhance pure interval methods.

4 L. Granvilliers, V. Kreinovich, N. Müller

Consistency techniques over real numbers originate from two concurrent works,
the introduction of continuous domains in the constraint satisfaction framework [19]
and the use of interval arithmetic in constraint logic programming [16] in order to de-
fine a logical meaning of arithmetic. In Cleary’s work constraint systems are processed
by hull-consistency, a consistency property exploiting the convex hull of (in)equalities
over the reals. These pioneering ideas have been extended in several ways, e.g., for
heterogeneous constraint processing [6] or implementing strong consistencies [46].
CLP(BNR) [56] was the premier CLP system using interval consistency techniques.

The next revolution was the design of box-consistency, a local consistency property
implemented in Newton [5]. For the first time constraint solving smoothly combines
Newton-like iterative methods from interval analysis and constraint propagation. These
techniques have been further developed and implemented in Numerica [67]. Further-
more box-consistency has been shown to drastically improve hull-consistency for a
large set of problems in [66].

Recent works have been interested in advanced propagation techniques [47], relax-
ations for specific problems [71, 44], solver cooperation [29], processing of differen-
tial equations [20], quantified formulas [61] or applications [65, 18, 25, 28, 31, 15]. The
combination of box-consistency and hull-consistency has been shown to be efficient
in [4]. In the following we review the main lines of interval consistency techniques.

2.1 Constraint Satisfaction Problems

A numeric constraint satisfaction problem (NCSP)
�

is a triple ��� $�� $��	� where � +
��
 � $'&'&(& $

� 	 is a set of (in)equalities over a set � + �(# � $'&(&'&($ # *
	 of real-valued vari-
ables to which is associated a domain � +�� � �����
�
� � * called a box. Each � � is an
interval bounded by floating-point numbers that represents the set of possible values of
� . A solution to

�
is an assignment of variables /�� � $(&'&(& $ � * 4 � � such that all the

constraints are satisfied. Let ������/ � 4 denote the solution set of
�

.
The purpose of consistency techniques is to compute a NCSP

�	� +���� $�� $�� � � from�
such that the following properties hold:

– completeness: ������/ ��� 4 +�������/ � 4
– contractance: � �! �

To this end, given an integer
� � �#" $(&'&'&'$�$, define the

�
-th projection of a relation% �& * as the set

 � / % 4 +��'� � � & �)(3/*� � $(&'&(&'$ � �*+ � $ � �-, � $(&'&'&'$�$ 4 � & * + �/. /�� � $'&(&'&($ � * 4 � % 	 &
An inconsistent value is an element � � � � � that does not belong to the

�
-th projection

of ������/ � 4 . It directly follows that � � can be removed from � � while preserving �0�1� / � 4 .
In practice the main problem is to characterize the set of inconsistent values for each
variable. Unfortunately the problem of computing ���1��/ � 4 is unsolvable over the real
numbers. As a consequence weaker techniques using constraint projections and interval
enclosures have been developed.

Novel Approaches to Numerical Software with Result Verification 5

2.2 Local Consistency Techniques

Each constraint
 � from
�

defines a relation % � composed of all the assignments of
variables /*� � $(&'&'&'$ � * 4 � � satisfying
 � . A constraint projection is just a projection of
the associated relation. Hull-consistency is a consistency property based on the convex
hull of constraint projections. The convex hull of a set of real numbers is the smallest
enclosing interval.

Definition 1. Given a constraint
 � and an integer
� � �#" $'&(&'&�$�$ 	 � � is hull-consistent

wrt.
 � and � iff
� � +���� � � /
 � / % � 4 4 &

The meaning of the definition is that no value is declared to be inconsistent if the hull
of the

�
-th projection of
 � is equal to � � . In the contrary, if the consistency property

is not verified, inconsistent values can be removed at bounds of � � . More precisely a
new domain is computed as � ��� ���#� ��/
 � / % � 4 4 . However the computation of the hull of
constraint projections cannot be achieved in general due to rounding errors of numerical
computations. This problem has led to the definition of box-consistency using interval
functions, i.e., computable objects.

An interval form of a function - .	��
�� &
with

�

 & * is an interval function� .�� * ���
such that for every box � + � ��� �
�
� � � * the following property holds.

� /*� �%$ ���
� $ �3*�4�� �%-0/*� � $(&'&'&'$ ��*�4 ��/�� �0&'&'&($ ��*�4 � � � �
 	
In other words the evaluation of

�
encloses the range of - . The natural form is the

syntactic extension of a given expression of - to the intervals. Interval forms can be used
to implement a proof by refutation for constraint satisfaction. Given two expressions
-0/ # � $'&(&'& $ # * 4 and � /1# � $'&(&'& $ # * 4 , an interval form

�
of - , an interval form � of � and

a box � such that
� /�� � $ �
��� $ � * 4 + � � $�� � and � /*� � $ ���
� $ � * 4�+ � � $�� � the interval

reasonings are as follows.

/ � 4 � � $�� ��� � � $�� � +�� +�� -�+�� has no solution in �
/ ��� 4 � � � +�� -"!#� has no solution in �

The constraint is proved to be violated when the interval test succeeds. This method is
based on the possibly interpretation of constraint relation symbols over the intervals.
Given a constraint
 � , a box � , an integer

� � �#" $'&(&'& $�$ 	 and a real number � � � � � let$ �� /�� � $�� 4 denote a failure of the interval test over the box � � � ���
� � � �*+ ��� ���#� ��/ ��� � 	 4 �
� �-, ��� ���
� � � * .

Definition 2. Given a constraint
 � / # � $'&(&'&($ # * 4 , a box � , an interval test for
 � and
an integer

� � � " $'&(&'&�$�$ 	 � � is box-consistent wrt.
 � and � iff

� � +%��� � ��/ �'� � � � � � $ �� /�� � $�� 4 	 4 &
Each real number in � � is characterized using the interval test, i.e., the bounds of � � can-
not be declared inconsistent using the interval test. We see that the projection appearing
in the definition of hull-consistency is just replaced with interval tests.

6 L. Granvilliers, V. Kreinovich, N. Müller

There are two kinds of algorithms implementing box-consistency: constraint inver-
sion and dichotomous search using interval tests. Constraint inversion4 uses inverse
real operations, as illustrated in Fig. 1. The initial box � � $ � � � � � $�� � is reduced to
� � $ ������� / � 4�� � � �
	��
��� / �34�� $�� � using rounded interval arithmetic (operations

� � � and 	 � �
are machine rounding operations). A numerical constraint inversion algorithm for pro-
cessing complex constraints has been introduced in [4]. This method is efficient when
variables occur once in constraints, which is due to the dependency problem of interval
arithmetic.

� ���������
����� !#"$

�

%�&
')(� � ��*

!,+

! ".-0/1"3254 �768 :9
!,+ -0/ + 254 $,6 � 9

/ ",; 2</ ">= &
')(�? " � 4 $,6 � 9 �
/ +#; 2</ +@= &
')(� 4 �76A :9 �

!,+ 2 &
'B(� !#" �

Fig. 1. Inversion of
	 � �DC8E�F �
	 � � for computing domain reductions.

The dichotomous search procedure enforces the interval test over sub-domains from
� � . The aim is to compute the leftmost real number � � � � and the rightmost real
number � � � � such that the interval tests $ �� /�� $�� 4 and $ �� / � $�� 4 fail (the constraint is
not violated). Doing so the new domain is � � $�� � . The method is in three steps: if the
whole domain � � is rejected using the interval test then stop and return the empty set;
otherwise try to reduce the left bound of � � and then the right bound. The search of
outermost points is just implemented by a dichotomous search using the interval tests.

Example 1. Consider the constraint /1# � 	 " 4 � +HG , the interval � � + � 	 "IG $ "JG � and
the interval test based on natural forms. Domain of # � is not box-consistent since the
interval test succeeds for the right bound (/�"IG 	 "!4 �LK+<G). As a consequence � � can be
reduced using e.g. constraint inversion, as follows.

� � . + � � �NMPO
Q�RBSUT8V + � /WG�4 � "IX +
� " $ " �
Now suppose that the constraint is given in a developed form # � � 	 �%# � � "?+YG . The
problem of constraint inversion is to choose one occurrence of # � . Suppose this is the
one in the quadratic term. Then try to reduce � � .

� � . + � � �ZO�Q
RBS[TAV + � / � � � 	 "!4]\ � G $_^ "J` �
4 Note that constraint inversion has often been presented as a computational technique for hull-

consistency but this notion is not computable, as shown in [4].

Novel Approaches to Numerical Software with Result Verification 7

The approximation is weak, which is due to the dependency problem of interval arith-
metic (two occurrences of # � considered as different variables during interval compu-
tations). A solution is to implement a dichotomous search. In this case a tight interval
enclosing " is computed since each small sub-domain can be rejected using the interval
test. For instance the real number � � � � can be rejected since / � � 	 � � � � " K+ G�4 .
Using the search procedure the dependency problem over the considered variable van-
ishes. However, in this case, a second problem happens, a slow convergence, since there
is a multiple root of function /1# � 	 " 4 � . This phenomenon has to be controlled and the
search stopped if necessary. The reader is referred to [27] for more details.

2.3 Constraint Propagation and Strong Consistency Techniques

Given a NCSP constraint projections have to be processed in sequence in order to
reach the consistency of the whole problem. The fixed-point algorithm implementing
such a sequence of computations is called constraint propagation. Given a constraint

2/ # �%$(&'&'&($ #�*�4 and an integer

� � � " $(&'&(&�$�$ 	 let ������� ��� � � denote the function from boxes
to boxes such that for each box �

������� ��� � � / � 4 + � � + � ��� �
��� � � ��+ ��� � �� � � �-, � � ���
� � � *
and � �� is the largest interval included in � � that is box-consistent wrt.
 � and � � . The������� ��� function is implemented by constraint inversion or dichotomous search. A generic
constraint propagation algorithm implementing box-consistency over NCSPs is pre-
sented in Table 1. Each step consists in an application of a �	�
��� ��� function for reducing
the current box. The loop invariant states that at the beginning of each step of the loop,
each function
 not in � is such that
�/ � 4 + � . Then every �	�
��� ��� function associated
to a constraint
�� that contains a variable # � which domain has been modified is added
in � .

Table 1. Constraint propagation algorithm for box-consistency.

�������������
��� �	� ���
� ����
�
�
�� � �"! ��# �$� 	 ����
�
�
�� 	�� ! �&% �(' �*),+ +-+.) ' ��� : box/ � ��021354 �6� �7��8�0 9:� � ;=<�>@? �BA ��
�
�
��:C ! �ED ? �FA ��
�
�
��:G !�!�7�����-�H�
����8�0 9:� � ;I4 � ����� �	3 �
%KJ 4 � ����8�0 9:� � ; � % �L �B�7�-��M�NPO ? �BA ��
�
�
��:C ! 9�Q�M�NR� N��H� ' J SUT�V' SPW �3X4 � �BQ
9 N � � �7��8�0 9:��Y-Z < A\[^]5[C3� A\[`_K[G � 	 � occurs in � Z ! ���1 W L �B�
% 4 � % J

QB1H�&02a 3 �cb �B� % �cb�7����QB�d1 %
��1 W

8 L. Granvilliers, V. Kreinovich, N. Müller

The ��� � ���������&� algorithm terminates in finite time since every step is contracting
and the computational domain is finite. It is complete, i.e., no solution is lost, since
every ������� ��� function is complete. It converges and computes the greatest common fixed-
point of the �	�
��� ��� functions. As a consequence the order of applications of the ������� ���
functions is not relevant. The proofs of these properties come from domain theory [2].

Example 2. Consider the NCSP � �(# � + # � � $ # � � � # �� + � 	 $ �!# �!$ # � 	 $ � 	 "JG $ "JG � � � which
solutions are /�" $ "!4 and / 	 " $ "!4 . Applying �	�
��� ��� ��� reduces the domain of # � to � G $ "JG � .
Applying �	�
��� ��� � � reduces the domain of # � to � 	 ^ "IG $ ^ "IG � , and so on. The result of��� � ���������&� is the box � 	 " & "I` $ " & "J` � � � G &
	���$ " &
 � � . Unfortunately this process does not
compute the enclosure of the solution set, namely � 	 " $ " � � �-" $ " � . This weakness is due
to the locality problem.

The locality problem originates from the way to reduce domains, since each con-
straint projection is used independently. However we may say that “the intersection of
projections is weaker than the projection of the intersection”. In Fig. 2 the NCSP repre-
sents an intersection of two curves
 � and
 � . In this case the box cannot be reliably re-
duced using
 � because this would loose solutions of
 � (idem for
 �). This problem has
led to the definition of stronger consistency techniques, namely � B-consistencies [46].
The main idea is shown in Fig. 2: prove the inconsistency of a sub-box using the con-
straint propagation algorithm. In this case the leftmost sub-box is discarded and the
rightmost sub-box is reduced. If this process is iterated then a tight enclosure of the
solution can be computed. Unfortunately it has been shown in [59] that strong con-
sistency techniques do not have a good practical complexity. A formal comparison of
consistency techniques can be found in [17].

���

���

solution
���

���

���

���

Fig. 2. Locality problem and strong consistency technique.

2.4 Use of Consistency Techniques

Mathematical models are often heterogeneous, involving integer or real numbers, dif-
ferential equations, inequalities, objectives or quantified constraints. Actually consis-
tency techniques can be implemented as components in more general solving processes,
e.g., constrained optimization, ODE solving or decomposition of quantified inequali-
ties. They are used to reduce domains of possible values of the unknowns or to prove
the inconsistency of a given problem.

Novel Approaches to Numerical Software with Result Verification 9

As an example we describe the processing of universally quantified inequalities [3].
Consider the formula

� .�� " ��� -0/1" $ # � $(&'&(& $ # * 4�� G over the box � . A solu-
tion to

�
is a tuple /�� � $'&(&'&($ � * 4 � � such that for all � ��� , -0/ � $ � � $(&'&(&'$ � * 4�� G

holds. Now suppose there exists a box � � � �
such that every of its elements violates

-0/ " $ # � $'&(&'&($ #�*�4
	 G . As a consequence every element of � �
is a solution to

�
, since

-�	 G is the negation of -�� G . Consistency techniques are used to compute such a
box: (1) starting from the box � � � apply a consistency technique over the negation of
the constraint; (2) for each eliminated box � � � � � return � �

if � � + � . In practice strict
inequalities resulting from negations are relaxed. Note that a box that is inconsistent
wrt. - ! G is clearly inconsistent wrt. -
	 G . In [61] a general framework for solving
quantified constraints using consistency techniques has been proposed.

2.5 Perspectives

Consistency techniques have been developed for solving NCSPs, namely conjunctions
of (in)equalities. Only recently they have been extended to tackle quantifiers, condi-
tional constraints, mixed problems, differential equations or optimization problems. We
believe that the main perspective is to develop a suite of tools to be used in real-world
applications and to integrate these tools in development frameworks. The main advan-
tages that should be highlighted are that the use of intervals lead to robust decisions and
that heterogeneous systems are handled without additional work.

A particularly interesting field of applications is the so-called robust design. Solu-
tions in automatic control are proposed in [31]. For instance, state estimation problems
are efficiently solved by constraint propagation alone since many redundant constraints,
provided by redundant captors, are available. On the contrary problems from image syn-
thesis [15] are often under-constrained. Consistency techniques have to be combined
with local search and optimization methods. In conceptual design [58, 25] the aim is to
derive all possible concepts from specifications, and possibly to take a decision. Consis-
tency techniques embedding decomposition techniques of NCSPs [8] may be directly
applied. However further research has to be done in several ways such as uncertainty
quantification given approximate models and sensitivity analysis.

3 Probabilities, Intervals, What Next? Extension of Interval
Computations to Situations with Partial Information about
Probabilities

What we are planning to do? As we have mentioned in the Introduction, in many
practical situations, in addition to the interval information, we also have some informa-
tion about the probabilities.

In this section, first, we analyze a specific interval computations problem – when
we use traditional statistical data processing algorithms -0/ # �%$(&'&(&3$ #�*�4 to process the
results of direct measurements.

Then, we extend our analysis to the case when for each input # � , in addition to
the interval � � + � # � $ # ��� of possible values, we have partial information about the

10 L. Granvilliers, V. Kreinovich, N. Müller

probabilities: specifically, we know its mean
� � (or an interval � � of possible values of

the mean).
We formulate and solve the corresponding optimization problems, and describe re-

maining open problems.

3.1 First Step Beyond Intervals: Error Estimation for Traditional Statistical
Data Processing Algorithms under Interval Uncertainty

When we have $ results # � $(&'&(&)$ # * of repeated measurement of the same quantity (at
different points, or at different moments of time), traditional statistical approach usually
starts with computing their sample average

� + /1# � � &'&(& � # * 4�< $ and their (sample)
variance

9 + / # � 	 � 4 � � &'&(& � / # * 	 � 4 �$ (1)

(or, equivalently, the sample standard deviation � + ^ 9); see, e.g., [60].
In this section, we consider situations when we do not know the exact values of the

quantities # � $(&'&(&3$ # * , we only know the intervals � � $'&(&'&)$ � * of possible values of # � .
In such situations, for different possible values # � � � � , we get different values of

�

and 9 . The question is: what are the intervals � and � of possible values of
�

and 9 ?
The practical importance of this question was emphasized, e.g., in [54, 55] on the

example of processing geophysical data.
For

�
, the straightforward interval computations [31–33, 50] leads to the exact

range:

�:+
� � � &'&'& � � *$ $ i.e.,

� + # � � &(&'& � # *$ $ and
� + # � � &'&'& � # *$ &

For 9 , straightforward interval computations lead to an excess width. For example, for� � + � � + � G $ " � , the variance is 9 + / # � 	 # � 4 � <
 and hence, the actual range
� + � G $ G & ��� � . On the other hand, �;+
� G $ " � , hence

/ � � 	 � 4 � � / � � 	 � 4 �
� + � G $ " ��� � G $ G & ��� � &

More sophisticated methods of interval computations also sometimes lead to an excess
width. Reason: in the formula for the average

�
, each variable only occurs once, and it

is known that for such formulas, straightforward interval computations lead to the exact
range (see, e.g., [30]). In the expression for variance, each variable # � occurs several
times: explicitly, in / # � 	 � 4 � , and explicitly, in the expression for

�
. In such cases,

often, dependence between intermediate computation results leads to excess width of
the results of straightforward interval computations. Not surprisingly, we do get excess
width when applying straightforward interval computations to the formula (1).

For variance, we can actually prove that the corresponding optimization problem is
difficult:

Theorem 1. Computing 9 is NP-hard.

Novel Approaches to Numerical Software with Result Verification 11

Comment. The main ideas of the proofs of the results from this subsection are given in
[23].

The very fact that computing the range of a quadratic function is NP-hard was first
proven by Vavasis [68] (see also [38]). We have shown that this difficulty happens even
for very simple quadratic functions frequently used in data processing.

A natural question is: maybe the difficulty comes from the requirement that the
range be computed exactly? In practice, it is often sufficient to compute, in a reasonable

amount of time, a usefully accurate estimate 59 for 9 , i.e., an estimate 59 which is

accurate with a given accuracy � 	 G :
��� 59 	 9

����� � . Alas, for any � , such computations

are also NP-hard:

Theorem 2. For every � 	 G , the problem of computing 9 with accuracy � is NP-hard.

It is worth mentioning that 9 can be computed exactly in exponential time �,/ � * 4 :
Theorem 3. There exists an algorithm that computes 9 in exponential time.

For computing 9 , there a feasible algorithm: specifically, our algorithm is quadratic-
time, i.e., it requires �,/ $ � 4 computational steps (arithmetic operations or comparisons)
for $ interval data points � � + � # � $ # � � .

The algorithm � is as follows:

– First, we sort all � $ values # � , # � into a sequence #�� �	� � #
� ��� � &(&'& � #
� � * � .
– Second, we compute

�
and

�
and select all “small intervals" � #���
 � $ #
��
 , �	� � that

intersect with � � $ � � .
– For each of the selected small intervals � #���
 � $ #
��
 , �	� � , we compute the ratio �
 +�
 <��
 , where �
 �����+ ���� � ������� �	!#"%$ # � � ��&� �('*)���� �	$ # � $

and �
 is the total number of such
�
’s and + ’s If �
 � � #���
 � $ #
��
 , �,� � , then we

compute

9
 � ���+ "$ �.-/ ���� � � ����� �	!#"%$ / # � 	 �
 4 � � ��&� � ')0�1�2��$ / # � 	 �
 4 �435 &

If �
 +<G , we take 9
 � ���+ G .
– Finally, we return the smallest of the values 9
 as 9 .

Theorem 4. The algorithm � always compute 9 is quadratic time.

NP-hardness of computing 9 means, crudely speaking, that there are no general
ways for solving all particular cases of this problem (i.e., computing 9) in reasonable
time.

However, we show that there are algorithms for computing 9 for many reasonable
situations. Namely, we propose an efficient algorithm that computes 9 for the case

12 L. Granvilliers, V. Kreinovich, N. Müller

when all the interval midpoints (“measured values") 5# � + /1# � � # � 4 <�� are definitely
different from each other, in the sense that the “narrowed" intervals � 5# � 	 � � < $ $ 5# � �
� � < $ � – where � � + / # � 	 # � 4�< � is the interval’s half-width – do not intersect with
each other.

This algorithm � is as follows:

– First, we sort all � $ endpoints of the narrowed intervals 5# ��	 � � < $ and 5# � � � � < $
into a sequence #�� �	� � #
� � � � &'&(& � #�� � * � . This enables us to divide the real line

into � $ � " segments (“small intervals") � #���
 � $ #
��
 , �	� � , where we denoted # � �&� � ���+
	�� and #�� � * , �	� � ���+ � � .

– Second, we compute
�

and
�

and pick all “small intervals" � #���
 � $ #���
 , �	� � that
intersect with � � $ � � .

– For each of remaining small intervals � #���
 � $ #
��
 , �,� � , for each
�

from 1 to $, we pick
the following value of # � :� if #���
 , �	� � 5# � 	 � � < $, then we pick # � + # � ;� if #���
 � 	 5# � � � � < $, then we pick # � +.# � ;� for all other

�
, we consider both possible values # � + # � and # � +.# � .

As a result, we get one or several sequences of # � . For each of these sequences,
we check whether the average

�
of the selected values # � $'&'&(&3$ # * is indeed within

this small interval, and if it is, compute the variance by using the formula (1).
– Finally, we return the largest of the computed variances as 9 .

Theorem 5. The algorithm � computes 9 is quadratic time for all the cases in which
the “narrowed" intervals do not intersect with each other.

This algorithm also works when, for some fixed � , no more than � “narrowed" intervals
can have a common point:

Theorem 6. For every positive integer � , the algorithm � computes 9 is quadratic
time for all the cases in which no more than � “narrowed" intervals can have a common
point.

3.2 Second Step Beyond Intervals: Extension of Interval Arithmetic to
Situations with Partial Information about Probabilities

Practical problem. In some practical situations, in addition to the lower and upper
bounds on each random variable # � , we know the bounds � � + � � � $ � � � on its mean� � .

Indeed, in measurement practice (see, e.g., [60]), the overall measurement error � #
is usually represented as a sum of two components:

– a systematic error component ����# which is defined as the expected value
� � �?# � ,

and
– a random error component ��� # which is defined as the difference between the

overall measurement error and the systematic error component: � � # � ���+ �?# 	 ����# .

Novel Approaches to Numerical Software with Result Verification 13

In addition to the bound � on the overall measurement error, the manufacturers of
the measuring instrument often provide an upper bound � � on the systematic error
component: � ����# � � ��� .

This additional information is provided because, with this additional information,
we not only get a bound on the accuracy of a single measurement, but we also get an
idea of what accuracy we can attain if we use repeated measurements to increase the
measurement accuracy. Indeed, the very idea that repeated measurements can improve
the measurement accuracy is natural: we measure the same quantity by using the same
measurement instrument several (�) times, and then take, e.g., an arithmetic average�# + /65# � �	� � &'&(& � 5# � � � 4�<*� of the corresponding measurement results 5# � �,� + # � �?# � �	�

,&'&'& , 5# � � � + # � �?# � � �
.

– If systematic error is the only error component, then all the measurements lead to
exactly the same value 5# � �	� + &(&'& +.5# � � �

, and averaging does not change the value
– hence does not improve the accuracy.

– On the other hand, if we know that the systematic error component is 0, i.e.,� � � # � + G and
� � 5# � + # , then, as � �

� , the arithmetic average tends to
the actual value # . In this case, by repeating the measurements sufficiently many
times, we can determine the actual value of # with an arbitrary given accuracy.

In general, by repeating measurements sufficiently many times, we can arbitrarily de-
crease the random error component and thus attain accuracy as close to � � as we want.

When this additional information is given, then, after we performed a measurement
and got a measurement result 5# , then not only we get the information that the actual
value # of the measured quantity belongs to the interval � + � 5# 	 � $ 5# � � � , but we
can also conclude that the expected value of # + 5# 	 �?# (which is equal to

� � # � +
5# 	 � � �?# � +.5# 	 � � #) belongs to the interval �:+
� 5# 	 � � $ 5# � � � � .

If we have this information for every # � , then, in addition to the interval � of pos-
sible value of " , we would also like to know the interval of possible values of

� � " � .
This additional interval will hopefully provide us with the information on how repeated
measurements can improve the accuracy of this indirect measurement. Thus, we arrive
at the following problem.

Resulting optimization problem. In more optimization terms, we want to solve the
following problem: given an algorithm computing a function -0/ # � $(&'&'& $ #�*�4 from 7 *
to 7 ; and values # � , # � , &'&(& , # * , #�* ,

� � , � � , &'&'& ,
� * ,

� * , we want to find

� � ���+��
��� � � � -0/1# � $'&(&'&3$ # * 4 � ��� ���
	 ����
��������

�� � ��� ��� /1# � $'&(&'&)$ # * 4 ��� �����������

# � � � # � $ # � � $'&'&(&)$ #�* � � # * $ #�* � $ � � # � � � � � � $ � � � $'&(&'& � � #�* � � � � * $ � * � 	��
and

�
which is the maximum of

� � -0/ # � $(&'&'&3$ # * 4 � for all such distributions.
In addition to considering all possible distributions, we can also consider the case

when all the variables # � are independent.

14 L. Granvilliers, V. Kreinovich, N. Müller

Analog of straightforward interval computations. The main idea behind straightfor-
ward interval computations can be applied here as well. Namely, first, we find out how
to solve this problem for the case when $ + � and -0/1# � $ # � 4 is one of the standard
arithmetic operations. Then, once we have an arbitrary algorithm -0/ # �%$(&'&'&3$ #�*�4 , we
parse it and replace each elementary operation on real numbers with the corresponding
operation on quadruples /1# $ � $ � $ #�4 .

To implement this idea, we must therefore know how to solve the above problem
for elementary operations.

For addition, the answer is simple. Since
� � # � � # � � + � � # � � � � � # � � , if " +

� � # � , there is only one possible value for
� + � � " � : the value

� + � � � � � . This
value does not depend on whether we have correlation or nor, and whether we have any
information about the correlation. Thus, �>+ � � � � � .

Similarly, the answer is simple for subtraction: if " + # � 	 # � , there is only one
possible value for

� + � � " � : the value
� + � � 	 � � . Thus, �;+ � � 	 � � .

For multiplication, if the variables # � and # � are independent, then
� � # � � # � � +� � # � � � � � # � � . Hence, if " + # � � # � and # � and # � are independent, there is only one

possible value for
� + � � " � : the value

� + � � � � � ; hence �:+ � � � � � .
The first non-trivial case is the case of multiplication in the presence of possible

correlation. When we know the exact values of
� � and

� � , the solution to the above
problem is as follows (see, e.g., [36]:

Theorem 7. For multiplication " + # �/� # � , when we have no information about the
correlation,

� + � �U�3/ � � � � � 	 " $ G 4 � # � � # � � �
��� / � � $ " 	 � � 4 � # � � # � � �

� � /�" 	 � � $ � � 4 � # � � # � �
� �[� /�" 	 � � 	 � � $ G�4 � # � � # � �

and

� + �
� � / � �%$ � � 4 � # � � # � � � �[�3/ � � 	 � � $ G 4 � # � � # � � � �U�)/ � � 	 � � $ G�4 � # � � # � �

�
��� /�" 	 � �%$ " 	 � � 4 � # � � # � $

where � � �����+ / � � 	 # � 4 <�/ # � 	 # � 4 &
When we only know the intervals � � of possible values of

� � , instead of the values
� � , we have the corresponding intervals � � + / � ��	 # � 4 <�/ � �
	 # � 4 & In terms of these
intervals, we get the following results:

Theorem 8. For multiplication under no information about dependence, to find
�

, it is
sufficient to consider the following combinations of � � and � � :

– � � + � � and � � + � � ; � � + � � and � � + � � ; � � + � � and � � + � � ; � � + � � and
� � + � � ;

– � � + � �U�3/ � � $ " 	 � � 4 and � � +�" 	 � � / if " � � � � � � 4 ; and
– � � + �

� � / � � $ " 	 � � 4 and � � + " 	 � � / if " � � � � � � 4 .
The smallest value of

�
for all these cases is the desired lower bound

�
.

Novel Approaches to Numerical Software with Result Verification 15

Theorem 9. For multiplication under no information about dependence, to find
�

, it is
sufficient to consider the following combinations of � � and � � :

– � � + � � and � � + � � ; � � + � � and � � + � � ; � � + � � and � � + � � ; � � + � � and
� � + � � ;

– � � + � � + � �U�3/ � � $ � � 4 / if � � � � � K+�� 4 ; and
– � � + � � + �

� � / � � $ � � 4 / if � � � � � K+�� 4 .
The largest value of

�
for all these cases is the desired upper bound

�
.

– For the inverse " + " <%# � , bounds for
�

can be deduced from convexity [64]:
�:+ � "%< � �!$ � � < # � � /�" 	 � � 4 <%# � � &

– For �
���

and independent # � , we have
� + �

� � / � � $ � � 4 and

� + � � � � � � � ��� / # �%$ # � 4 � � � � /�" 	 � � 4 � � ��� / # � $ # � 4 � /�" 	 � � 4 � � � � � ��� / # � $ # � 4 �
/�" 	 � � 4 � /�" 	 � � 4 � � � � / # � $ # � 4 &

– For � �[� and independent # � , we have
� + � �U�)/ � � $ � � 4 and

� + � �1� � � � � �[�)/ # � $ # � 4 � � ��� /�" 	 � � 4 � � �U�)/ # � $ # � 4 � /�" 	 � � 4 � � � � � �U�3/ # � $ # � 4 �
/�" 	 � � 4 � /�" 	 � � 4 � � �[� /1# � $ # � 4 &

– For �
���

in the general case,
� + �

� � / � �%$ � � 4 $
� + � �U�)/ � � � � � 	 " $ G 4 � � � � / # � $ # � 4 � �

��� / � � $ " 	 � � 4 � � ��� / # � $ # � 4 �
�
��� /�" 	 � � $ � � 4 � � ��� /1# � $ # � 4 � � �U�)/�" 	 � � 	 � � $ G�4 � � � � / # � $ # � 4 &

– For � �[� in the general case,
� + � �U�)/ � �%$ � � 4 and

� + �
��� / � � $ � � 4 � � �U�3/ # � $ # � 4 � � �[� / � � 	 � � $ G�4 � � �U�3/ # � $ # � 4 �

� �[� / � � 	 � � $ G�4 � � �[�)/ # � $ # � 4 � �
� � /�" 	 � � $ " 	 � � 4 � � �U�)/ # � $ # � 4 &

– Similar formulas can be produced for the cases when there is a strong correlation
between # � : namely, when # � is (non-strictly) increasing or decreasing in # � .

From Elementary Arithmetic Operations to General Algorithms. When we have a
complex algorithm - , then a step-by-step approach leads to excess width. How can we
find the actual range of

� + � � " � ?
At first glance, the exact formulation of this problem requires that we use infinitely

many variables, because we must describe all possible probability distributions on the
box � ��� &'&(& � � * (or, in the independent case, all possible tuples consisting of distri-
butions on all $ intervals � � $(&'&'&3$ � *). It turns out, however, that we can reformulate
these problems in equivalent forms that require only finitely many variables:

16 L. Granvilliers, V. Kreinovich, N. Müller

Theorem 10. For a general continuous function -0/ # � $(&'&(&)$ # * 4 , � is a solution to the

following optimization problem:

�� � � � � � � � -0/1# � � �� $'&'&(&)$ # � � � 4 � �
� �

under the condi-

tions*�
 � � � ��
 � +�" � � � � ��� G � # � � # � � �� � # � � � � � *�� � � � � � � � # � � �� � � � / ��� � � ��� � $ +�4 $
and

�
is a solution to

�� � � � � � � � -0/ # � � �� $(&'&'&3$ # � � � 4 � � �U� under the same constraints.

3.3 Open Problems

So far, we have provided explicit formulas for the elementary arithmetic operations
-0/ # � $'&(&'&3$ # * 4 for the case when we know the first order moments. What if, in addition
to that, we have some information about second order (and/or higher order) moments
of # � ? What will we be then able to conclude about the moments of " ? Partial answers
to this question are given in [43, 64, 69]; it is desirable to find a general answer.

Similarly to Theorem 10, we can reduce the corresponding problems to the con-
straint optimization problems with finitely many variables. For example, when, in addi-
tion to intervals � � that contain the first moments

� � # � � , we know the intervals � �
 that
contain the second moments

� � # � � #
 � , then the corresponding bounds
�

and
�

on
� � " �

can be computed by solving the problems

��� � � � � � � � -0/ # � � �� $'&(&'&3$ # � � �* 4 � �
� � / � �U��4 un-

der the conditions
��� � � � � � � + " � � � � ��� G � # � � # � � �� � # � � � � � *�� � � � � � � � # � � �� � � � �

� �
 � *�� � � � � � � � # � � �� � # � � �
 � � �
 $
where � + $ / $ � "!4�< � .

It is desirable to find explicit analytical expressions for these bounds, at least for the
case when $ + � and -0/ # � $(&'&(&)$ #�*�4 is an elementary arithmetic operation.

4 Exact Real Arithmetic

In the last two decades, the theory of computability on (the full set of) real numbers
developed very fast. Although there still are competing approaches, the Type-2-Theory
of Effectivity (TTE) seems to be the most evolved [12, 34, 70]. Several software pack-
ages for exact real arithmetic have been written based on the concepts from TTE or
equivalent theories. They all allow functional or imperative programming with atomic
real objects # � &

, while still being fully consistent with real calculus. In this section,
we will compare important aspects of these implementations.

Novel Approaches to Numerical Software with Result Verification 17

4.1 Non-real arithmetic

The starting point for any practical application of arithmetic is hardware-based fixed-
size integer or floating point arithmetic (today usually 32 or 64 bit). For integer arith-
metic, we have a canonical and rather intuitive semantics. This is not true for floating
point numbers: Here the semantics is no longer canonical, but got so complicated with
constructs like NaNs, infinities, +0, -0, directed roundings etc. that it was necessary to
define the IEEE standards 754/854 to get a reliable behavior of this arithmetic.

Leaving hardware-based size arithmetic, there are the sets of integer or rational
numbers, where again we have a canonical, ‘mathematical’ semantics that does not
need to be standardized. At this time, the most prominent open source implementation
on these sets surely is GMP [26], written in C with hand-optimized assembler parts.

Within the rational numbers, the multiple precision floating point numbers (i.e. gen-
eralizations of the hardware floating point numbers) play a special role: Again, there is
no ‘canonical’, pure ‘mathematical’ semantics. Instead, the result of an operation like
the division of 1 by 3 does not only depend on the arguments themselves, but also on
additional parameters like the size available for the result, the chosen rounding mode
etc. Some software packages, e.g. the important but older Fortran77 MP package
[11], do not even try to explicitly define the result of such operations, they only give a
verified bound for the error. Others, namely the MPFR package [72], again try to follow
the spirit of the IEEE standards 754/854 as closely as possible.

Extending the set of rational numbers, there is the set of algebraic numbers, where
still it is possible to implement a pure mathematical oriented semantics. The disadvan-
tage of corresponding implementations is that the evaluation of deeply nested arithmetic
expressions (like the solution of linear systems) becomes almost infeasible. See e.g.
[48], page 116: ...you may have to wait a long time for the answer when the expression
is complex.

4.2 The Border of decidable Equality

For all of the different types of arithmetic above, it was possible to decide whether two
data structures # , " depict the same number, i.e. a test on equality val / #�4 + val / "�4
was decidable with more or less effort! In contrast to this, equality is not a decidable
operation in TTE. This is the most obvious difference to the BSS model [9], where
equality of real numbers was taken as a basic operation!

So an important question concerning the decidability of equality is: How far can
equality be implemented in an usable manner beyond the algebraic numbers? To illus-
trate the problems arising we recall one still unproven attempt, the Uniformity Con-
jecture [63], in a slightly simplified version below. This conjecture tries to extend the
decidability to expressions that just allow exponentiation and logarithm in addition to
the algebraic operations:

Consider expressions
�

built as follows:

– basic objects are integers in decimal form
– expressions may be built iteratively using

� ��� ,
� 	 � ,

� � � ,
� < � , / � 4 , 	 � , ��� ,� � �

, �^ � from given expressions
�

and � (and integer constants $).

18 L. Granvilliers, V. Kreinovich, N. Müller

Now the conjecture is: If � � � / � � 4 ��" for any subexpression ���
�
, then

either � � � / � 4 + G or � � � � / � 4 � 	 "JG + ��� ��� �
	 * � � �
where the length

�
� $ / � 4 is simply the length of the string denoting

�
.

If this conjecture turned out to be true, then we would be able to decide whether
two values � and � are equal by approximating the value � 	 � with a sufficient high
precision (depending on the length of the expressions

�
and � yielding � and �). But

if we have a closer look on an example, we see that the conjecture would perhaps not
be too helpful in practice: Just consider the following nonlinear iteration (sometimes
called logistic equation) used as an important example e.g. by [42]

# � , � +�� & 	 � � # � � /�" 	 # � 4 $ # � +�" <�� (2)

If we try the uniformity conjecture on this example, we get a sequence of expres-
sions

� � with
�
� $ / � � , � 4 + � � � � $ / � � 4 � "JG (using � &
	 �.+ " � <
 with length 4),

so already testing whether # ��
 	 # ��
 is equal to zero gives an expression
�

with�
� $ / � 4 \�� 	 G $ G�G�G $ G�G�G ; this would imply that we would need to evaluate

�
to far

more than one billion decimal digits to get a reliable answer. So today, we must face
severe problems if we try to implement an arithmetic allowing decidable equality also
for non-algebraic numbers.

4.3 Approximate Real Arithmetic

Deciding equality has already been dropped for a large class of computations: Interval
arithmetic, either for hardware based on the standards IEEE 754/854 or for software
solutions with variable size.

Two recent implementation in this area are filib++ [45] (allowing IEEE 754/854
floats as interval borders) and MPFI [62], a multiple precision interval arithmetic li-
brary in C, based on MPFR. Of course, the use of interval software implies that the user
‘thinks’ in intervals, i.e. we have the look and feel of interval arithmetic.

A well-known approach by O. Aberth goes beyond this: In his precise computa-
tion software [1] he implemented an (almost) exact arithmetic, using ‘range’ arithmetic
based on an own floating point software. This package, written in C++, is freely avail-
able on the internet (unfortunately, it does not compile cleanly with the recent gcc3.x
compilers). It contains basic arithmetic, but extended with a calculus on elementary
functions allowing � , 	 , � , < , #�� , sin, cos, tan, asin, acos, atan, �

�
, ln # , max, min as

basic operations as well as e.g. integration and differentiation as higher level operators.
Aberth uses a data type representing real numbers (constructible from the operations
above, so we have the look of an exact real arithmetic). But the user still gets the feel of
interval arithmetic: The implementation with range arithmetic is still essentially interval
based, and these intervals may grow too large during computations leading to failures
due to insufficient precision. An implementation of the sequence for the logistic equa-
tion (2) may look as follows:

long n, prec;
cin >> n; cin >> prec; set_precision(prec);

Novel Approaches to Numerical Software with Result Verification 19

real x=1/real(2); real c=375/real(100);
for (i=1; i <= n; i++) {
x=c*x*(one-x);
if (i%10==0) cout<<i<<" "<<x.str(2,20)<<endl;

}

If the second input parameter prec is too small for a first parameter $. the program
fails. On the other hand, if the parameter is much too large, the computation time is
unnecessarily high.

4.4 Implementations for exact real arithmetic

The main part of this section is a comparison of the following packages:

– CRCalc (Constructive Reals Calculator, [10])
– XR (eXact Real arithmetic, [14])
– IC Reals (Imperial College Reals, [22])
– iRRAM (iterative Real RAM, [51])

Of course, there exist a lot more packages, e.g. the ‘Manchester Reals’ package by
David Lester, which unfortunately is not available to the public at the moment. A test
of this package together with the IC Reals, iRRAM, and a few others can be found in
[7].

Some common basic concepts of exact real arithmetic are the following:

– Real numbers are atomic objects. The arithmetic is able to deal with (almost) arbi-
trary real numbers, but the usual entrance to

&
is

�
.

– The implementations try to follow the theory of computability on the real num-
bers. This implies that computable functions are continuous, so tests of equality
of numbers are not possible in general (they usually lead to an infinite loop if the
arguments to be tested are equal).

– An important relaxation (called multi-valued functions) of the continuity restriction
has been introduced by [13] and is implemented only in the iRRAM. A similar but
less general concept are lazy booleans that first appeared in the IC Reals.

Two different basic methods of evaluation can be found in the packages:

– Explicit computation diagrams: During any computation, computation diagrams
are built and maintained, leading to a quite high memory consumption. These dia-
grams are evaluated only at need using techniques like lazy evaluation, a concept
primarily developed for functional programming languages. The evaluation of the
diagrams usually is top-down, i.e. a recursive traversal from the root (giving the
result) to the leaves (containing the arguments).

– Implicit computation diagrams: Instead of explicitly storing the diagrams (contain-
ing the full information on their real values), only snapshots of values are main-
tained. In addition, a small amount of relevant information (called decision history
or multi-valued cache) is kept in order to be able to reconstruct better approxima-
tions at need. This in general implies that parts of a computation or even a whole

20 L. Granvilliers, V. Kreinovich, N. Müller

computation have to be iterated. In addition, the evaluation of the computations
could be called bottom-up, as it necessarily proceeds from the arguments of a com-
putation to its result.

Before comparing the performance of the four packages, we would like to point out
some characteristic properties for each of the packages:

– CRCalc (Constructive Reals Calculator): This package by H. Boehm is a JAVA
implementation. During a computation, it constructs explicit computation dia-
grams using methods from object oriented programming. At need, these dia-
grams are evaluated top down representing multiple precision numbers as scaled
BigInteger. A sample program for the logistic equation sequence looks as fol-
lows:

CR one = CR.valueOf(1);
CR C = CR.valueOf(375).divide(CR.valueOf(100));
CR X = one.divide(CR.valueOf(2));
for (int i=1;i<param;i++){

X= C.multiply(X).multiply(one.subtract(X));
if (i%10==0) {
{ System.out.print(i); System.out.print(" ");
System.out.println(X.toString(20)); }

}

– XR (eXact Real arithmetic): Based on an extension FC++ of C++ to-
wards functional languages, Keith Briggs implemented XR, where a real
number # is represented as a function

� .�� � �
in FC++ via

typedef Fun1<int,Z> lambda. This representation is defined as # +� �
������ � / � 4 � � +�� , so it is reasonable to implement the argument type of

�
as ordi-

nary 32-bit-integers, but to use arbitrarily long integers as result type. The sample
program looks like

int i;
XR c=QQ(375,100),x=QQ(1,2);
cout<<setprecision(20);
for (i=0; i<=param; i++) {
x=c*x*(1-x);
if (i%10==0) cout<<i<<" "<<x<<endl;

}

– IC Reals (Imperial College): The previous examples were implementations,
where the underlying representations for a real number # essentially were normed
Cauchy sequences � � with � # 	 � � � � � + � . Errington, Krznaric, Heckmann, et al.
used linear fractional transformations (e.g. [21]) instead to implement a C-package.
These LFTs are a generalization of continued fractions, here a real number is rep-
resented by a sequence of integers /*� � $ � � $
 � $�� � 4 (using GMP big integers) with

� , � + � � # � � � �

 � # ��� � � and #�+ � �

� # � . Again we have explicit computation diagrams

Novel Approaches to Numerical Software with Result Verification 21

with a top-down lazy evaluation. One remarkable point is the use of lazy boolean
predicates together with a multi-valued evaluation realIF that allows to imple-
ment non-continuous overlapping choices, like e.g.

y=realIF(2, x<1,a, x>-1,b)

to implement the following assignment

" . +
� � $ if # � "� $ if # 	 	 "

– iRRAM (iterative Real RAM): This C++-package written by Müller is the only
package for exact real arithmetic that does not use explicit computation diagrams.
Instead, it works with finite precision interval representations of reals numbers sim-
ilar to Aberth’ package. A big difference is a built-in mechanism to repeat compu-
tations in case of failing interval operations. Additionally, many concepts from TTE
have been implemented, like operators for the evaluation of limits of sequences or
explicit multivalued functions as well as lazy boolean similar to the IC reals pack-
age. The example function here looks as follows:

REAL x = 0.5; REAL c = 3.75;
for (int i=1; i<=param; i++) {
x= c*x*(1-x);
if ((i%10)==0) { rwrite(x,18); rprintf(" %d\n",i); }

}

In the following we will compare the different implementations using two examples:
the sequence from the logistic equation (2) and the harmonic series.

The maintenance of explicit computation diagrams can be very hard concerning
memory consumption, nevertheless building the diagrams for the logistic sequence to
e.g. # * with $ \ "IG�G�G�G should pose no problems here. On the other hand, due to
its recursive definition and its chaotic nature, the evaluation of # * is quite difficult.
Ordinary floating point hardware delivers totally wrong values for # * from about $ \
"JG�G . If # * is computed with interval methods, the sizes of the intervals grow almost
with the involved factor of 3.75. So to get an approximation of # * with an error of � +
 ,
we need initial approximations for # � , # � etc. with a precision of about � +
 + ��� ��� * , i.e.
for $ +�"IG�G�G�G a precision of about 19000 bits is required. For the benchmarks, we tried
to compute # * with about 20 significant decimals for different values of $, using the
example programs from above.

A second example, where the loss of precision is much smaller, is the computation

of the harmonic series � / $ 4 . +
*� � � � " � We still have deeply nested operations, so this

is a simple example to model e.g. the effects of basic linear algebra. We implemented
� / $ 4 in all the packages and measured the time necessary to compute approximations
to � / $ 4 with 10 decimals for rather large $.

The following timing results were obtained on a Pentium-3 with 1200 MHz; here
"—" indicates that computations took longer than an hour or used more that 500 MB
memory, so we canceled them.

22 L. Granvilliers, V. Kreinovich, N. Müller

package logistic sequence harmonic series
n=1,000 n=10,000 n=5,000 n=50,000 n=5,000,000

CRCalc 1359 sec — 325 sec — —
XR2.0 423 sec — 2.48 sec 2027 sec —
IC-Reals 1600 sec — 0.85 sec — —
Aberth 0.5 sec 1468 sec <0.1 sec 0.3 sec 1835 sec
iRRAM <0.1 sec 17 sec <0.1 sec 0.1 sec 8.5 sec

The timings show that, at least for the two given problems, the advantage of the iterative
approach compared to the explicit computation diagrams is so dramatic that the explicit
approach seems to be unrealistic. In the package of Aberth, the error propagation seems
to be done in an suboptimal way: The precision needed for the logistic sequence at$ + "JG�G�G�G was about 58000 bits instead of the sufficient 19000 bits. The same holds
for the harmonic series, here a precision of about 14000 bits was necessary to compute� / $ 4 for $ + � $ G�G�G $ G�G�G . The iRRAM was able to do this using an internal precision
of less than 50 bits.

The example of the harmonic series shows that the iRRAM is capable to deliver
about 1 MFlops on the given CPU. As a comparison: The interval arithmetic filib++
[45] based on hardware floats delivers about 8-22 MFlops on a Pentium IV with 2000
MHz. If we take into account the different speeds of the CPUs, then the exact arithmetic
is just a factor 5 to 10 slower than a hardware based interval arithmetic, at least for cases
where precision is not a critical factor.

To consider the influence of the necessary precision, we additionally used the iR-
RAM to compute approximations (with maximal error � +
 �) of the inverse of the (bad
conditioned) Hilbert matrix

� * of size $ � $ using Gaussian elimination and compared
this to the same computation applied to the well conditioned matrix

� * � " * of the
same size $ � $:

$ 50 100 150 200 250 500

inversion of well conditioned matrix
� * � " * of size $ � $

bits 100 100 100 100 100 162
time 0.7 s 5.4 s 19 s 45s 91 s 1237 s

inversion of Hilbert matrix
� * of size $ � $

bits 1037 2745 4372 5502 6915 —
time 3.2 s 79 s 457 s 1200 s 3052 s —

Obviously, the condition of the matrix has big influence on the internal precision that
is maintained automatically by the iRRAM package, which explains the big differences
in execution time between the two examples.

Similar computations were done using octave (a freely available high-level in-
teractive language for numerical computations without interval arithmetic). octave is
already unable to invert the Hilbert matrix of size 12. On the other hand, the inversion
of the well-conditioned matrix

� * � " * with $ + �[G�G takes only 18.8 s, so here the
iRRAM is about a factor of 65 slower.

As a last example, we compared the performance of a few trigonometric functions
between MPFR (using software arithmetic with non-interval methods but with verified

Novel Approaches to Numerical Software with Result Verification 23

roundings) and an extension to MPFR (found in the iRRAM package) that uses subrou-
tines from the iRRAM to compute those functions:

10 decimals 10000 decimals
x= ^ � MPFR MPFR+iRRAM MPFR MPFR+iRRAM
e(x) 0.0117 ms 0.0577 ms 201 ms 1080 ms
ln(x) 0.0388 ms 0.0696 ms 105 ms 109 ms
sin(x) 0.0427 ms 0.0745 ms 403 ms 187 ms
cos(x) 0.0270 ms 0.0678 ms 282 ms 184 ms

Again, the overhead due to the much more elaborate exact arithmetic in the iRRAM
is remarkably small, in some cases the algorithms using exact arithmetic were even
faster.

As a summary, we may say that exact real arithmetic is on its way to be useful either
as a reference implementation or as a tool to handle precision critical computations.

Acknowledgments

L.G. was supported by PAI-Procope project. V.K. was supported by NASA grant NCC5-
209, by the AFOSR grant F49620-00-1-0365, by NSF grants EAR-0112968 and EAR-
0225670, by IEEE/ACM SC2001 and SC2002 Minority Serving Institutions Participa-
tion Grants, by a research grant from Sandia National Laboratories as part of the De-
partment of Energy Accelerated Strategic Computing Initiative (ASCI), and by Small
Business Innovation Research grant 9R44CA81741 to Applied Biomathematics from
the National Cancer Institute (NCI), a component of NIH.

The authors are thankful to the organizers of the Dagstuhl meeting for their support
and encouragement.

References

1. Aberth, O.: Precise Numerical Methods Using C++, Academic Press, Boston (1998)
2. Apt, K.R.: The Role of Commutativity in Constraint Propagation Algorithms. ACM Trans-

actions on Programming Languages and Systems 22, No. 6 (2000) 1002–1036
3. Benhamou, F., Goualard, F. Universally Quantified Interval Constraints. In: Dechter, R. (ed.):

Proceedings of of CP’2000, Principles and Practice of Constraint Programming, Springer
Lecture Notes in Computer Science 1894 (2000) 67–82

4. Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F.: Revising Hull and Box Consis-
tency. In de Schreye, D. (ed.): Proceedings of ICLP’99, International Conference on Logic
Programming, Las Cruces, USA, MIT Press (1999) 230–244

5. Benhamou, F., McAllester, D., and Van Hentenryck, P.: CLP(Intervals) Revisited. In:
Bruynooghe, M. (ed.): Proceedings of ILPS’94, International Logic Programming Sympo-
sium, Ithaca, USA, 1994. MIT Press (1994) 124–138.

6. Benhamou, F., Older, W.J.: Applying Interval Arithmetic to Real, Integer and Boolean Con-
straints. Journal of Logic Programming 32, No. 1 (1997) 1–24

7. Blanck, J.: Exact Real Arithmetic Systems: Results of Competition, Springer Lecture Notes
in Computer Science 2064 (2001) 389–394

24 L. Granvilliers, V. Kreinovich, N. Müller

8. Bliek, C., Neveu, B., Trombettoni, G.: Using Graph Decomposition for Solving Continuous
CSPs. In: Maher, M., J.-F. Puget, J.-F. (eds.): Proceedings of CP’98, Principles and Practice
of Constraint Programming, Springer Lecture Notes on Computer Science 1520 (1998) 102–
116

9. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real
numbers: NP-completeness, recursive functions and universal machines, Bulletin of the AMS
21 (July 1989) 1

10. Boehm, H. Constructive Reals Calculator,
http://www.hpl.hp.com/personal/Hans_Boehm/new_crcalc/
CRCalc.html

11. Brent, R.P.: A Fortran multiple precision package, ACM Trans. Math. Software 4 (1978)
57–70

12. Brattka, V.: Recursive characterisation of computable real-valued functions and relations,
Theoret. Comput. Sci. 162 (1996) 47–77

13. Brattka, V., Hertling, P.: Continuity and Computability of Relations, Informatik Berichte
164-9/1994, FernUniversität Hagen

14. Briggs, K. XR exact real arithmetic,
http://more.btexact.com/people/briggsk2/XR.html

15. Christie, M., Languénou, E., Granvilliers, L.: Modeling Camera Control with Constrained
Hypertubes. In: Van Hentenryck, P. (ed.): Proceedings of CP’2002, Principles and Practice
of Constraint Programming, Springer Lecture Notes on Computer Science 2470 (2002) 618–
632

16. Cleary, J.G.: Logical Arithmetic. Future Computing Systems 2, No. 2 (1987) 125–149
17. Collavizza, H., Delobel, F., Rueher, M.: Comparing Partial Consistencies. Reliable Comput-

ing 5, No. 3 (1999) 213–228
18. Collavizza, H., Delobel, F., Rueher, M.: Extending Consistent Domains of Numeric CSP. In:

Proceedings of IJCAI’99, International Joint Conference on Artificial Intelligence, Morgan
Kaufmann (1999) 406–413

19. Davis, E.: Constraint Propagation with Interval Labels. Artificial Intelligence 32 (1987) 281–
331

20. Deville, Y., Jansen, M., Van Hentenryck, P.: Consistency Techniques in Ordinary Differential
Equations. In: Proceedings of CP’1998, Principles and Practice of Constraint Programming,
Springer Lecture Notes on Computer Science 1520 (1998) 162–176

21. Edalat, A., Heckmann, R.: Computing with real numbers: (i) LFT approach to real compu-
tation, (ii) Domain-theoretic model of computational geometry. In: Barthe, G., Dybjer, P.,
Pinto, L., and Saraiva, J. (eds): Springer Lecture Notes in Computer Science (2002)

22. Errington, L., Heckmann, R.: Using the IC Reals library,
http://www.doc.ic.ac.uk/˜ae/exact-computation/
ic-reals-manual.pdf

23. Ferson, S., Ginzburg, L., Kreinovich, V., Longpré, L., Aviles, M.: Computing Variance for
Interval Data is NP-Hard, ACM SIGACT News 33 (2002) 108–118.

24. Ferson, S., Ginzburg, L., Kreinovich, V., Lopez, J.: Absolute Bounds on the Mean of Sum,
Product, etc.: A Probabilistic Extension of Interval Arithmetic, Extended Abstracts of the
2002 SIAM Workshop on Validated Computing, Toronto, Canada, May 23–25 (2002) 70–
72.

25. Fischer, X., Nadeau, J.-P., Sébastian, P., Joyot, P.: Qualitative Constraints in Integrated De-
sign. In: Chedmail, P. Cognet, G., Fortin, C., Mascle, C., Pegna, J. (eds.): Proceedings of ID-
MME’2000, Integrated Design and Manufacturing in Mechanical Engineering Conference,
Montréal, Canada, Kluwer Academic Publishers (2002) 35–42

26. Granlund, T.: GMP 4.1, http://www.swox.com/gmp/

Novel Approaches to Numerical Software with Result Verification 25

27. Granvilliers, L.: On the Combination of Interval Constraint Solvers. Reliable Computing 7,
No. 6 (2001) 467–483

28. Granvilliers, L., Benhamou, F.: Progress in the Solving of a Circuit Design Problem. Journal
of Global Optimization 20, No. 2 (2001) 155–168

29. Granvilliers, L., Monfroy, E., Benhamou, F.: Symbolic-Interval Cooperation in Constraint
Programming. In: Proceedings of ISSAC’2001, International Symposium on Symbolic and
Algebraic Computations, ACM Press (2001) 150–166

30. Hansen, E.: Sharpness in interval computations, Reliable Computing 3 (1997) 7–29.
31. Jaulin, L. Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis: With Examples in

Parameter and State Estimation, Robust Control and Robotics, Springer, London (2001)
32. Kearfott, R.B.: Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht (1996)
33. Kearfott, R.B., Kreinovich, V. (eds.): Applications of Interval Computations, Kluwer, Dor-

drecht (1996)
34. Ko, K.-I.: Complexity Theory of Real Functions, Birkhäuser, Boston (1991)
35. Kreinovich, V.: Beyond Interval Systems: What Is Feasible and What Is Algorithmically

Solvable?, In: Pardalos P.M. (ed.): Approximation and Complexity in Numerical Optimiza-
tion: Continuous and Discrete Problems, Kluwer, Dordrecht (2000) 364–379

36. Kreinovich, V.: Probabilities, Intervals, What Next? Optimization Problems Related to Ex-
tension of Interval Computations to Situations with Partial Information about Probabilities,
In: Floudas, C.A., Pardalos, P.M. (eds.): Frontiers In Global Optimization, Kluwer (to ap-
pear).

37. Kreinovich, V., Ferson, S., Ginzburg, L.: Exact Upper Bound on the Mean of the Product of
Many Random Variables With Known Expectations, Reliable Computing (to appear).

38. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility
of Data Processing and Interval Computations, Kluwer, Dordrecht (1997)

39. Kreinovich, V., Patangay, P., Longpré, L., Starks, S.A., Campos, C., Ferson, S., Ginzburg,
L.: Outlier Detection Under Interval and Fuzzy Uncertainty: Algorithmic Solvability and
Computational Complexity, Proceedings of the 22nd International Conference of the North
American Fuzzy Information Processing Society NAFIPS’2003, Chicago, Illinois, July 24-
26, 2003 (to appear).

40. Kreinovich, V., Longpré, L., Patangay, P., Ferson, S., Ginzburg, L.: Outlier Detection Under
Interval Uncertainty: Algorithmic Solvability and Computational Complexity, Proceedings
of the 4-th International Conference on Large-Scale Scientific Computations, Sozopol, Bul-
garia, June 4-8, 2003, Springer Lecture Notes in Computer Science (to appear).

41. Kreinovich, V., Nguyen, H.T., Ferson, S., Ginzburg, L.: From Computation with Guaranteed
Intervals to Computation with Confidence Intervals, Proc. 21st Int’l Conf. of North American
Fuzzy Information Processing Society NAFIPS’2002, New Orleans, Louisiana (2002) 418–
422.

42. Kulisch, U.: Memorandum über Computer, Arithmetik und Numerik, Universität Karlsruhe,
Institut für Angewandte Mathematik (1996)

43. Kuznetsov, V.P.: Interval Statistical Models, Radio i Svyaz, Moscow (1991) in Russian
44. Lebbah, Y., Rueher, M., Michel, C.: A Global Filtering Algorithm for Handling Systems of

Quadratic Equations and Inequations. In: Van Hentenryck, P. (ed.): Proceedings of CP’2002,
Principles and Practice of Constraint Programming, Ithaca, NY, USA, Springer Lecture
Notes in Computer Science 2470 (2002)

45. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.: The Interval
Library filib++ 2.0 - Design, Features and Sample Programs, Preprint 2001/4, Universität
Wuppertal (2001)
http://www.math.uni-wuppertal.de/wrswt/literatur/
lit_wrswt.html

26 L. Granvilliers, V. Kreinovich, N. Müller

46. Lhomme, O.: Consistency Techniques for Numeric CSPs. In: Wahlster, W. (ed.): Proceedings
of IJCAI’93, International Joint Conference of Artificial Intelligence, Chambéry, France,
1993. Morgan Kaufman (1993) 232–238

47. Lhomme, O., Gotlieb, A., Rueher, M.: Dynamic Optimization of Interval Narrowing Algo-
rithms. Journal of Logic Programming 37, No. 1–2 (1998) 165–183

48. Mehlhorn, K., Näher, S.: LEDA, Cambridge University Press (1999)
49. Moore, R.E.: Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ (1966)
50. Moore, R.E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia (1979)
51. Müller, N.Th.: iRRAM - Exact Arithmetic in C++,

http://www.informatik.uni-trier.de/iRRAM/
52. Nedialkov, N.S.: Computing Rigorous Bounds on the Solution of an Initial Value Problem

for an Ordinary Differential Equation. PhD thesis, University of Toronto (1999)
53. Neumaier, A.: Interval Methods for Systems of Equations Cambridge University Press

(1990)
54. Nivlet, P., Fournier, F., and Royer, J.: A new methodology to account for uncertainties in 4-D

seismic interpretation, Proceedings of the 71st Annual International Meeting of the Society
of Exploratory Geophysics SEG’2001, San Antonio, Texas, September 9–14 (2001) 1644–
1647.

55. Nivlet, P., Fournier, F., Royer, J.: Propagating interval uncertainties in supervised pattern
recognition for reservoir characterization, Proceedings of the 2001 Society of Petroleum
Engineers Annual Conference SPE’2001, New Orleans, Louisiana, September 30–October
3 (2001) paper SPE-71327.

56. W. Older, W., Vellino, A.: Constraint Arithmetic on Real Intervals. In: Benhamou, F.,
Colmerauer, A. (eds.): Constraint Logic Programming: Selected Research, MIT Press (1993)

57. Osegueda, R., Kreinovich, V., Potluri, L., Aló R.: Non-Destructive Testing of Aerospace
Structures: Granularity and Data Mining Approach, Proceedings of FUZZ-IEEE’2002, Hon-
olulu, Hawaii, May 12–17 1 (2002) 685–689

58. O’Sullivan, B.: Constraint-Aided Conceptual Design, PhD thesis, University College Cork
(1999)

59. Puget, J.-F., Van Hentenryck, P.: A Constraint Satisfaction Approach to a Circuit Design
Problem, Journal of Global Optimization 13, No. 1 (1998) 75–93

60. Rabinovich, S.: Measurement Errors: Theory and Practice, American Institute of Physics,
New York (1993)

61. Ratschan, S.: Continuous First-Order Constraint Satisfaction. In: Calmet, J., Benhamou, B.,
Caprotti, O., Henoque, L., Sorge, V. (eds.): Proceedings of AISC’2002, International Con-
ference on Artificial Intelligence and Symbolic Computations, Springer Lecture Notes on
Computer Science 2385 (2002) 181–195

62. Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic and the
MPFI library Research report R 2002-27, LIP, École Normale Supérieure de Lyon (2002)

63. Richardson, D.: The Uniformity Conjecture, Proceedings of CCA2000, Springer Lecture
Notes in Computer Science 2064 (2001) 253–272
http://www.bath.ac.uk/˜masdr/unif.dvi

64. Rowe, N. C.: Absolute bounds on the mean and standard deviation of transformed data for
constant-sign-derivative transformations, SIAM Journal of Scientific Statistical Computing
9 (1988) 1098–1113

65. Sam Haroud, D., Faltings, B.: Consistency Techniques for Continuous Constraints. Con-
straints 1 (1996) 85–118

66. Van Hentenryck, P., Mc Allester, D., Kapur, D.: Solving Polynomial Systems using a Branch-
and-Prune Approach. SIAM Journal on Numerical Analysis 34, No. 2 (1997) 797–827

67. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: a Modeling Language for Global
Optimization. MIT Press (1997)

Novel Approaches to Numerical Software with Result Verification 27

68. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues, Oxford University Press, N.Y.
(1991)

69. Walley, P.: Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, N.Y.
(1991)

70. Weihrauch, K.: Computable Analysis. An Introduction, Springer, Berlin (2000)
71. Yamamura, K., Kawata, H., Tokue, A.: Interval Analysis using Linear Programming. BIT 38

(1998) 188–201
72. Zimmermann, P.: MPFR: A Library for Multiprecision Floating-Point Arithmetic with Exact

Rounding, 4th Conference on Real Numbers and Computers, Dagstuhl (2000) 89–90
http://www.loria.fr/projets/mpfr/

