Separating Components in Interval-Valued
Images

Marilton Sanchotene de Aguiar'?,

Gracaliz Pereira Dimuro!, Anténio Carlos da Rocha Costal+?,
Andrei Finkelstein®, and Vladik Kreinovich?

'Escola de Informética, Universidade Catélica de Pelotas
Rua Felix da Cunha 412, 96010-000, Pelotas, Brazil
marilton@atlas.ucpel.tche.br
liz@atlas.ucpel.tche.br, rocha@atlas.ucpel.tche.br

2Programa de Pés-Graduacio em Computagio
Universidade Federal do Rio Grande do Sul
91.501, Porto Alegre, Brazil

3Institute of Applied Astronomy
8 Zhdanovskaya St.
197042 St. Petersburg, Russia

“Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA, vladik@cs.utep.edu

Abstract

In many applications of imaging, we would like to know whether we
have an image of a single-component object or an image of an object
that consists of several components. Many algorithms have been designed
to solve this problem; however, these algorithms are all heuristic. Often,
according to some reasonable methods, we have a single component, while
according to some other equally reasonable methods, the same image have
multiple components. It is desirable to produce reliable methods, so that
if a method claims that there are multiple components, then it should
mean that the observed data is incompatible with the assumption that
there is only one component. At present, there exist reliable methods for
separating components in a (interval-valued) 1D source. In this paper,
we develop an efficient algorithm for separating components in a general
(interval-valued) 2D source.



1 Introduction

The problem of separating components is important. In many appli-
cations of imaging, we would like to know whether we have an image of a
single-component object or of an object that consists of several components.
For example, in astronomical images, it is desirable to know whether we have a
single-component source or an observed source consists of several components;
see, e.g., [22].

Similar problems occur when we analyze satellite images and/or geophysi-
cal maps to check whether, e.g., a given geological zone is indeed a single zone
or it is more appropriate to divide it into several “components” (segments).
In geophysics, appropriate subdivision of an area into segments is extremely
important, because it enables us to extrapolate the results obtained in some
locations within the segment (where extensive research was done) to other lo-
cations within the same segment, and thus, get a good understanding of the
locations which weren’t that thoroughly analyzed.

The problem of separating components is difficult to solve. If we had
a perfect image, then, by showing this image to an expert, we could usually
easily determine whether we have a single component or multiple components.
In practice, however, due to measurement inaccuracy, this problem is difficult
to solve. For example, in astronomy, if we observe a narrow gap between two
point sources, it may be an indication that there are two components or it may
be an artifact created by noise. To show how difficult this problem is, it is
sufficient to say that, e.g., in radioastronomy, the ability to distinguish between
a single-component source and a source consisting of two close components is
one of the main metrics for gauging the quality of a radiotelescope; see, e.g.,
[20].

How this problem is solved now. Since, as we have mentioned, the prob-
lem of separating components is very important, many algorithms have been
designed to solve this problem. These algorithms use different criteria to deter-
mine the boundaries between the components — if no such boundary is found,
this means that we have a single-component source, otherwise the source con-
sists of several components. An overview of the existing approaches is given,
e.g., in [21] (for latest developments, see, e.g., [13]).

For example, one such approach identifies boundary points as points x for

which the Laplacian
def 82f 62f
Af = S+ —= 1
f ox?2 = Oy? (1)
is close to 0; the value of the Laplacian is estimated by using numerical differ-
entiation.

Main limitation of the existing methods: they are heuristic. From
the practical viewpoint, the main problem with these methods is that they are



all heuristic methods. Each of these methods is based on reasonable ideas,
but there are many of them, and often, different methods give different results.
Often, according to some reasonable methods, we have a single component,
and according to some other equally reasonable methods, the same image have
multiple components.

Reliable methods are desirable. It is desirable to produce reliable meth-
ods, so that if a method claims that there are multiple components, then it
should mean that the observed data is incompatible with the assumption that
there is only one component.

Existing reliable methods. At present, there exist reliable methods for sep-
arating components in a 1D source; the corresponding algorithms are described
in [23].

Similar algorithms have been used to separate components in a 2D case
in situations when the experts provide us with a preferred coordinate system
[1, 3, 4].

What we are planning to do. In this paper, we develop an efficient algo-
rithm for separating components in a general 2D source.

Before we describe algorithms for separating components in an interval-
valued image (e.g., image known with interval uncertainty), let us first analyze
the problem of separating components in precisely known images.

2 Separating Components in Precisely Known
Images

Simplest case: black and white images. Let us start with the simplest
case when we have a black and white image, i.e., an image in which every point is
either black or white. In precise terms, black and white images can be described
as follows: we have two values b < w, and at every point z, the intensity f(z)
of the image is equal either to b (“black”) or to w (“white”).

To describe such an image, it is sufficient to describe the source as the set
of all its white points. For such images, it is intuitively clear how to define a
component:

¢ if the source is a connected set, then we have a single component;

o if the source is not a connected set, then, from the topological viewpoint,
this source consists of several connected components; these topological
components are exactly the source components that we are looking for.



How to define connectedness in discrete images. The notion of con-
nectedness is well-defined for “continuous” sets — i.e., sets that are subsets of
R2. However, in practice, when we get an image, we only have the values of the
intensity f(x) on finitely many points x (“pixels”). In this case, the set P of
all points at which we know the value of intensity is discrete; therefore, the set
W of all white points — which is a subset of P — is also discrete. What is the
natural way to define connectedness for such sets?

Some of the pixels are immediate neighbors to each other. The set P of all
the pixels with the (symmetric) neighborhood relation ~ forms a graph. In a 1D
grid, each point inside the source has 2 immediate neighbors — i.e., points for
which each coordinate differs by no more than 1 grid step; each of the endpoints
has only 1 immediate neighbor. In a 2D rectangular grid, each point has < 8
immediate neighbors. In general, we have a small constant C' such that each
point has no more than C' immediate neighbors.

It is natural to say that two pixels a and b from a set L are connected in this
set L if we can reach b from a by going from a point to its neighbor, i.e., if there
exists a sequence a ~ a; ~ ag ~ ... ~ ap ~ b connecting a and b in which all
the intermediate points ay,. .., ay belong to L; see, e.g, [7, 11, 12, 14, 18] and
references therein. This connectedness relation is an equivalence relation (it is
actually the transitive closure of the neighborhood relation ~) and therefore, it
divides each set of pixels S C P (in particular, the set W of all white points)
into several equivalence classes — components of the original black and white
source.

Comment 1. It is worth mentioning that the whole problem of separating the
source into components only makes sense when the original set of pixels P is
itself connected. If P is itself disconnected, we clearly should analyze different
connected components of P separately.

Comment 2. The above description is good for astronomical sources, for which
the background is simply vacuum. In geospatial analysis, “white” points cor-
respond to elevations, while “black” points correspond to depressions. Both
elevations and depressions are meaningful zones. Thus, in addition to subdivid-
ing the set of all elevations into connected components, we must also classify
the set of all depressions into connected components.

How to compute components of a black and white source. There exists
a known algorithm that, given a graph with n pixels, computes its connected
components in linear (O(n)) time; see, e.g., [5].

This algorithm computes the components one by one; as a component is com-
puted, the pixels that are already known to be from this component are marked
by the number of this component. In the beginning, no pixels are marked. Once
a component is computed, we check whether there are any unmarked points left;
if yes, we start uncovering the next component, if no, we stop.



To uncover each component, we mark its pixels one by one. We start with
the first unmarked pixel. After that, we mark all the un-marked immediate
neighbors of all the pixels that are already known to belong to this component;
when no such unmarked immediate neighbors remain, we stop — the component
has been computed.

Since we mark each pixel only once, this algorithm indeed requires linear
time.

Gray-scale images. In general gray-scale images, the intensity values f(z)
can be arbitrary non-negative real numbers, not just b and w. How do we define
components for such images?

Intuitively, we say, e.g., that the source consists of two components, if we can
visually represent these two components as two disconnected sets representing
these components. In order to represent a component as a set, we need to choose
a threshold p so that all the points z in which the intensity is higher than this
threshold (i.e., in which f(z) > u) belong to the set, while all the points z in
which the intensity is smaller than this threshold (i.e., in which f(z) < u) are
outside this set.

Thus, we say that a source consists of two components if for some threshold
1, the superlevel set {z | f(z) > p} is disconnected and consists of two connected
components.

In principle, we can have arbitrary real values p as thresholds. However,
since in practice, we only know the values f(z) of the intensity function at
finitely many pixels z, it is sufficient to consider only thresholds that coincide
with one of the values f(z) — for any other threshold, the superlevel set is exactly
the same as for one of these.

Thus, to separate an image into components, we should first sort n values
f(z) (x € P) into a increasing sequence pui < pa < ... < W, for some m < n.
If all n intensities are different, then m = n; otherwise, we have m < n. For
example, for a black and white image, m = 2, y; = b and ps = w.

Once the values are sorted, we consider superlevel sets L; def {z| f(z) > ui}
one by one. We start with the set L1, check if it is connected, and if it is not,
we divide it into connected components. We then do the same with the set Lo,
etc.

Since the values u; are sorted in increasing order, we have Ly D Ly D ... D
L,,. When i < j, we have L; D L; and therefore, each connected component of
L; is a subset of L;. Therefore, each connected component of L; is a subset of
one of the connected components of L;.

We start with a connected set P; we can say that this set constitutes a single
connected component. On each level ¢, we get one or several connected compo-
nents S;;. On the next level i 4 1, three things can happen to the component
Sz'j:

e it may simply shrink, i.e., on the level i + 1, there will be exactly one
connected component that is contained in Sy;;



e it may split, i.e., on the level i + 1, we may have several connected com-
ponents all of which are contained in Sjj;

e it may disappear, i.e., on the level i + 1, there will be no connected com-
ponent that is contained in S;;.

When a component shrinks, we simply have a subset of the original component,
the structure does not change. Thus, to describe the structure of the original
source, we must only keep the sets S;; corresponding to components that ap-
peared for the first time — by splitting one of the connected components on the
previous level ¢ — 1.

These “kept” connected components correspond to different levels. Not only
we have components corresponding to different levels p;; we also have a hi-
erarchical structure, according to which each component on the next level is
obtained by splitting one of the components that first appeared on the previous
levels. This hierarchical structure is exactly what we mean by separating an
astronomical-type image into components.

For geospatial zones, as we have mentioned before, we must analyze not
only elevations but also depressions. Thus, in addition to the components cor-

responding to a superlevel set classification of f(z), we should also compute

components corresponding to the classification of f'(z) def f(z) —i.e., equiva-

lently, to the classification corresponding to sublevel sets L = {z | f(z) < pi}.
For sublevel sets, we have L{ C L) C ... C L! ; therefore, we start with the
largest sublevel set L, , then consider the next largest sublevel set L! _, etc.
Computational complexity of the resulting algorithm. We already
know that on each level, separation into components requires linear time O(n).
For a grid of size n, there are < n levels; thus, the overall computational com-
plexity of this algorithm is < n - O(n) = O(n?).

Comment: relation to Morse theory. In our description, we describe com-
ponents by finding out how the topology of superlevel sets {z | f(z) > u} and
sublevel sets {z | f(z) > p} changes with u.

The idea of describing the shape of a manifold — in our case, the shape of
a graph of a function f(z) — by describing how the topology of the superlevel
sets {z| f(x) > p} changes with the change in p is well known in mathematics:
it is one of the main ideas behind Morse theory; for a classical exposition of
Morse theory, see [15]. Morse theory has received much attention in the last
two decades as a result of the paper by Witten [24] which relates Morse theory
to quantum field theory; for latest developments in Morse theory, see. e.g.,
[2, 6, 17].



3 Separating Components in Interval-Valued
Images: Formulation of the Problem, Propo-
sitions, and the Resulting Algorithm

3.1 Formulation of the problem

Interval-valued images. In the above algorithms, we assumed that for every
pixel z, we know the exact value f(z) of the image’s intensity at this pixel. In
reality, due to measurement uncertainty, the measured intensity value f(m) is
only approximately equal to the actual (unknown) intensity value f(x). If we
know the upper bound A on the measurement error, we can conclude that for
every pixel z, we know the interval [f(z) — A, f(z) — A] that is guaranteed to
contain the actual (unknown) values of f(z).

In order words, instead of a number-valued image f(x), we have an interval-
valued image, i.e., for every pixel z, we know the interval f(z) = [f(z), f(z)]
that is guaranteed to contain the actual (unknown) value of f(z).

What is the problem, and why this problem is difficult. Based on this
interval-valued image, we must classify the source into components. As we have
mentioned in the previous section, to separate the source into components, we
must check whether for each possible value p, the superlevel set {z | f(z) > u}
is connected or not, and if not, how many connected components it contains.
We want a reliable method, i.e., we want such a method that if it concludes that
there are several components, then this conclusion must be valid for all possible
functions f(z) € f(x).

There are infinitely many such functions f(x), so we cannot simply check
this property by checking all possible f(x) € f(x), we must come up with an
algorithm that is better than exhaustive search.

What we are planning to do. The following results provide the foundations
for such an algorithm. To describe these results, we will introduce the notion
of an “subgraph interval”, and extend the definition of connectivity to such
subgraph interval.

3.2 Definitions and results important for the analysis of
interval-valued images

A subgraph L of a finite graph (P, ~) is usually defined as a subset L C P with
edges inherited from (P,~). An interval a = [g,d], where @ < @, is usually
defined as the set of all the real numbers between g and @; in a computer, an
interval is usually represented as a pair of real numbers a and a. Similarly,
we want to describe a subgraph interval L = [L, L] of a graph (P,~), where
L C L C P, as the set of all subsets between L and L; in a computer, this
interval will be represented as a pair of sets L and L. Thus, we arrive at the
following definition:



Definition 1. Let (P,~) be a finite graph. By an subgraph interval L, we
mean a pair [L,L], where L C L C P. We say that a set L belongs to L if
LCLCL.

Definition 2. Let (P,~) be a finite graph, and let L = [L, L] be its subgraph
interval. We say that L is possibly connected if for every a,b € L, there exists
a sequence a ~ a; ~ Ay ~ ... ~ ap ~ b connecting a and b in which all
intermediate elements a; belong to L.

The term “possibly connected” is justified by the following result:

Proposition 1. Let (P,~) be a finite graph, and let L = [L, L] be a subgraph
interval of this graph; then, the following two conditions are equivalent to each
other:

o L is possibly connected;

o there exists a connected set L € L.

Proof. Let us first assume that there exists a connected set L € L, i.e., a
connected set L for which L C L C L. By definition of connectivity, this means
that for every a,b € L, there exists a sequence a ~ a; ~az ~ ... ~a, ~ b
connecting a¢ and b in which all intermediate elements a; belong to L. Since
L C L, this means, in particular, that for every a,b € L, there exists a sequence
a~a ~ ay ~ ...~ a, ~ b connecting a and b in which all intermediate
elements a; belong to L. Since L C L, this means that all intermediate elements
a; in the connecting sequence also belong to L. Thus, the subgraph interval L
is indeed possibly connected.

Vice versa, let us assume that L is possibly connected; let us show that there
exists a connected set L € L. Indeed, since the subgraph interval L is possibly
connected, for every a,b € L, there exists a sequence of elements a; € L that
connects a and b. As the desired L, we can now take the union of the set L and
of all such sequences. By definition, this set contains L; since L C L and all the
sequences are formed only from elements of L, we conclude that L C L; hence,
L € L. To complete the proof, it is therefore sufficient to prove that the set L
is connected.

Indeed, let a,b € L. By definition of L, a is either an element of L, or it is
an element of L that is connected to some element a’ € L by a sequence; by
the construction of L, all the elements of this sequence belong to L. Thus, a is
either an element of L, or it is connected to an element a' from L. Similarly, b
is either an element of L, or it is connected to an element b’ from L. Since a
subgraph interval L is possibly connected, the elements a',b' € L are connected
by a sequence of elements from L — and thus, by a sequence of elements from
L. Thus, a is connected to a', a' is connected to b’, and b’ is connected to b —
hence, a is connected to b, so L is connected. The proposition is proven.



Corollary. Let (P,~) be a finite graph, and let L = [L,L] be a subgraph
interval of this graph; then, the following two conditions are equivalent to each
other:

o L is not possibly connected (in the sense of Definition 2);

o cvery set L € L is disconnected.

In our proof of Proposition 1, we have actually proven a stronger result:

Definition 3. Let L = [L, L] be a subgraph interval of a graph (P,~). By a
connectivity representative of a subgraph interval, we mean the set Ly of all the
points a € L that are connected with some point b € L by a sequence from L,
i.e., for which there exists a sequence a ~ a1 ~ as ~ ... ~ ag ~ b in which all
the intermediate points ai, . .. ,ay belong to L and the final point b belongs to L.

Proposition 2. Let (P,~) be a finite graph, and let L = [L, L] be a subgraph
interval of this graph; then, the following three conditions are equivalent to each
other:

o L is possibly connected;

e there exists a connected set L € L;

o the connectivity representative Lo of the subgraph interval L is connected.
Corollary. Let (P,~) be a finite graph, and let L = [L,L] be a subgraph

interval of this graph; then, the following three conditions are equivalent to each
other:

e L is not possibly connected (in the sense of Definition 2);
o cvery set L € L is disconnected;

e the connectivity representative Ly of the subgraph interval L is discon-
nected.

Now, we are ready to describe the main result. Let I denote the set of all
intervals.

Definition 4. Let (P,~) be a finite graph, let £ : P — I, and let u be a real
number. By a superlevel set interval {z | f(z) > p}, we mean a subgraph interval

{o|f(@) > p} {z] f(z) > u}]- (2)



Proposition 3. For every finite graph (P,~), for every interval-valued func-
tion £ : P — I, and for every real number u, the following two conditions are
equivalent to each other:

o there exists a function f(z) € f(z) = [f(2), f(z)] for which the superlevel
set {z| f(x) > p} is connected;

o the superlevel set interval {z |f(z) > p} is possibly connected (in the sense
of Definition 2).

Proof. Let us first assume that there exists a function f(z) € f(z) for which
the superlevel set is connected. Since f(z) € f(z), we have f(z) < f(z) < f(z).
Therefore,

{z]f(@) > p} C{z|f(2) > p} C{z]f(z) > p}, 3)

i.e., the superlevel set of f(z) belongs to the superlevel set interval {z | f(z) > u}.
Since the superlevel set of f(x) is connected, Proposition 1 enables us to conclude
that the superlevel set interval {z |f(z) > u} is possibly connected.

Vice versa, let us assume that the superlevel set interval {z |f(z) > u} is
possibly connected. Due to Proposition 1, we can now conclude that there exists
a connected set L for which

{z|f(x) > p} C L C{z|f(z) > p}. (4)
Let us define the function f(x) as follows: f(z) = f(z) for all z € L and
f(x) = f(z) for all x ¢ L. Let us show that for this function f(z), the superlevel
set {x | f(z) > p} is exactly L — and therefore, this set is connected.

Indeed, if z € L, then, by our construction of f(x), we have selected, for this
value z, f(x) = f(z). Since L € L, we conclude that L C {z | f(z) > u} hence,
for every = € L, we have f(x) > p hence f(z) > p. Thus, L C {z| f(z) > u}.

Vice versa, let z € {z| f(z) > u} (i.e., f(z) > p); let us show that in this
case, x € L. We will prove it by reduction to a contradiction. Let x ¢ Lj; in this
case, f(x) = f(x). Since f(z) > u, we can thus conclude that f(z) > u, thus,
= belongs to the set {z | f(z) > u}. We know, however, that L belongs to the
superlevel set interval {z [f(z) > p}, hence {z | f(z) > u} C L and so z is an
element of L. The contradiction proves that the case z ¢ L is impossible, thus,
x € L. The proposition is proven.

Corollary. For every finite graph (P, ~), for every interval-valued function f :
P — 1, and for every real number u, the following two conditions are equivalent
to each other:

e for every function f(z) € f(x) = [f(z), f()], the superlevel set {z | f(z) >
u} is disconnected; -

o the superlevel set interval {x|f(z) > p} is not possibly connected (in the
sense of Definition 2).

10



3.3 Resulting algorithm

Main idea. How can we use these results to check the connectedness? Accord-
ing to the proof of Proposition 1, a subgraph interval L is possibly connected
if and only if its connectivity representative is connected. One can also easily
see that if this representative is not connected, then the number of compo-
nents in a connectivity representative indicates the smallest possible number of
components in a level set {z | f(z) > u}.

We already know that checking connectivity — and finding connected compo-
nents — requires linear time; thus, to show that we can check possible connected-
ness of a subgraph interval, it is sufficient to be able to compute the connectivity
representative in linear time.

Proposition 4. There exists a linear time algorithm that, given a subgraph

interval L = [L, L], computes its connectivity representative in linear time.

Proof. This algorithm is similar to the above algorithm for computing the
connected components. In this algorithm, we deal with elements of L. At
each stage of the algorithm, some of these elements are marked. We start with
marking all the elements from L. After that, we mark all the un-marked im-
mediate neighbors of all the marked pixels; when no such unmarked immediate
neighbors remain, we stop — the marked points form the desired connectivity
representative.
Since we mark each pixel only once, this algorithm requires linear time.

Choice of thresholds. What thresholds u should we choose? To cover all
possible superlevel set intervals, it is sufficient to consider only values of y that
coincide either with f(x) or with f(z) for some z € P.

Thus, to separate an interval-valued image into components, we should first
sort 2n values f(z) and f(z) (z € P) into a increasing sequence pi; < pz <
... < pm for some m < 2n. If all 2n intensities are different, then m = 2n;
otherwise, we have m < 2n.

Final description of the algorithm. Once the values are sorted, we consider
superlevel set intervals L; < {z |f(z) > p;} one by one. We start with the set
interval L, check if it is possibly connected, and if it is not, we divide it into
connected components. We then do the same with the set Ly, etc.

For geospatial applications, we should also perform a similar analysis for
sublevel set intervals L} def {z|f(z) < pi} one by one. We start with the set
interval L], check if it is possibly connected, and if it is not, we divide it into
connected components. We then do the same with the set L,,_1, etc.

Computational complexity of the resulting algorithm. We already
know that on each level, separation into components requires linear time O(n).

11



For a grid of size n, there are < 2n levels; thus, the overall computational
complexity of this algorithm is < 2n - O(n) = O(n?).
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