Computing 2-Step Transition Probabilities for
Interval Markov Chains

Marcilia Andrade Campos', Gragaliz Pereira Dimuro?,
Antoénio Carlos da Rocha Costa?, and Vladik Kreinovich?

1Centro de Informética, Universidade Federal de Pernambuco
50670-901, Recife, Brazil, mac@cin.ufpe.br
2Escola de Informéatica, Universidade Catélica de Pelotas
Rua Felix da Cunha 412, 96010-000, Pelotas, Brazil
lizQatlas.ucpel.tche.br, rocha@atlas.ucpel.tche.br
3Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA, vladik@cs.utep.edu

Abstract

Markov chains are a useful tool for solving practical problems. One
of the useful features of a Markov chain is that once we know the 1-step
transition probabilities — i.e., probabilities of a transition in a single step
— we can easily compute 2-step probabilities. In many real-life situations,
we do not know the exact values of transition probabilities; instead, we
only know the intervals of possible values of these 1-step transition proba-
bilities. In such situations, we must be able to compute the interval of pos-
sible values of 2-step transition probabilities. For this problem, intervals
produced by straightforward interval computations have excess width. In
this paper, we propose a new algorithm that computes the exact intervals
for 2-step transition probabilities and that requires (asymptotically) the
same computation time as the corresponding non-interval computations.

1 Introduction

What are Markov chains and why they are useful in applications.
Many real-life systems ranging from weather to hardware to psychological sys-
tems randomly switch from one state to another. In many such systems, the
transition probability does not depend on the history, only on the current state.
In other words, the probability that a system will be in a state s by time ¢

depends only on its state at time t — 1 and does not depend on its states at
previous moments of time ¢ — 2,... Such random systems are called Markov
chains; see, e.g., [2, 3, 8, 13, 14, 15, 16].

How to describe a Markov chain. At any given moment of time, with given
measuring instruments at our disposal, we can only distinguish between finitely
many states of a system. Therefore, for practical applications, it is sufficient
to describe Markov chains with finitely many states. In such a system, we can
enumerate the states into a sequence si,...,Ss,; then, to describe a Markov
chain, it is sufficient to present transition probabilities p;; of going from i-th
state s; in the previous moment of time to j-th state s; in the next moment of
time:
def
pij = P(s(t) = s;]s(t — 1) = s:). 1)

Once we are in a state s; at a moment ¢, we must be in some state in the next
moment of time; thus, for each original state, the sum of the corresponding
transition probabilities should be equal to 1:

Zpij =1. (2)
j=1

Possibility to easily compute 2-step transition probabilities: an im-
portant feature of Markov chains. One of the features that make Markov
chains so useful in practice is that — due to the fact that the transition proba-
bilities do not depend on the pre-history — once we know the 1-step transition
probabilities (1), we can easily determine 2-step and other transition probabili-
ties. For example, to determine the two-step probabilities

By € P(s(t) = 55| s(t - 2) = 5), (3)

we can use the following formula:
Pg) = Zpik *Pkj- (4)
k=1

How long does it take to compute these 2-step transition probabilities? Usually,
software systems simply implement the formula (4). In this case, to compute
each of n? values pg-), we need n multiplications and n — 1 additions; hence, the
total number of arithmetic operations is equal to n? - (n + (n — 1)) = O(n?).

It is worth mentioning that for large n, we can, in principle, compute the
2-step transition probabilities faster than in O(n?) time: indeed, the formula (4)
simply means that we multiply a matrix p;; by itself, and it is known (see, e.g.,
[1] and references therein) that there are algorithms that multiply two matrices
in time O(n®) for a < 3; however, these algorithms are rarely practically used

for Markov chains because they becomes more efficient than straightforward
formula (4) only for very large n, and in most practical applications of Markov
chains, we need chains with n < 100 states; see, e.g., [14].

Interval-valued Markov chains. Traditional Markov chain methods are
based on the assumption that we know the exact values of the transition prob-
abilities p;;. In most practical situations, we do not know the exact values of
the probabilities; at best, for each probability p;;, we know a lower bound P
and an upper bound p;;. In other words, for every ¢ and j, we only know the
interval p;; = [Ejj’ﬁij] of possible values of p;;; see, e.g., [10, 17, 18]. Such
interval-valued Markov chains were introduced and analyzed in [9].

Problem: how to compute 2-step transition probabilities for interval
Markov chains. We have already mentioned that computing 2-step transition
probabilities is an important part of Markov chain applications. Thus, when
we only know intervals of possible values of p;;, we must be able to compute
intervals of possible values of 2-step transition probabilities.

At first glance, this problem may seem straightforward: we have an explicit
formula (4) for computing the desired values pg) from p;;, so we can simply
use straightforward interval computation (see, e.g., [5, 6, 7, 12]), i.e., perform
the same operations on intervals p;; instead of numbers. As a result, we get
enclosures for the desired intervals pz@-).

The problem with this approach is that we do not take into consideration
that the values p;; cannot independently take arbitrary values within the cor-
responding intervals p;;: these values must satisfy the additional constraint
(2). Since we did not take these constraints into consideration, the results of
straightforward interval computations often have excess width. The possibility
of such an excess width can be easily illustrated on a toy example when we have
no information about the transition probabilities at all, i.e., when for each ¢ and
J, we have p;; = [0,1]. In this case, straightforward interval computations lead
to Pik - Prj = [0,1] - [0,1] = [0,1] hence, for the sum pg) of n such terms, we
get an interval [0,n]. Since the actual probability has to be within the interval
[0,1], we clearly have excess width here.

What we are planning to do. Since we cannot compute the exact range of
pg-) by using straightforward interval computations, we must design new tech-
niques. In this paper, we propose a new algorithm for computing the exact
interval range for 2-step transition probabilities, and we show that this algo-
rithms enables us to compute these ranges in exactly the same asymptotic time
O(n?) as for number-valued Markov chains.

2 Analysis of the Problem and a Step-By-Step
Design of an Efficient Algorithm for Solving
This Problem

Reduction to SUE expressions. In interval computations, one known
source of excess width is repetition of variables. It is known that if a formula is
a single-use expression (SUE), i.e., if in this formula, each variable only occurs
once, that for such formulas, straightforward interval computations lead to the
exact range (see, e.g., [4]). To avoid this excess width, let us first represent the
expression (4) in SUE form.

The original formulas have few repetitions of variables, so this reduction can
be easily done. The resulting expressions are different for ¢ = j and for ¢ # j.
For i = j, we get the following SUE expression:

P =" pik - prj + Pl (5)
ki
For i # j, we get the following SUE expression:
pﬁf) = Z Dik - Prj + Dij - (Pii + Pjj)- (6)
k#i,j

Peeling produces the exact range but requires lots of computations.
To compute the exact range of pg), we must find the maximum and the min-
imum of the corresponding expressions (5) and (6) under the conditions (2)
and

Bi]’ <pij < Dij- (7)

In other words, we want to optimize a quadratic function under linear con-
straints (equalities and inequalities). In principle, to optimize such a function,
we can use the idea of peeling; see, e.g, [6]. For our problem, the idea of peeling
can be described as follows.

We want to optimize a quadratic function over the region described by linear
equalities and inequalities (2) and (7). From the geometric viewpoint, a region
described by linear equalities and inequalities is a polytope. The maximum
(or a minimum) of a function in this region is attained either in the interior of
this polytope, or in one of its lower-dimensional boundary polyhedral elements:
faces, faces of the faces, ..., all the way to 0-dimensional elements — vertices.

Based on the equalities and inequalities that describe a polytope, we can
explicitly describe all these polyhedral elements; there are &~ 2™ of them. For
each of these boundary elements, we can select independent variables z;,, ..., %;,
— as many as the dimension d of this boundary element — and explicitly describe
other variables z; as linear functions of these independent ones. (In the limit
case, when we consider vertices — O-dimensional boundary elements — there are

no independent variables at all.) If we substitute the expressions for all the
variables in terms of independent ones into the optimized quadratic function,
then we get an expression E(z;,,...,;,) for this quadratic function in terms
of d independent variables z;,,...,x;, only. If the minimum or maximum of
this expression is in the interior of the boundary element, then all d partial
derivatives w.r.t. these variables should be equal to 0:

OF
5o, = 8)

Since the derivative of a quadratic function is a linear function, the equations (8)
forms a system of d linear equations with d unknowns z;,,...,z;,. This system
is easy to solve, so for each boundary element, we get a possible optimum point.
Of course, we also need to check that this solution does belong to this boundary
element (and not to its extension) by checking that all linear inequalities that
define this element are satisfied. (For vertices, we simply compute the value of
the quadratic function.)

Summarizing: we know that, e.g., the minimum is always attained either in
the interior of the polytope, or in the interior of one of the boundary elements,
and for each boundary element, we know how to compute the point where
this minimum is attained (if at all). Thus, to find the minimum of the given
quadratic function, we simply analyze all the boundary elements this way, and
then take the smallest of the corresponding values of the minimized quadratic
function.

This algorithm enables us to compute the exact range of any quadratic func-
tion, in particular, of the function pg). The only problem with this algorithm
— as mentioned in [6] — is that since we have = 2™ boundary elements, this
algorithm requires exponential (= 2") time.

So, if we want to compute the range in polynomial time, we must design a
new algorithm. Our new algorithm will actually use peeling — but not peeling
applied to the original problem, but peeling applied to reduced problems (with
fewer variables).

Reduction to a fewer-dimensional problem: Step 1. Let us describe
how this reduction can be done.

We will start with the case when ¢ = j and we are looking for the maximum
of the quadratic expression (5). In this case, we want to solve the following
problem:

> ik - pri + pi; — max 9)
ki
under the conditions that p,, € pap for all a and b and that
sz‘k +pii = 1. (10)
ki

In (9), the coefficients at py; are non-negative; therefore, the maximum is at-
tained when each of the terms py; attains the largest possible value p;;. In other
words, the solution to the problem (9) is also a solution to the following problem
with fewer unknowns:

Zpik * Dri +p12i — max (11)
P

under the conditions (10) and
Py < Pik < Dig- (12)

Reduction to a fewer-dimensional problem: Step 2. Let p;; be the value
for which the maximum is attained. Then, if we fix the value p;;, we get the
following problem with one fewer variable:

sz'k - Dp; —> max (13)
k#i
under the conditions (12) and

sz'k =1-pi- (14)

ki

Reduction to a fewer-dimensional problem: Step 3. To perform a fur-
ther reduction, let us sort that the coefficients p,; (k # ¢) in decreasing order,
i.e., in such a way that

P1)i 2 P2)i 2 --- 2 P(n—1)i- (15)

The sums in (13) and (14) do not depend on the order in which we add the
terms. Thus, the above optimization problem can be reformulated as follows:

> pik) - Pryi — max (16)
k

(where p;(x) denotes the value py for which p; = ﬁ(k)i) under the conditions
iy < Pik) < Pick) (17)

and
E Pik) = 1 — pis. (18)
3

In this case, if, for some k1 < k2, we have p;,) < Di(ky) and pj(,) > Pithy)’

then we can subtract a small positive value ¢ > 0 from p;(;,) and add this value
to Di(ky), i-e., replace p;,) with p;(kl) = Pi(k;) t+ € and p;(,w) = Di(ky) — € (We
keep all other values p;(;) unchanged). If £ is small enough, we still satisfy the

conditions pj(x,) € Pi(x,) and Pi(r,) € Pi(x,)- Since we added and subtracted the
same value, the sum of the resulting probabilities remains the same hence, the
condition (18) is still satisfied, so the new values pg(k) satisfy all the necessary
conditions.

If we replace pj() by p;.(k), then the value of the optimized function (16) is
increased by € - (P(r,); — P(k,)i)- Since the values P(y); are sorted in decreasing
order, and k; < k2, we conclude that the increase is non-negative. Thus, if
Pi(ks) < Di(ky) and pj(r,) > Pk, W can change the values of pj) in such a
way that one of these conditions is no longer true, and increase (or at least not
decrease) the value of the optimized function.

Hence, a maximum is attained at a vector (p;(1),Pi(2),---) for which the
above condition is never satisfied, i.e., for which:

e once pirry < Dixr), We have px) = i) for all k > k', and
e once p;(xr) > Py We have pi(k) = Dix) for all k < k'

Thus, if there is a k' for which Piry < Pi(k') < Pirry: We have p;r) = Py for
all k < k' and p;y) = Dixy for all k > k'

If there is no such &', i.e., if for every k, pjr) = Py ©OF Pi(k) = Di(k)> then
once pj(r) = Py and hence pyx) > Piryr We have p;xy = Pj(xry for all kK < k.
for

Similarly, once pjx) = Pk and hence pjx) < Dj(r), we have p;gr) =

all &' > k.
In all these cases, there is a borderline value &’ such that p;) = Pir for
all k < k' and p;y) = Pk for all kK > k'. Thus, once we fixed k’, the optimal

values of all the variables p;(;) are fixed except for one variable: p;). Hence,
once k' is fixed, the original optimization problem takes the following form:

) Pirry

Pi(k) * Pyr)i + Py — max (19)
under the conditions that
Py S Pitk) < Pighr)s (20)
b, < pii < Di» (21)
and
Pik') + Pii = Cir, (22)
where we denoted
def _
o =1 Z Pi(k) — Z Piry- (23)
kk<k! kik>k'

This is a quadratic optimization problem with 2 variables under linear con-
straints, so, for this problem, the peeling method leads to a solution in
22 = const number of computational steps.

Once we compute the optimal values of p;s) and p;;, we can compute the
corresponding value Vi of the original objective function as

Vi = Z Pik) " Pkyi + Pi(k) " Prryi + Z Py " Pwyi + pji- (24)
kb <k’ k> k!

The actual maximum of p>

;; can then be determined as the largest of the cor-
responding values V.

Resulting algorithm for computing the upper bound for p(2): first

i
draft. The above analysis leads to the following algorithm for computing, for
(2).

a given 4, the upper endpoint pgf) of the interval of possible values of p;;”:

e First, we sort the values py,; (k # ¢) in decreasing order:
Py 2 P2yi 2 -+ 2 P(n—1)i-

e Then, for each ¥’ =1,...,n — 1, we do the following:

— we compute the value ¢p by using formula (23);

— we solve the problem (19)-(22) of optimizing a quadratic function of
two variables p;y and p;; with linear constraints;

— based on the solution, we compute Vs by using the formula (24).

e Finally, we return the largest of the values V4,...,V,,_1 as the solution to
the original optimization problem.

What is the computational complexity of this algorithm? Sorting requires
O(n -log(n)) steps (see, e.g., [1]). After sorting, for each k', we need:

e O(n) steps to compute the sums in ¢y,

e then a constant number of steps to solve the optimization problem with 2
unknowns, and

e then, again O(n) steps to compute O(n) steps —

the total of O(n) steps. Since we need O(n) steps of each of n — 1 values k', we
thus need a total of O(n?) steps. The final computation of the largest of n — 1
values Vj requires O(n) steps, so the overall computational complexity of the
after-sorting part of this algorithm is O(n?) + O(n - log(n)) = O(n?).

This is much larger than O(n) steps that is necessary to compute the value
of pgf) in the non-interval case, by using the formula (4). It is therefore desirable
to decrease the computation time of our algorithm. How can we do that?

Decreasing the computation time of the resulting algorithm. It is
indeed possible to reduce the above computation time because we do not really
need to compute ¢ and Vi “from scratch” every time: for each k' > 1, we can
compute the values of these variables by modifying the previous values. More
specifically, we can compute the auxiliary values

def _ _ _
Wi E 3 Bigyy Payi+ D Py Pikyio (25)
kk<k' k:k>k
for which
Vie = Wi + Ditk) Prryi + pji- (26)
To be more precise, we do need to compute the original values ¢; and Wy; they
will be computed as
a=1-3 Pitk (27)
k:k>1
and
Wy = Z Piry * Peryi- (28)
k:k>1

After that, once we know the values cx_; and Wj_1, we can compute the next
values of ¢; and Wy, by using the following easy-to-deduce formulas:

Cr = Cp—1 _pi(k—l) +£i(k) (29)
and
Wi = Wi—1 + Dik—1) " Pe—1)i = Pyry * Pliyi- (30)

After this modification, the after-sorting part of the algorithm requires that for
each ¥ =1,...,n — 1, we do the following;:

e first, we compute the value ¢y ; for k' = 1, we use the formula (27); for
k' > 1, we use the formula (29);

e we solve the problem (19)-(22) of optimizing a quadratic function of two
variables p;) and p;; with linear constraints;

e we compute the value Wy ; for k' = 1, we use the formula (28); for &' > 1,
we use the formula (30);

e based on the solution of the quadratic optimization problem, we compute
Vi by using the formula (26).

Here, for k' = 1, we need O(n) steps, but for every other k', we only need
finitely many steps. Thus, the overall after-sorting complexity of this algorithm
is O(n) — exactly the same as in the non-interval case.

Similar algorithm for computing the upper bound for pg) (F #).
For the case j # i, similar reductions, when applied to the formula (6), lead to
the conclusion that the desired upper endpoints is a solution to the following

simplified optimization problem:
> pik - Py; + pij - (pis + Pj;) — max (31)
k#1,j
under the conditions that p,s € pas for all a and b and that
> pik +pi +pij = 1. (32)
k#4,j

After sorting the values py; (k # 4, j) in decreasing order, we can prove that there
exists a borderline value k' for which p;x) = Py for all & < &', pjy = Piky
for all £ > k', and the values pj), pii, and p;; can be obtained by solving the

following quadratic optimization problem with linear constraints:
Pik') *Pwys + Pij - (Pis + Pj;) — max (33)

under the conditions that

Py < Pigky < Pigrrys (34)
P, < Pii < Dy (35)
1_71-]- < Dij < @j; (36)
and
Pi(k"y + Pii + Pij = cr, (37)

where we denoted
def _
aw =1- Z Pik) — Z Piry (38)
k:k<k' k:k>k'

This is a quadratic optimization problem with 3 variables under linear con-
straints, so, for this problem, the peeling method leads to a solution in
2% = const number of computational steps.

The above expression for the objective function can be reformulated as

Vir = Wir + Dy - Praryi + Pig - (Pii + Pjj)- (39)

Thus, similarly to the case ¢ = j, we can set up the after-sorting part of our
algorithm as doing the following for each &' =1,...,n — 2:

e first, we compute the value ¢y ; for k' = 1, we use the formula (27); for
k' > 1, we use the formula (29);

10

¢ we solve the problem (33)—(37) of optimizing a quadratic function of three
variables p;), pii, and p;; with linear constraints;

e we compute the auxiliary value Wy ; for k' = 1, we use the formula (28);
for k' > 1, we use the formula (30);

e based on the solution of the quadratic optimization problem, we compute
Vi by using the formula (39).

Here, for k' = 1, we need O(n) steps, but for every other k', we only need
finitely many steps. Thus, the overall after-sorting complexity of this algorithm
is O(n) — exactly the same as in the non-interval case.

Overall computational complexity. Overall, we need to sort n sequences
corresponding to n different values of 4. Thus, all the sorting requires

n-O(n -log(n)) = O(n” -log(n)) < O(n?) (40)

steps. After sorting, we need O(n) steps to compute each of n? upper bounds;
therefore, we need O(n?) after-sorting steps. Overall, the above algorithm re-
quires O(n? -log(n)) + O(n3) = O(n?) steps — asymptotically the same number
of steps as in the non-interval case.

Similar algorithm for computing the lower bound for p(.z-).

i
pute the lower endpoint for pg), we must use p, . instead of p;,;; therefore, we

must sort the values p, . instead of py;, and we must solve the corresponding
minimization problems instead of the maximization ones.

To com-

We are now ready to describe the algorithms. In the following two
sections, we will now summarize the resulting O(n?) algorithms for computing
2-step transition probabilities for interval Markov chains.

3 O(n?) Algorithm for Computing the Exact Up-
per Bound for 2-Step Transition Probabilities
for Interval Markov Chains

First part. First, for each ¢ from 1 to n, we sort the values py;,...,D,; into a
decreasing sequence.

Second part. Then, for each i from 1 to n, to compute the exact upper bound

pg) for pgf), we do the following. First, by deleting the value p,; from the sorted

sequence, we get a sorting of all the values py,; (k # ¢) into a decreasing sequence

Py 2 P2)i 2 -+ 2 P(n—1)i- (41)

11

Then, for each ¥’ =1,2,...,n — 1, we do the following:

o first, we compute the value ¢ ; for k' = 1, we use the formula

ca=1- Z Piry’

k:k>1

for k' > 1, we use the formula

Cpr = Cpr—1 —ﬁi(k'—l) +2i(k’);

(43)

e we use peeling to solve the problem of optimizing a quadratic function

Pi(k') * P(rt)s + pj; — max
of two variables p;) and p;; under linear conditions that
Py < Pik) < Pi(wry
P;; < Pii < Piss

and
Pi(k') + Pii = Cr';

e we compute the value Wy ; for k' = 1, we use the formula

Wi= 2 Py P
k:k>1

for k' > 1, we use the formula

Wi = Wir—1 + Py —1) " Pk —1)i ~ Piggry * Pli)is

(44)

(45)

(46)

(49)

e based on the solution of the quadratic optimization problem, we compute

Vi by using the formula
Vir = Wi + Pigry - Pryi + Pii-

The actual maximum of pgf) c

responding values Vjr.

12

(50)

an then be determined as the largest of the cor-

Third part. Finally, for each i from 1 to n and for each j from 1 to n, to

compute the exact upper bound pij) for pg), we do the following. First, by
deleting the values p;; and p;; from the sorted sequence, we get a sorting of all

the values p,; (k # ¢,7) into a decreasing sequence

(2

Payi 2 P@yi 2 -+ 2 P(n—2)i- (51)
Then, for each k' = 1,2,...,n — 1, we do the following:

e first, we compute the value ¢y ; for k' = 1, we use the formula (42); for
k' > 1, we use the formula (43);

e we use peeling to solve the problem of optimizing a quadratic function
Pik') * P(kyi + Pij - (Pis + Pj;) — max (52)

of three variables p;(x), pii, and p;; under linear conditions that

Py S Pitk) < Py (53)
P, < Pii < Dy (54)
Py < pij < Dijs (55)
and
Pi(k) + Pii + Pij = Ci; (56)

e we compute the value Wy ; for k' = 1, we use the formula (48); for &' > 1,
we use the formula (49);

e based on the solution of the quadratic optimization problem, we compute
Vi by using the formula

Vie = Wi + piger) Py + i - (Pii + Pjj)- (57)

The actual maximum of p{”

i can then be determined as the largest of the cor-
responding values Vjr.

4 O(n®) Algorithm for Computing the Exact
Lower Bound for 2-Step Transition Probabil-
ities for Interval Markov Chains

First part. First, for each 7 from 1 to n, we sort the values p oo P into a
decreasing sequence.

13

Second part. Then, for each i from 1 to n, to compute the exact lower bound
(2

2
pgz’) for p;;”,

sequence, we get a sorting of all the values Dy (k # 1) into a decreasing sequence

we do the following. First, by deleting the value p,; from the sorted

P1yi 2Py 2+ 2 Py (58)
Then, for each k' = 1,2,...,n — 1, we do the following:

e first, we compute the value ¢ ; for k' = 1, we use the formula

ca=1- Y P (59)

k:k>1

for k' > 1, we use the formula
Ck' = Ch—1 ~ Dy + Dirr)s (60)
e we use peeling to solve the problem of optimizing a quadratic function
Pi(k) " Prryi +p}; — min (61)

of two variables p;) and p;; under linear conditions that

Py < Pik) < Digkr)s (62
P, < Pii < Dy (63)

and
Di(k'y T+ Pii = Cr'; (69

e we compute the value Wy ; for k' = 1, we use the formula

k:k>1

for k' > 1, we use the formula

Wy = Wyg—1 +p,

Pitkr—1) " Pl —1yi ~ Pitk) " Prpryis (66)

e based on the solution of the quadratic optimization problem, we compute
Vi by using the formula

Vie = Wi + pigery * Bryi + Pii- (67)

)

The actual minimum of pgf can then be determined as the smallest of the

corresponding values V.

14

Third part. Finally, for each i from 1 to n and for each j from 1 to n, to
2) for p(z)
J ij
deleting the values P and P, from the sorted sequence, we get a sorting of all

compute the exact lower bound pg we do the following. First, by

the values p, . (k # i, j) into a decreasing sequence
P1yi 2 P2y 2+ 2 Py (68)

Then, for each &' = 1,2,...,n — 1, we do the following:

e first, we compute the value ¢y ; for k' = 1, we use the formula (59); for
k' > 1, we use the formula (60);

e we use peeling to solve the problem of optimizing a quadratic function
Pi(k') " P(goy; T Pig - (pii +£jj) — min (69)

of three variables p;(x), pii, and p;; under linear conditions that

iy S Pite) < Pigws (70)
b, < pii < Dy (71)
1_71-]- < Dij < I_’z'j: (72)
and
Di(ky + Pii + Dij = Cr'; (73)

e we compute the value Wy ; for k' = 1, we use the formula (65); for &' > 1,
we use the formula (66);

e based on the solution of the quadratic optimization problem, we compute
Vi by using the formula

2)

The actual minimum of p;;" can then be determined as the smallest of the

corresponding values V.

5 Final Comment: What About 3-Step Proba-
bilities?

A natural question is: we know how to compute the exact intervals for 2-step
transition probabilities, what about 3-step transition probabilities? 4-step prob-
abilities?

15

How to compute these probabilities and whether it is even possible to com-
pute the exact intervals for these probabilities in reasonable time, is an open
question. The reason why it may be difficult is that in general, just like the
formula (4) means that the matrix formed by 2-step probabilities is a square of
the matrix p;;, the matrix formed by 3-step probabilities is a cube of the original
matrix p;;. The square of a matrix can be reduced to a single-use expression
and thus, computed exactly even in the interval case. The cube of a matrix is
difficult to represent in SUE form and, in general, computing the exact cube of
an interval matrix is NP-hard [11].

This NP-hardness of a general problem does not necessarily mean that the
sub-problem of computing the cube of a probability matrix is necessarily NP-
hard, so there is hope that computing the exact intervals for 3-step transition
probabilities may also turn out to be feasible.

Acknowledgments

This work was partially supported by the Brazilian funding agencies
CNPq/CTPETRO, CNPq/CTINFO, and FAPERGS.

V.K. was also partly supported by NASA under cooperative agreement
NCC5-209, by Future Aerospace Science and Technology Program (FAST) Cen-
ter for Structural Integrity of Aerospace Systems, effort sponsored by the Air
Force Office of Scientific Research, Air Force Materiel Command, USAF, under
grant F49620-00-1-0365, by NSF grants EAR-0112968 and EAR-0225670, by the
Army Research Laboratories grant DATM-05-02-C-0046, and by IEEE/ACM
SC2003 Minority Serving Institutions Participation Grant.

This work was mainly done when Gragaliz Pereira Dimuro and Antonio
Carlos da Rocha Costa visited El Paso, Texas; this visit was sponsored by
CNPq/CTPETRO and CNPq/CTINFO.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press, Cambridge, MA, and Mc-Graw Hill Co., N.Y.,
2001.

[2] D. Gamerman, Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference, CRC Press, Boca Raton, Florida, 1997.

[3] W. R. Gilks, S. Richardson, and D. L. Spiegelhalter (Eds.), Markov Chain
Monte Carlo in Practice, Chapman & Hall, Boca Raton, Florida, 1996.

[4] E. Hansen, “Sharpness in interval computations”, Reliable Computing,
1997, Vol. 3, pp. 7-29.

16

[5] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis:
With Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer, London, 2001.

[6] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer,
Dordrecht, 1996.

[7] R. B. Kearfott and V. Kreinovich (eds.), Applications of Interval Compu-
tations, Kluwer, Dordrecht, 1996.

[8] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer Verlag, N.Y.,
1976.

[9] I. O. Kozine and L. V. Utkin, “Interval-valued finite Markov chains”, Re-
liable Computing, 2002, Vol. 8, No. 2, pp. 97-113.

[10] V. P. Kuznetsov, Interval Statistical Models, Radio and Communications
publ., Moscow, 1991 (in Russian).

[11] G. Mayer and V. Kreinovich, Computing A - A - A is NP-hard, working
paper.

[12] R. E. Moore, Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[13] A. Papoulis, “Brownian Movement and Markoff Processes.” In: Probabil-
ity, Random Variables, and Stochastic Processes, McGraw-Hill, New York,
1984, pp. 515-553.

[14] L. R. Rabiner, “A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition”, Proceedings of the IEEE, 1989, Vol. 77, No.
2, pp. 257-286.

[15] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains,
Princeton University Press, Princeton, New Jersey, 1995.

[16] K. S. Trivedi, Probability and Statistics with Reliability, Queuing, and Com-
puter Science Applications, J. Wiley, New York, 2001.

[17] P. Walley, Statistical Reasoning with I'mprecise Probabilities, Chapman &
Hall, London, 1991.

[18] P. Walley, “Measures of uncertainty”, Artificial Intelligence, 1996, Vol. 83,
pp. 1-58.

17

