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Abstract

In many real-life situations, we are interested in the value of a physical quantity y that is
difficult or impossible to measure directly. To estimate y, we find some easier-to-measure quan-

tities x1,...,%, which are related to y by a known relation y = f(z1,...,z,). Measurements
are never 100% accurate; hence, the measured values Z; are different from z;, and the resulting
estimate § = f(Z1,...,T,) is different from the desired value y = f(z1,...,2,). How different?

Traditional engineering to error estimation in data processing assumes that we know the
probabilities of different measurement error Ax; def T; — ;. In many practical situations, we
only know the upper bound A; for this error; hence, after the measurement, the only information
that we have about z; is that it belongs to the interval x; def [Z; — A, T; + A;]. In this case, it is
important to find the range y of all possible values of y = f(x1,...,%,) when z; € x;. We start
the paper with a brief overview of the computational complexity of the corresponding interval
computation problems.

We then discuss how this computational complexity changes when, in addition to the upper
bounds A;, we have some partial information about the probabilities of different values of Awx;.

We also show how the use of quantum computing can speed up some computations related
to interval and probabilistic uncertainty.

Most of the related problems turn out to be, in general, at least NP-hard. We end the paper
with speculations on whether (and how) hypothetic physical devices can compute NP-hard
problems faster than in exponential time.

1 Introduction: Data Processing—From Computing to Probabili-
ties to Intervals

Why data processing? In many real-life situations, we are interested in the value of a physical
quantity y that is difficult or impossible to measure directly. Examples of such quantities are the
distance to a star and the amount of oil in a given well. Since we cannot measure y directly,
a natural idea is to measure y indirectly. Specifically, we find some easier-to-measure quantities
Z1,...,Z, which are related to y by a known relation y = f(z1,...,2,); this relation may be
a simple functional transformation, or complex algorithm (e.g., for the amount of oil, numerical
solution to an inverse problem). Then, to estimate y, we first measure the values of the quantities
T1,...,Ty, and then we use the results 1, ..., T, of these measurements to to compute an estimate

y fory as gy = f(Z1,...,Tn).



For example, to find the resistance R, we measure current I and voltage V', and then use the
known relation R = V/I to estimate resistance as R = V/I.

Computing an estimate for ¢y based on the results of direct measurements is called data process-
ing; data processing is the main reason why computers were invented in the first place, and data
processing is still one of the main uses of computers as number crunching devices.

Comment. In this paper, for simplicity, we consider the case when the relation between z; and y
is known exactly; in some practical situations, we only known an approximate relation between z;
and y.

Why interval computations? From computing to probabilities to intervals. Measure-

ment are never 100% accurate, so in reality, the actual value z; of i-th measured quantity can differ

~ def ~
from the measurement result Z;. Because of these measurement errors Axz; = Z; — x;, the result

y = f(#1,...,Z,) of data processing is, in general, different from the actual value y = f(z1,...,z,)
of the desired quantity y [59].

It is desirable to describe the error Ay def y — 1y of the result of data processing. To do that, we
must have some information about the errors of direct measurements.

What do we know about the errors Az; of direct measurements? First, the manufacturer of the
measuring instrument must supply us with an upper bound A; on the measurement error. If no
such upper bound is supplied, this means that no accuracy is guaranteed, and the corresponding
“measuring instrument” is practically useless. In this case, once we performed a measurement and
got a measurement result Z;, we know that the actual (unknown) value z; of the measured quantity
belongs to the interval x; = [z;,T;], where z; = Z; — A; and T; = Z; + A;.

In many practical situations, we not only know the interval [—A;, A;] of possible values of
the measurement error; we also know the probability of different values Az; within this interval.
This knowledge underlies the traditional engineering approach to estimating the error of indirect
measurement, in which we assume that we know the probability distributions for measurement
errors Az;.

In practice, we can determine the desired probabilities of different values of Az; by comparing
the results of measuring with this instrument with the results of measuring the same quantity by a
standard (much more accurate) measuring instrument. Since the standard measuring instrument
is much more accurate than the one use, the difference between these two measurement results
is practically equal to the measurement error; thus, the empirical distribution of this difference is
close to the desired probability distribution for measurement error. There are two cases, however,
when this determination is not done:

e First is the case of cutting-edge measurements, e.g., measurements in fundamental science.
When a Hubble telescope detects the light from a distant galaxy, there is no “standard”
(much more accurate) telescope floating nearby that we can use to calibrate the Hubble: the
Hubble telescope is the best we have.

e The second case is the case of measurements on the shop floor. In this case, in principle,
every sensor can be thoroughly calibrated, but sensor calibration is so costly — usually costing
ten times more than the sensor itself — that manufacturers rarely do it.

In both cases, we have no information about the probabilities of Az;; the only information we have
is the upper bound on the measurement error.



In this case, after we performed a measurement and got a measurement result Z;, the only
information that we have about the actual value z; of the measured quantity is that it belongs to
the interval x; = [Z; — A, Z; + A;]. In such situations, the only information that we have about
the (unknown) actual value of y = f(z1,...,z,) is that y belongs to the range y = [y,7] of the
function f over the box x1 X ... X xp: B

y:[gag] :{f(xla"'amn)|xl EXl,---,l‘nexn}-

The process of computing this interval range based on the input intervals x; is called interval
computations; see, e.g., [25, 26, 27, 46].

Interval computations techniques: brief reminder. Historically the first method for com-
puting the enclosure for the range is the method which is sometimes called “straightforward”
interval computations. This method is based on the fact that inside the computer, every algorithm
consists of elementary operations (arithmetic operations, min, max, etc.). For each elementary
operation f(a,b), if we know the intervals a and b for a and b, we can compute the exact range
f(a,b). The corresponding formulas form the so-called interval arithmetic. For example,

[Q’E] + [Q,E] = [Q—}-Q,E—I-E]; [Q’E] - [l—)a_] = [Q_Baa_[_)];

[Q,E] ' [[_)55] = [min(g-Q,Q-I_),a-Q,E-E),max(g-Q,Q-E,E-I_),G-E)].

In straightforward interval computations, we repeat the computations forming the program f step-
by-step, replacing each operation with real numbers by the corresponding operation of interval
arithmetic. It is known that, as a result, we get an enclosure Y D y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples below), the enclosure
has excess width.

There exist more sophisticated techniques for producing a narrower enclosure, e.g., a centered
form method. However, for each of these techniques, there are cases when we get an excess width.
Reason: as shown in [33, 66], the problem of computing the exact range is known to be NP-hard
even for polynomial functions f(z1,...,z,) (actually, even for quadratic functions f).

2 Computational Complexity of Interval Computations: Brief Re-
minder

What exactly problem are we solving? By the basic problem of interval computations, we
mean the following problem:

GIVEN:

e 7 rational intervals x; (i.e., intervals with rational endpoints), and

e a computable continuous function f that transforms n real numbers z1,...,z, into a
real number y = f(z1,...,%,).

COMPUTE: the interval of possible values of y:

y:[yay] :f(xlv""xn):

{y|ly= f(z1,...,z,) for some 1 € x1,...,Ty € Xp}.



Here, by a computable function f(z1,...,z,), we mean an algorithm that, for arbitrary rational
numbers z1,...,Zy,, and § > 0, computes a rational number that is d-close to f(x1,...,%y)-

By computing the interval y = [y,7], we mean computing its endpoints y and 7. If these
endpoints are not rational numbers, then computing these endpoints means being able to compute
them with any given rational accuracy € > 0, i.e., computing the rational numbers y and 7 for
which [§ — y| < e and [§ — | < e. Thus, we arrive at the following definition:

By the e—approzimate basic problem of interval computations, we mean the following problem:

GIVEN:

e 1 rational intervals x;, and

e a computable continuous function f that transforms n real numbers zi,...,z, into a
real number y = f(z1,...,%n);

e 3 rational number € > 0.

COMPUTE: rational numbers y and 7 that are e-close to the range’s endpoints, i.e., for which
[§—y| <eand [y — 7| < e, where:

yZ[y,y] :f(xla"'axn):

{yly= f(z1,...,z,) for some z; € x1,...,T, € Xp}

How we represent integers and real numbers. Inside the computer, integers are usually
represented in their binary form. Therefore, the input length of an integer can be naturally defined
as the number of bits in its binary expansion.

Similarly, binary-rational numbers, i.e., numbers of the type p/29, are usually represented in
their fixed-point binary form: e.g., 3/819 = 0.011, takes 4 bits, while 19/16,7 = 1.0011, requires 5
bits. So, e.g., if we say that “there is a polynomial-time algorithm that, for every binary-rational
number ¢, computes ...”, we mean, in particular, that for the values ¢, = 0.0...01, = 27" of
length n, the running time of this algorithm is bounded by a polynomial of n.

A general rational number m/n, where m and n are integers, can be naturally represented as
a pair of integers m and n; therefore, we take the total length of the binary representations of m
and n as the input length: e.g., 5/719 = 101/1115 requires 6 bits to describe.

In most computers, there is no special rational data type, there is a type real which actually
describes binary rational numbers. In most computers, there are two different representations of
these “real” numbers: in addition to the above-described fized-point real numbers, there are also
floating-point real numbers, in which a binary rational number is represented as m - 2, where m is
a fixed-point real number (usually, with only zero before the binary point) and e is an integer.

In this paper, we describe the input length in terms of the fized point representation. Most of
our results about computational complexity and feasibility of data processing and interval compu-
tations, both positive (that some problems can be solved by feasible algorithms) and negative (that
for some other problems no feasible algorithm is possible) are true for floating point numbers as
well: e.g., since every fixed point number is at the same time a floating point number (with e = 0),
negative results about fixed point inputs are automatically transformed into negative results about
the floating point inputs.



Complexity in what sense? In this paper, we consider the regular Turing machine-type com-
plexity.

For Turing machines, we have clearly defined steps, so we can define computational complexity
tu(x) of an algorithm U on an input z as the number of the corresponding steps. This is the
standard definition of computational complexity in theory of computing.

Turing machine is a very primitive computer, on which a simple operation that is hardware sup-
ported on a normal computer can take a very long time. So, the Turing machine-based complexity
is a rather poor estimate for the actual computation time of an algorithm on a real computer. If
we use more sophisticated computer models, we can get much better estimates.

What makes Turing machine-based complexity standard and widely used is the fact that al-
though the actual computation time changes from one type of computer to another, but whether
the algorithm is polynomial-time or not does not depend on our choice of the computer. Thus,
whatever reasonable class of computers we consider, a problem can be solved in polynomial-time
on computers of this class if and only if we can solve it in polynomial time on a Turing machine
(for details, see, e.g., Emde Boas [8]). Thus, if all we are interested in is whether an algorithm is
feasible or not, Turing machines are quite sufficient.

Since we are also interested in more realistic estimates of computation time, we will use more
realistic computer models.

RAM and bit complexity. In Turing machines, if we are currently facing cell 1, and we want
to use the contents of cell n, we actually have to move step-by-step, and spend n computation steps
just to reach this new cell. This is definitely not realistic. In real computers, if we know the number
of the cell, we immediately go there. In other words, we can go to an arbitrarily (“randomly”)
chosen cell in a single step. If we add this ability to the Turing machine, we get the so-called RAM
(Random Access Memory) computers. For the particular case when cells can only contain 0 and 1,
the number of computational steps on RAM is sometimes called bit complezity.

Algebraic complexity. RAM is slightly more realistic than a Turing machine, but it is still
not very realistic. In real-life computers, in addition to operations with bits, we have a hardware
support for elementary arithmetic operations such as addition and multiplication of two integers.
It is therefore reasonable, given an input of length n, to assume that we can perform addition and
multiplication of integers of length C - n (for some reasonable C) in a single step. The number of
computational steps on such machine is called algebraic complexity.

Algebraic complexity is the closest to the actual computation time and therefore, we will use
this complexity measure in the paper. To be more precise:

e When we claim that something is polynomial-time, this claim (as we have already mentioned)
will be independent on the choice of complexity measure. But:

e If we claim something more specific, like linear time (i.e., ty(n) < C - n) or quadratic time
(ie., ty(n) < C-n?), we will mean exactly linear time (correspondingly, quadratic time) in
the sense of algebraic complexity.

Comment. The relation between algebraic and bit complexity is analyzed, e.g., in Pan [55].

A remark about BSS complexity. To go from bit complexity to algebraic complexity, we
counted each arithmetic operation with numbers of fized length as a single computation step. We



can go further and count each operation with binary-rational numbers of arbitrary length (or even
with arbitrary real numbers, not necessarily rational) as a single computation step. This definition
was, in effect, proposed by Blum, Shub, and Smale [3] and is called BSS complexity (see also Smale
[62], Meer [44]).

For our problems, BSS complexity is very useful in proving negative results: If a problem is
difficult according to this BSS complexity, then it will be even more difficult if we only allow a
narrower class of operations, i.e., it will be difficult according to algebraic complexity as well.

On the other hand, if a problem is easy in the sense of BSS complexity, it often means that this
problem is actually easy, but sometimes, it can become difficult if we only allow operations with
bounded numbers; examples of such difference between BSS and algebraic complexity are given,
e.g., in Meer [43, 45].

Theoretically, the main problem of interval computations is algorithmically solvable.
For rational functions, the problem of computing the range is, in principle, algorithmically solvable:
namely, we can apply the so-called Tarski’s algorithm [63]. However, this algorithm takes too long
[6]: it sometimes takes time ~ 22" for an input of size n. As a result, even for small n, it may take
billions of years. This is not a practical solution.

Main results [33]. If the function f(z1,...,z,) is itself difficult to compute, then, of course, it is
difficult to compute the endpoints of the interval y even for degenerate input intervals x; = [z;, z;].

To avoid this trivial situation, it makes sense to restrict ourselves to the simplest possible
functions: functions that can be obtained by finitely many applications of the basic arithmetic
operations (addition +, subtraction —, multiplication -, and division /), i.e., to rational functions
with rational coefficients.

The first result on complexity of interval computations was obtained by A. Gaganov in 1981:
Gaganov proved that the main problem is computationally intractable (NP-hard) even for polyno-
mials f(z1,...,2,).

Gaganov’s result means that if we allow polynomials with arbitrarily many variables, of arbitrary
degree, with arbitrary rational numbers for coefficients, and arbitrary intervals x;, then the problem
is computationally intractable. A natural question is: what if we restrict some or all of these
“arbitrary” parameters? E.g., what will happen if we only consider polynomials with bounded
number of variables? of bounded degree? with bounded coefficients? with bounded (or even fixed)
data intervals? It turns out that with most these restrictions, the problem is still NP-hard; the
only exception is when we fix the number of variables; then, we get a polynomial-time algorithm.

Of all analyzed classes of polynomials, only for linear functions the basic problem has a simple
and feasible algorithm. Since we cannot extend this result to more general polynomials, it is natural
to extend it for different functions. For fractionally linear functions, the problem is still feasible; for
a more general class of functions described by solutions of systems of linear equations, the problem
is again NP-hard.

At first glance, it seems that all the above NP-hardness results paint a gloomy picture of
computational intractability of data processing. The reality is, hopefully, not so gloomy: in spite of
the worst-case complexity, some good heuristic algorithms are feasible in almost all cases (in some
reasonable sense).



3 First Step Beyond Intervals: Error Estimation for Traditional
Statistical Data Processing Algorithms under Interval Uncer-
tainty

When we have n results z1,...,z, of repeated measurement of the same quantity (at different

points, or at different moments of time), traditional statistical approach usually starts with com-
puting their sample average E = (21 + ... + z,)/n and their (sample) variance

(1 —E)?+...+ (zn, — E)?

V=

(or, equivalently, the sample standard deviation o = /V); see, e.g., [59].

In this section, we consider situations when we do not know the exact values of the quantities
Z1,...,Ty, we only know the intervals xi,...,x, of possible values of z;. In such situations, for
different possible values z; € x;, we get different values of £ and V. The question is: what are the
intervals E and V of possible values of ¥ and V'?

The practical importance of this question was emphasized, e.g., in [51, 52] on the example of
processing geophysical data.

For E, the straightforward interval computations leads to the exact range:

E — xl—l—...—}—xn’ ie, E = £1+---+£n’ and B — El—}—...—l—fn.
n n n

For V, straightforward interval computations lead to an excess width. For example, for x; = x5 =
[0,1], the variance is V = (z1 — 72)?/4 and hence, the actual range V = [0,0.25]. On the other
hand, E = [0, 1], hence

(x1 —E)* + (x; — E)?

2

More sophisticated methods of interval computations also sometimes lead to an excess width.

Reason: in the formula for the average FE, each variable only occurs once, and it is known
that for such formulas, straightforward interval computations lead to the exact range (see, e.g.,
[19]). In the expression for variance, each variable x; occurs several times: explicitly, in (z; — E)?,
and explicitly, in the expression for E. In such cases, often, dependence between intermediate
computation results leads to excess width of the results of straightforward interval computations.
Not surprisingly, we do get excess width when applying straightforward interval computations to
the above formula.

For variance, we can actually prove that the corresponding optimization problem is difficult:

Theorem 1. Computing V is NP-hard.

=1[0,1] D [0,0.25].

Proof. By definition, a problem is NP-hard if any problem from the class NP can be reduced to
it. Therefore, to prove that a problem P is NP-hard, it is sufficient to reduce one of the known
NP-hard problems Py to P.

In this case, since Py is known to be NP-hard, this means that every problem from the class
NP can be reduced to Py, and since Py can be reduced to P, thus, the original problem from the
class NP is reducible to P.

For our proof, as the known NP-hard problem Py, we take a subset problem: given n positive
integers si,...,Sn, to check whether there exist signs 7; € {—1,+1} for which the signed sum

n
Zm - s; equals 0.
i=1



We will show that this problem can be reduced to the problem of computing V, i.e., that to
every instance (S1,...,Sy) of the problem Py, we can put into correspondence such an instance of
the V-computing problem that based on its solution, we can easily check whether the desired signs
exist.

As this instance, we take the instance corresponding to the intervals [z;,T;| = [—si, si]. We
n

want to show that for the corresponding problem, V = Cj, where we denoted Cy def % . Z 312, if
i=1

and only if there exist signs 7; for which Z n;-8; = 0.

1°. Let us first show that in all cases, V < Cp.

Indeed, it is known that the formula for the finite population variance can be reformulated in the
following equivalent form:

1 = 2 2
V:_'ZCCZ—E
noi=

Since z; € [—s;, 8], we can conclude that z? < s? hence Y z7 < Y s?. Since E? > 0, we thus

3=

n
conclude that V < Z sf = Cy. In other words, every possible value V' of the sample variance is
1

1=
smaller than or equal to Cy. Thus, the largest of these possible values, i.e., V', also cannot exceed
C(), i.e., 1% S Co.

2°. Let us now prove that if the desired signs 7; exist, then V = C.

Indeed, in this case, for z; = 7n; - s;, we have £ = 0 and mf = s%, hence

So, the variance V is always < Cjp, and it attains the value C for some x;. Therefore, V = Cj.

3°. To complete the proof of Theorem 1, we must show that, vice versa, if V = Cy, then the desired
signs exist.

Indeed, let V = Cy. The variance is a continuous function on a compact set x; X ... X X,, hence
its maximum on this compact set is attained for some values z1 € x; = [—51,81],...,Zn € X, =
[—$n, Sn). In other words, for the corresponding values of z;, the variance V' is equal to Cy.

Since z; € [—si, si], we can conclude that z? < s?; since E2 > 0, we get V < Cj. If |z;2 < s?
or B2 > 0, then we would have 02 < Cj. Thus, the only way to have V = Cj is to have z7 = s?
and E = 0. The first equality leads to z; = *s;, i.e., to z; = 7; - s; for some n; € {—1,+1}. Since
E is, by definition, the (arithmetic) average of the values z;, the equality £ = 0 then leads to
n

Z n; + 8; = 0. So, if V = Cj, then the desired signs do exist. The theorem is proven.
=1

The very fact that computing the range of a quadratic function is NP-hard was first proven
by Vavasis [66] (see also [33]). We have shown that this difficulty happens even for very simple
quadratic functions frequently used in data processing.

A natural question is: maybe the difficulty comes from the requirement that the range be
computed exactly? In practice, it is often sufficient to compute, in a reasonable amount of time,

a usefully accurate estimate V for V, i.e., an estimate V which is accurate with a given accuracy



e > 0 ‘V — V‘ < e. Alas, a simple modification of the above proof shows that for any &, such
computations are also NP-hard:

Theorem 2. For every € > 0, the problem of computing V with accuracy € is NP-hard.
It is worth mentioning that V' can be computed exactly in exponential time O(2"):
Theorem 3. There exists an algorithm that computes V in exponential time.

Proof. Let wgo) € X1,... ,x%o) € x,, be the values for which the variance V' attains maximum on the
box x1 X ... X Xp,.
Let us pick one of the n variables z;, and let us fix the values of all the other variables z; (j # 1)
(0) (0)

at zj = ;. When we substitute z; = z;” for all j # 4 into the expression for finite population

variance, V becomes a quadratic function of z;. This function of one variable should attain its
maximum on the interval x; at the value mgo).

By definition, the variance V' is a sum of non-negative terms; thus, its value is always non-
negative. Therefore, the corresponding quadratic function of one variable always has a global
minimum. This function is decreasing before this global minimum, and increasing after it. Thus,
its maximum on the interval x; is attained at one of the endpoints of this interval.

In other words, for each variable z;, the maximum is attained either for z; = z;, or for z; = 7;.

Thus, to find V, it is sufficient to compute V for 2" possible combinations (xli, ..., xF), where

z; def z; and a:;" def T;, and find the largest of the resulting 2" numbers. The theorem is proven.

For computing V', there a feasible algorithm: specifically, our algorithm is quadratic-time, i.e.,
it requires O(n?) computational steps (arithmetic operations or comparisons) for n interval data
points x; = [z;,T;].

The algorithm A is as follows:

e First, we sort all 2n values z;, 7; into a sequence 21y < Z(z) < ... < Z(gp)-

e Second, we compute E and E and select all “small intervals” [Z(k), T(k+1)] that intersect with
[E, E].

e For each of the selected small intervals [a:(k), a:(k+1)], we compute the ratio r, = Sk /Ny, where

def _

Sk = Z Z; + Z Lj,

UL, 2T (1) J1%5 <T(k)
and Ny is the total number of such 4’s and j’s If 74 € [z(x), Z(k+1)]; then we compute
def 1 2 _ 2
szﬁ' Yo @)+ Y (@)
BZ;i 2T (kt1) T < (k)

If Nj, = 0, we take Vj, 2 0.

e Finally, we return the smallest of the values V; as V.

Theorem 4. The algorithm A always compute V is quadratic time.

Proof. Let us first show that this algorithm is indeed correct.



1°. Indeed, let wgo) € X1,... ,x%o) € x,, be the values for which the variance V attains minimum on
the box x1 X ... X Xp.
Let us pick one of the n variables z;, and let us fix the values of all the other variables z; (j # 1)
(0) (0)

at zj = z; . When we substitute z; = T; for all j # 4 into the expression for finite population

variance, V becomes a quadratic function of z;. This function of one variable should attain its
minimum on the interval x; at the value mgo).

As we have shown in the proof of Theorem 3, this function is decreasing before this global min-
imum, and increasing after it. This global minimum is attained when 0V /dz; = 0. Differentiating

the formula that defines V' with respect to z;, we conclude that

ov 1 " oFE

Jj=1

Since OF/0z; = 1/n, we conclude that

oV 2 L 1

J

Here, >>(E — z;) = n+ E — ) z;. By definition of the average E, this difference is 0, hence the
above formula takes the form 0V/dz; = (2/n) - (z; — E). So, this function attains the minimum
when z; — E =0, i.e., when z; = E.

Since E = (1/n)-(z;+; x;), where Y, means the sum over all j # i, the equality z; = E means
that z; = z;/n + (1/n) - X} :1:5-0). Moving terms containing z; into the left-hand side and dividing

by the coefficient at x;, we conclude that the minimum is attained when z; = E; def —1I . ;x(-o),

n — J
i.e., when z; is equal to the arithmetic average E; of all other elements.

2°. Let us now use the knowledge of a global minimum to describe where the desired function
attains its minimum on the interval x;.

In our general description of non-negative quadratic functions of one variable, we mentioned
that each such function is decreasing before the global minimum and increasing after it. Thus, for
z; < E;, the function V is decreasing; for ; > E;, this function in increasing. Therefore:

o If E; € x;, the global minimum of the function V' of one variable is attained within the interval
X;, hence the minimum on the interval x; is attained for z; = FE;.

o If E; < z;, the function V is increasing on the interval x; and therefore, its minimum on this
interval is attained when z; = z;.

e Finally, if E; > 7;, the function V is decreasing on the interval x; and therefore, its minimum
on this interval is attained when x; = T;.

3°. Let us reformulate the above conditions in terms of the average

1 -1
E:—-xi—{—n
n

e In the first case, when x; = E;, we have z; = F = E;, so F € x;.

e In the second case, we have E; < z; and z; = z;. Therefore, in this case, F < z;.

10



e In the third case, we have E; > T; and z; = 7;. Therefore, in this case, E > z,.
Thus:

e If F € x;, then we cannot be in the second or third cases. Thus, we are in the first case,
hence z; = E.

o If E < z;, then we cannot be in the first or the third cases. Thus, we are the second case,
hence z; = z;.

e If £ > 7;, then we cannot be in the first or the second cases. Thus, we are in the third case,
hence z; = T;.

4°. So, as soon as we determine the position of E with respect to all the bounds z; and T;, we will
have a pretty good understanding of all the values z; at which the minimum is attained. Hence, to
find the minimum, we will analyze how the endpoints z; and T; divide the real line, and consider
all the resulting sub-intervals.

Let the corresponding subinterval [z 4y, T(x+1)] by fixed. For the i’s for which E ¢ x;, the values
x; that correspond to the minimal finite population variance are uniquely determined by the above
formulas.

For the 4’s for which E € x; the selected value z; should be equal to E. To determine this F,
we can use the fact that F is equal to the average of all thus selected values z;, in other words,
that we should have

EZ%( > z+n-Ny)-E+ ) @-),

UZ; 2T (k1) JiT <x (k)

where (n — Ny) - E combines all the points for which E € x;. Multiplying both sides of this equality
by n and subtracting n- E from both sides, we conclude that E = Sy /Ny — what we denoted, in the
algorithm’s description, by 7. If thus defined 74 does not belong to the subinterval [z (), T(x41)];
this contradiction with our initial assumption shows that there cannot be any minimum in this
subinterval, so this subinterval can be easily dismissed.

The corresponding variance is denoted by V. If N = 0, this means that E belongs to all the
intervals x; and therefore, that the lower endpoint V is exactly 0 — so we assign V;, = 0. So, the
algorithm is indeed correct.

5°. To complete the proof of the theorem, we must show that this algorithm indeed requires
quadratic time. Indeed, sorting requires O(n - log(n)) steps (see, e.g., [5]), and the rest of the
algorithm requires linear time (O(n)) for each of 2n subintervals, i.e., the total quadratic time. The
theorem is proven.

NP-hardness of computing V means, crudely speaking, that there are no general ways for solving
all particular cases of this problem (i.e., computing V') in reasonable time.

However, we show that there are algorithms for computing V for many reasonable situations.
Namely, we propose an efficient algorithm that computes V for the case when all the interval
midpoints (“measured values”) Z; = (z; + Z;)/2 are definitely different from each other, in the
sense that the “narrowed” intervals [Z; — A;/n,Z; + A;/n] — where A; = (z; —T;)/2 is the interval’s
half~width — do not intersect with each other.

This algorithm A is as follows:
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e First, we sort all 2n endpoints of the narrowed intervals Z; — A;/n and Z; + A;/n into a
sequence T(1) < Zp) < ... < T(y,). This enables us to divide the real line into 2n + 1

segments (“small intervals”) [z (), Z(k+1)], where we denoted z(q) def _ o and T(on+1) def +00.

e Second, we compute E and E and pick all “small intervals” [y, Z(k41)] that intersect with
[E, E].

e For each of remaining small intervals [z (), (x+1)], for each 7 from 1 to n, we pick the following
value of x;:

o if x4, 1) < — Ai/n, then we pick z; = T;;
o if z(4) > Z; + A;/n, then we pick z; = z;;

o for all other i, we consider both possible values z; = T; and z; = z;.

As a result, we get one or several sequences of z;. For each of these sequences, we check
whether the average E of the selected values x1,...,z, is indeed within this small interval,
and if it is, compute the variance by using the formula that defines V.

e Finally, we return the largest of the computed variances as V.

Theorem 5. The algorithm A computes V is quadratic time for all the cases in which the “nar-
rowed” intervals do not intersect with each other.

This algorithm also works when, for some fixed k£, no more than k¥ “narrowed” intervals can have
a common point:

Theorem 6. For every positive integer k, the algorithm A computes V is quadratic time for all
the cases in which no more than k “narrowed” intervals can have a common point.

Proof. Let us first show that this algorithm is indeed correct.

1°. Similarly to the proof of Theorem 4, let z1,...,z, be the values at which the finite population
variance attain its maximum on the box x; X ... X x,,. If we fix the values of all the variables but
one z;, then V becomes a quadratic function of ;. When the function V attains maximum over
T € X1,...,Zy € X,, then this quadratic function of one variable will attain its maximum on the
interval x; at the point z;.

We have already shown, in the proof of Theorem 4, that this quadratic function has a (global)
minimum at x; = F;. Since this quadratic function of one variable is always non-negative, it cannot
have a global maximum. Therefore, its maximum on the interval x; = [z;,Z;] is attained at one of
the endpoints of this interval.

An arbitrary quadratic function of one variable is symmetric with respect to the location of its
global minimum, so its maximum on any interval is attained at the point which is the farthest from
the minimum. There is exactly one point which is equally close to both endpoints of the interval x;:
its midpoint Z;. Depending on whether the global minimum is to the left, to the right, or exactly
at the midpoint, we get the following three possible cases:

1. If the global minimum F; is to the left of the midpoint z;, i.e., if E; < Z;, then the upper
endpoint is the farthest from FE;. In this case, the maximum of the quadratic function is
attained at its upper endpoint, i.e., x; = T;.

12



2. Similarly, if the global minimum FE; is to the right of the midpoint Z;, i.e., if E; > T;, then the
lower endpoint is the farthest from FE;. In this case, the maximum of the quadratic function
is attained at its lower endpoint, i.e., z; = ;.

3. If E; = Z;, then the maximum of V is attained at both endpoints of the interval x; = [z;, T;].

2°. In the third case, we have either z; = z; or z; = ;. Depending on whether z; is equal to the
lower or to the upper endpoints, we can “combine” the corresponding situations with Cases 1 and
2. As a result, we arrive at the conclusion that one of the following two situations happen:

1. either E; < Z; and z; = T;;
2. either E; > z; and z; = z;.

3°. Similarly to the proof of Theorem 4, let us reformulate these conclusions in terms of the average
E of the maximizing values z1,...,Zp.
By definition, E; = o i >iz;, and Z;- zj = »;Tj — x;- By definition of E, we have

Zz]- =n - E, therefore, E; = nE_—lx Let us apply this formula to the above three cases.
J
In the first case, we have z; > F;. So, in terms of E, we get the inequality z; > ”n_E_—I&
Multiplying both sides of this inequality by n — 1, and using the fact that in this case, z; = T; =
Z; + A;, we conclude that (n — 1) -Z; > n- E — I; — A;. Moving all the terms but n - E to the
left-hand side and dividing by E, we get the following inequality: E < z; + A;/n.
In the second case, we similarly get the inequality F < A, /n. So:

e In Case 1, we have E < T; + A;/n and z; = T;.
e In Case 2, we have E > T; — A;/n and z; = z;.
Therefore:

e If E < z; — A;/n, this means that we cannot be in Case 2. So we must be in Case 1 and
therefore, we must have z; = T;.

e If E > ; + A;/n, this means that we cannot be in Case 1. So, we must be in Case 2 and
therefore, we must have z; = z;.

The only case when we do not know which endpoint for z; we should choose is the case when E
belongs to the narrowed interval [Z; — A/n, Z; + A

4°. Hence, once we know where F is with respect to the endpoints of all narrowed intervals, we
can determine the values of all optimal z; — except for those that are within this narrowed interval.
Since we consider the case when no more than k narrowed intervals can have a common point, we
have no more than k undecided values z;. Trying all possible combinations of lower and upper
endpoints for these < k values requires < 2* steps.

Thus, the overall number of steps is O(2¥ - n?). Since k is a constant, the overall number of
steps is thus O(n?). The theorem is proven.
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4 Important Example: Interval Computations Related to Privacy
in Statistical Databases

Need for privacy. Privacy is an important issue in the statistical analysis of human-related data.
For example, to check whether in a certain geographic area, there is a gender-based discrimination,
we can use the census data to check, e.g., whether for all people from this area who have the same
same level of education, there is a correlation between salary and gender. One can think of numerous
possible questions of this type related to different sociological, political, medical, economic, and
other questions. From this viewpoint, it is desirable to give researches ability to perform whatever
statistical analysis of this data that is reasonable for their specific research.

On the other hand, we do not want to give them direct access to the raw census data, because
a large part of the census data is confidential. For example, for most people (those who work in
private sector) salary information is confidential. Suppose that a corporation is deciding where to
built a new plant and has not yet decided between two possible areas. This corporation would
benefit from knowing the average salary of people of needed education level in these two areas,
because this information would help them estimate how much it will cost to bring local people on
board. However, since salary information is confidential, the company should not be able to know
the exact salaries of different potential workers.

The need for privacy is also extremely important for medical experiments, where we should be
able to make statistical conclusions about, e.g., the efficiency of a new medicine without disclosing
any potentially embarrassing details from the individual medical records.

Such databases in which the outside users cannot access individual records but can solicit
statistical information are often called statistical databases.

How privacy is protected now and why it is not always sufficient. At present, one of the
main (and most efficient) methods of protecting privacy in databases is the disaggregation of the
data: instead of keeping a record with all the information about a person, we divide this record
into several subrecords. For example, instead of keeping a single census record about a female
professor leaving in New Jersey with three cats, we split this record into several subrecords: a
subrecord about a person living in New Jersey with three cats (this subrecord will be useful for pet
statistics), a subrecord about a female professor living in New Jersey (this subrecord will be useful
for gender-based employment statistics), etc.

Such disaggregation helps to protect privacy. Indeed, if we keep the original full records, then we
can narrow down a request in such a way that only one person will qualify: e.g., a request about the
average salary of all female professors living in New Jersey with three cats etc. will eventually lead
to an actual salary of that person. On the other hand, when records are disaggregated, whatever
query we ask, be it an average salary of all New Jersey residents with exactly three cats or an
average salary of all female professors from New Jersey, we will most likely not narrow down to a
single person.

Disaggregation is very useful for protecting privacy, but it is not sufficient. Indeed, suppose that
we keep a university salary database; for privacy protection, we keep all the records anonymous
so the only information in the database is the actual salary values. What happens if we allow all
possible statistical queries, including queries like “How many people have salary 83.6K or smaller”?
By asking appropriate queries, we can find the salary values close to which the answer changes —
and these values are exactly the actual salaries from the database. Thus, if we know that, e.g., the
university president is the highest-paying professor, we will be able to get her salary as the largest
of these actual salaries. How can we avoid this privacy violation?
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Privacy leads to intervals. A natural way to fully describe a single real-valued random variable
7 is to provide the values of its cumulative density function (CDF)

F(xz) = Prob(n < z)

for all possible real numbers z. Once we know F(z), we can determine the values of all possible
statistical characteristics of this random variable — e.g., its first moment, second moment, variance,
etc. Thus, it is natural to allow the users to solicit the values of F(z) for different z; from this
information, the users will be able to reconstruct all other statistical characteristics.

For discrete data zi,...,z,, the corresponding sample distribution — in which each value z;
occurs with probability 1/n — is described by the CDF F(z) for which

F(z)=1/n)-#{i:z; < z}.

To get the full information about the data, we should allow the user to ask for the values F(x) for
all possible real numbers z. However, as we have mentioned, once we know the values F'(z) for all
z, we can determine all the values z;. Thus, if we want to keep privacy, we must only allow the
users to know F(z) for some fixed values z(!) < ... < z(™)_ This way, instead of the actual values
z;, all we know is an interval [z(®), z*+1)] that contains z;. Intervals corresponding to different
values are almost disjoint, i.e., either disjoint (intersect in at most one point) or identical. How can
we compute statistical characteristics based on this information?

Theorem 7. There exists a quadratic-time algorithm that computes the exact range V of the
variance V for the case when intervals x; of possible values of x; are pairwise almost disjoint.

Proof. Since there exists an algorithm that computes V in feasible time, it is sufficient to produce
a feasible algorithm for computing V.

According to the proof of Theorems 3, 5, and 6, the values z; € x; that lead to the largest
possible value of V satisfy the following property:

o if £ <g;, then z; = Ty;
e if £ > 7T;, then z; = z;;
o if E € (z;,T;), then z; = z; or z; = T;.

In order to use this property to compute V, we test all possible locations of E in relation to the
intervals x;: E =z;, E =7;, and E € (z;,%;) for different i =1,2,... n.

Let us first consider the cases when E = z; (the case when E = Z; is treated similarly). In
these cases, since the intervals x; are almost disjoint, the above property uniquely determines the
values x;; thus, we can compute E, check whether it indeed satisfies the corresponding condition,
and if yes, compute the corresponding value V.

Let us now consider the cases when E € (z;,Z;). Let k denote the number of different intervals
of such type, and let n;, j = 1,...,k denote the number of intervals x; that coincide with j-th
interval. Then, n = ny + ... + ng. For each of these k intervals x;, the values of z; are uniquely
determined when z; < z; or T; < z;; for the remaining n; values z;, we have z; = z; or z; = T;.
Modulo transposition, the resulting set of values {z1,...,z,} is uniquely determined by how many
of these n; z;’s are equal to ;. The number of such z;’s can be 0, 1, 2,..., n; + 1. Thus, the

total number of such combinations is equal to n; + 1. Overall, for all j from 1 to k, we have
k k

Z(nj +1) = an +k = n+ k < 2n resulting sets {z1,...,z,}. For each of these sets, we
j=1 j=1
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compute F, check that the resulting F is indeed inside the corresponding interval x;, and if it is,
we compute V.

Thus, we have < 2n + n = 3n cases, for each of which we need O(n) computations to compute
V. The largest of these V is the desired V, and we compute it in time < 3n - O(n) = O(n?). The
proposition is proven.

Comment. Similar algorithms can be provided for computing the exact range of covariance be-
tween two interval-valued data sequences; in general, the problem of computing the range for
covariance is NP-hard [54].

5 Second Step Beyond Intervals: Extension of Interval Arithmetic
to Situations with Partial Information about Probabilities

Practical problem. In some practical situations, in addition to the lower and upper bounds on
each random variable z;, we know the bounds E; = [E;, E;] on its mean FE;.

Indeed, in measurement practice (see, e.g., [59]), the overall measurement error Az is usually
represented as a sum of two components:

e a systematic error component Agz which is defined as the expected value E[Az], and

e a random error component A,z which is defined as the difference between the overall mea-
def

surement error and the systematic error component: A,z = Az — Agx.

In addition to the bound A on the overall measurement error, the manufacturers of the measuring
instrument often provide an upper bound A; on the systematic error component: |Azz| < Aj.

This additional information is provided because, with this additional information, we not only
get a bound on the accuracy of a single measurement, but we also get an idea of what accuracy we
can attain if we use repeated measurements to increase the measurement accuracy. Indeed, the very
idea that repeated measurements can improve the measurement accuracy is natural: we measure
the same quantity by using the same measurement instrument several (N) times, and then take,
e.g., an arithmetic average z = (z() 4+ ... + (V) /N of the corresponding measurement results
iV =z 4+ Az, . 73 =+ Az,

e If systematic error is the only error component, then all the measurements lead to exactly
the same value 71) = ... = (V) and averaging does not change the value — hence does not

improve the accuracy.

e On the other hand, if we know that the systematic error component is 0, i.e., E[Az] = 0 and
E[z] = z, then, as N — oo, the arithmetic average tends to the actual value z. In this case,
by repeating the measurements sufficiently many times, we can determine the actual value of
z with an arbitrary given accuracy.

In general, by repeating measurements sufficiently many times, we can arbitrarily decrease the
random error component and thus attain accuracy as close to A; as we want.

When this additional information is given, then, after we performed a measurement and got a
measurement result Z, then not only we get the information that the actual value z of the measured
quantity belongs to the interval x = [T — A,Z + A], but we can also conclude that the expected
value of £ = T — Az (which is equal to E[z] = T — E[Az] = T — Asz) belongs to the interval
E=[T— AT+ A
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If we have this information for every z;, then, in addition to the interval y of possible value of
y, we would also like to know the interval of possible values of E[y|. This additional interval will
hopefully provide us with the information on how repeated measurements can improve the accuracy
of this indirect measurement. Thus, we arrive at the following problem.

Resulting optimization problem. In more optimization terms, we want to solve the following
problem: given an algorithm computing a function f(z1,...,z,) from R" to R; and values z;, T1,

eery Zpy Tn, By, E1, ..., E,,, E,, we want to find

EY min{E[f(z1,...,2zy)]| all distributions of (z1,...,z,) for which

T € [ﬁl,il]a--- y Tn € [Enajn]’E['Tl] € [ElaEI]" . E["I"n] € [EmEn]}a

and E which is the maximum of E[f(z1,...,,)] for all such distributions.
In addition to considering all possible distributions, we can also consider the case when all the
variables z; are independent.

Analog of straightforward interval computations. The main idea behind straightforward
interval computations can be applied here as well. Namely, first, we find out how to solve this
problem for the case when n = 2 and f(x1,22) is one of the standard arithmetic operations.
Then, once we have an arbitrary algorithm f(z1,...,z,), we parse it and replace each elementary
operation on real numbers with the corresponding operation on quadruples (z, E, E, 7).

To implement this idea, we must therefore know how to, solve the above problem for elementary
operations.

Solution. For addition, the answer is simple. Since E[z1 + zo] = E[z1] + Elzs], if y = 1 + 29,
there is only one possible value for E = E[y]: the value E = E; + E,. This value does not depend
on whether we have correlation or nor, and whether we have any information about the correlation.
Thus, E = E; + Eo.

Similarly, the answer is simple for subtraction: if y = x1 — xs, there is only one possible value
for E = E[y|: the value E = E; — Ey. Thus, E = E; — Es.

For multiplication, if the variables z1 and z2 are independent, then E[z; - x2] = E|z1] - E[z2].
Hence, if y = z1 - 2 and z; and z2 are independent, there is only one possible value for E = Ely]:
the value E = F; - E»; hence E = E; - Eo.

The first non-trivial case is the case of multiplication in the presence of possible correlation.
When we know the exact values of E; and F», the solution to the above problem is as follows:

Theorem 8. For multiplication y = 1 - xo, when we have no information about the correlation,
E = max(p1 +p2 — 1,0) - Ty - To + min(pi, 1 — po) - T1 - 2o + min(1l — py,po) - z; - To+

max(1 —p1 — p2,0) - z; - z;

and

E = min(p1,p2) - T1 - Ty + max(py — p2,0) - T1 - o + max(py — p1,0) - 21 - To+
mln(l — D1, 1- p?) &Ly - Loy,

where p; def (B; — ;)] (T; — x;).
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Proof. Let us show that a general distribution with E[z;] = E; can be simplified without changing
the values E[z;] and E[z; - z2]. Thus, to describe possible values of E[z; - 23], we do not need to
consider all possible distributions, it is sufficient to consider only the simplified ones.

We will describe the simplification for discrete distributions that concentrate on finitely many
points () = (:cgj ), xgj )), 1 < j < N. An arbitrary probability distribution can be approximated by
such distributions, so we do not lose anything by this restriction.

So, we have a probability distribution in which the point z(!) appears with the probability p(!),
the point (2 appears with the probability p(?), etc. Let us modify this distribution as follows:
pick a point z() = (xgj ),xgj )) that occurs with probability p(), and replace it with two points:
zl) = (El,zgj)) with probability p() - 5() and z() = (gl,mgj)) with probability p() -Q(j), where
PO & (2 — 20) /(71 — 1) and p) L 150

Here, the values pU) and B(j) =1—7pY are chosen in such a way that p\9) - 7, —I—B(j) “xy = :cgj).

Due to this choice, p¥) - pU) . 71 4 plv) -]_)(j) cxy = pl) . xgj), hence for the new distribution, the
mathematical expectation E[z] is the same as for the old one. Similarly, we can prove that the
values E[z9] and E[z1 - 23] do not change.

We started with a general discrete distribution with N points for each of which xgj ) could be
inside the interval x1, and we have a new distribution for which < N — 1 points have the value z
inside this interval. We can perform a similar replacement for all N points and get a distribution
with the same values of E[z1], E[z2], and E[z; - z2] as the original one but for which, for every
point, z; is equal either to z;, or to ;.

For the new distribution, we can perform a similar transformation relative to z; and end up —
without changing the values z; — with the distribution for which always either o = z; or z9 = To:

Thus, instead of considering all possible distributions, it is sufficient to consider only distribu-
tions for which z; € {z;,Z1} and z2 € {z,,T2}. In other words, it is sufficient to consider only
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distributions which are located in the four corner points (z;,zs), (z1,%2), (Z1,2Z2), and (Z1,T2) of
the box x1 X x5.

Such distribution can be characterized by the probabilities of these four points. These four
probabilities must satisfy 3 conditions: that their sum is 1, that E[z;] is Ey, and that E[zg] = E».
Thus, we only have one parameter left; optimizing with respect to this parameter, we get the
desired formulas for E and E. The theorem is proven.

When we only know the intervals E; of possible values of E;, instead of the values p;, we have
the corresponding intervals p; = (E; —z;)/(E; —z;). In terms of these intervals, we get the following
results:

Theorem 9. For multiplication under no information about dependence, to find E, it is sufficient
to consider the following combinations of p1 and pa:

e p1=p, and pp = p,; p1 =P, and pz = Py; p1 =P and p2 = Pp,; p1 =Py and p2 = Py;
o p1 =max(p,1 —P,) and pp =1 —p; (if 1 € p1 +p2); and
e p; =min(p;,1 —p,) and pp =1—p1 (if 1 € p1 + po2)-

The smallest value of E for all these cases is the desired lower bound E.

Theorem 10. For multiplication under no information about dependence, to find E, it is sufficient
to consider the following combinations of p1 and ps:

e p1 =p, and pa =p,; p1 = p, and ps = Py; p1 = P1 and p2 = p,; p1 = Py and pz = Py;
e p1 =py = max(p,,p,) (if p1 NP2 #0); and
* p1 =p2 =min(py,Pa) (if pL NP2 #0).

The largest value of E for all these cases is the desired upper bound E.

Proof. We will prove Theorem 10; the proof of Theorem 9 is similar. The formula for E given in
Theorem 8 can be simplified if we consider two cases: p; < p and p; > po. To find the largest
possible value E of E, it is sufficient to consider the largest possible values for each of these cases,
and then take the largest of the resulting two numbers.

In each case, for a fixed ps, the formula is linear in p;. To find the maximum of a linear function
on an interval, it is sufficient to consider this interval’s endpoints. Thus, the maximum in p; is
attained when either p; attains its smallest possible value p,, or when p; attains the largest possible
value within this case; depending on ps, this value is either p; = p; or p1 = po.

Thus, to find the maximum for each cases, it is sufficient to consider only the following cases:
p1 = Ppy> P1 = P1, and p1 = ps. Similarly, it is sufficient to consider only the following cases for po:
P2 = Py, P2 = P2, and p1 = ps.

When p; = ps, the probability p; = ps can take all possible values from the intersection p; Nps.
the formula for E is linear in pq, so to find its maximum, it is sufficient to consider the endpoints of
the interval p1 Npy, i.e., the values p; = py = max(p ,p,) and p1 = pp = min(p;,P,). The theorem
is proven.

For the inverse y = 1/z1, the finite range is possible only when 0 ¢ x;. Without losing
generality, we can consider the case when 0 < z;. In this case, methods presented in [60] lead to
the following bound:
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Theorem 11. For the inverse y = 1/x1, the range of possible values of E is E = [1/Ey,p1/T1 +
(1 —p1)/zy].

(Here p; denotes the same value as in Theorem 8).

Proof. For 1 > 0, the function f(z1) def 1/z; is convex: for every z1, z}, and « € [0,1], we have
flarzi+(1—a)-z)) <a-flz1)+ (1 —a)- f(z}). Hence, if we are looking for a minimum of
E[1/z1], we can replace every two points from the probability distribution with their average, and
the resulting value of E[1/z1] will only decrease:

x1 x)

X - X = X
So, the minimum is attained when the probability distribution is concentrated on a single value —
which has to be E;. Thus, the smallest possible value of E[1/z1] is 1/E.

Due to the same convexity, if we want maximum of E[1/z], we should replace every value
x1 € [z1,71] by a probabilistic combination of the values z;,T;:

Z 1 x1
DS X X

So, the maximum is attained when the probability distribution is concentrated on these two end-
points z; and 7;. Since the average of 1 should be equal to E;, we can, similarly to the proof of
Theorem 8, conclude that in this distribution, Z; occurs with probability p;, and z; occurs with
probability 1 — p;. For this distribution, the value E[1/z:] is exactly the upper bound from the
formulation of the theorem. The theorem is proven.

Theorem 12. For minimum y = min(z1,3), when 1 and zo are independent, we have E =
min(E, E») and

E = p1 - py - min(Z1,T2) + p1 - (1 — p2) - min(T1, 25) + (1 — p1) - p2 - min(zy, T2)+

(1 =p1) - (1 = p2) - min(zy, z5)-

Theorem 13. For mazimum y = min(x1,z2), when x1 and zo are independent, we have E =
max(E1, Eq) and

E = py - pp - max(T1,T2) + p1 - (1 — p2) - max(T1,z9) + (1 — p1) - p2 - max(z,, T2)+

(1 —=p1) - (1 — p2) - max(zy, z5).

Proof. We will prove Theorem 12; the proof of Theorem 13 is similar. Since min(z1,z2) < z1,
we have E[min(z1,z2)] < E[z1] = E;. Similarly, E[min(z;,z2)] < Eo, hence, E[min(z1,z2)] <
min(E1, E;). The value min(E1, Es) is possible when z; = E; with probability 1 and zo = E5 with
probability 1. Thus, min(E, E») is the exact upper bound for E[min(z1, z2)].

For each z9, the function 1 — min(z1, z2) is concave; therefore, if we replace each point zU) =
(ng ),ng )) by the corresponding probabilistic combination of the points (z;, 2y )) and (71, ng )) (as
in the proof of Theorem 11), we preserve E[z1] and E[zs] and decrease the value E[min(z1,z2)].
Thus, when we are looking for the smallest possible value of E[min(z1,z2)], it is sufficient to
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consider only the distributions for which z; is located at one of the endpoints z; or ;. Similarly
to the proof of Theorem 8, the probability of Z; is equal to p;.

Similarly, we can conclude that to find the largest possible value of E[min(z1,z2)], it is sufficient
to consider only distributions in which x5 can take only two values: x, and ZTo. To get the desired
value of Es, we must have T9 with probability p; and z, with probability 1 — ps.

Since we consider the case when z; and z5 are independent, and each of them takes two possible
values, we can conclude that © = (z1,z2) can take four possible values (z,zs), (z1,%2), (T1,Z5),
and (71, T2), and the probability of each of these values is equal to the product of the probabilities
corresponding to z; and 5. For this distribution, E[min(z1, z2)] is exactly the expression from the
formulation of the theorem. Theorem 12 is proven.

Theorem 14. For minimum y = min(x1, x2), when we have no information about the correlation
between 1 and T2, we have E = min(E1, Ey),

E = max(p1 + p2 — 1,0) - min(T1, T2) + min(p1, 1 — p2) - min(Z1, z5)+

min(1 — py,p2) - min(z,,Z2) + max(l — p; — po,0) - min(z;, z5).

Theorem 15. For mazimum y = max(x1,x2), when we have no information about the correlation
between 1 and zy, we have E = max(FE1, Es) and

E = min(p1, p2) - max(zT1, Tz) + max(p; — p,0) - max(zy, zy)+

max(p2 — p1,0) - max(z,,T2) + min(l — p1, 1 — py) - max(z, zs).

Proof. We will prove Theorem 14; the proof of Theorem 15 is similar. Similarly to the proof of
Theorem 12, we can conclude that min(E;, Ep) is the attainable upper bound for E[min(z1, z2)].
Due to convexity, to find the lower bound for E[min(z1,z2)], it is sufficient to consider distributions
located at the four corners of the box x; X x9. Similar to the proof of Theorem 8, we conclude
that such distribution can be characterized by a single parameter. Optimizing with respect to this
parameter, we get the desired formula for £. The theorem is proven.

Similar formulas can be produced for the cases when there is a strong correlation between z;:
namely, when z; is (non-strictly) increasing or decreasing in z;.

From Elementary Arithmetic Operations to General Algorithms When we have a com-
plex algorithm f, then a step-by-step approach leads to excess width. How can we find the actual
range of E = E[y]?

At first glance, the exact formulation of this problem requires that we use infinitely many
variables, because we must describe all possible probability distributions on the box x1 X...xx,, (or,
in the independent case, all possible tuples consisting of distributions on all n intervals x1,...,xp).
It turns out, however, that we can reformulate these problems in equivalent forms that require only
finitely many variables:

Theorem 16. For a general continuous function f(x1,...,xz,), E is a solution to the following
n - .

optimization problem: Zp(j) -f(xgj), . ,mgf)) — min under the conditions
7=0

. n . . [
Sp® =1 pD>0; 2 <) <z B <3 pV .2 <E; (for alli,j),
k=0 Jj=0
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n
and E is a solution to Zp(j) . f(acgj), ...,z9)) = max under the same constraints.
§=0

Proof. In terms of the unknown probabilities p{¥), we are minimizing a linear function under linear
constraints (equalities and inequalities). Geometrically, the set of all points that satisfy several
linear constraints is a polytope. It is well known that to find the minimum of a linear function
on a polytope, it is sufficient to consider its vertices (this idea is behind linear programming). In
algebraic terms, a vertex can be characterized by the fact that for N variables, N of the original
constrains are equalities. Thus, in our case, all but n probabilities p{¥) must be equal to 0. The
theorem is proven.

6 Open Problems

So far, we have provided explicit formulas for the elementary arithmetic operations f(z1,...,zn)
for the case when we know the first order moments. What if, in addition to that, we have some
information about second order (and/or higher order) moments of z;? What will we be then able
to conclude about the moments of y? Partial answers to this question are given in [38, 60, 67]; it
is desirable to find a general answer.

Similarly to Theorem 16, we can reduce the corresponding problems to the constraint opti-
mization problems with finitely many variables. For example, when, in addition to intervals E;
that contain the first moments E[z;], we know the intervals E;; that contain the second moments
E[z;-zx], then the corresponding bounds E and E on E[y] can be computed by solving the problems

N _ .

Zp(j) . f(xgj), ..., 2%} = min(max) under the conditions

7=0
N _ . no o
YoV =1 pD >0 g <o <m; B < pP o) <Ey
j=0 Jj=0

Ey <3S pW .. 20 < Fy,
j=0

where N =n(n +1)/2.
It is desirable to find explicit analytical expressions for these bounds, at least for the case when
n =2 and f(z1,...,%,) is an elementary arithmetic operation.

7 Fast Quantum Algorithms for Handling Probabilistic and Inter-
val Uncertainty

As computers become faster, quantum effects must be more and more taken into
consideration. According to Moore’s law, computer speed doubles every 18 months. One of the
main limitations to further speedup is the computer size: every communication is limited by the
speed of light ¢, so, e.g., a computer of a 1 ft size is bounded to have a computation speed 1 ft/c —
which corresponds to 1 GHz. To make faster computers, we must thus decrease the size of computer
elements. As this size reaches molecular size, must take into consideration quantum effects.
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Quantum effects add to noise, but they can also help. Quantum effects, with their in-
evitably probabilistic behavior, add to noise. However, it turns out that some (intuitively counter-
intuitive) quantum effects can be used to drastically speed up computations (in spite of quantum
noise).

For example, without using quantum effects, we need — in the worst case — at least N compu-
tational steps to search for a desired element in an unsorted list of size N. A quantum computing
algorithm proposed by Grover (see, e.g., [16, 17, 50]) can find this element much faster — in O(v/N)
time.

Several other quantum algorithms have been proposed.

What we are planning to do. How can this be of use to interval data processing community?
In many application areas ranging from geosciences to bioinformatics to large-scale simulations of
complex systems, data processing algorithms require a lot of time to run even with the exact input
data. As a result, very little is currently done to analyze the effect of inevitable uncertainty of
input data on the results of data processing.

It is desirable to analyze how different types of uncertainty—probabilistic, interval- influence
the results of data processing. In this paper, we discuss how quantum algorithms such as Grover’s
quantum search can be used to speed up this analysis — and thus, make it possible.

We also explain that there is no need to wait until a full-blown quantum computer appears,
with all necessary quantum bits (“qubits”): even without all necessary qubits, we can still get some
speedup, a speedup that gets better and better as we add more qubits to the quantum computer.

Grover’s algorithm for quantum search. We have already mentioned Grover’s algorithm
that, given:

e a database a1,...,any with N entries,
e a property P (i.e., an algorithm that checks whether P is true), and
e an allowable error probability 4,

returns, with probability > 1 — 4, either the element a; that satisfies the property P or the message
that there is no such element in the database.

This algorithm requires ¢-v/N steps (= calls to P), where the factor ¢ depends on § (the smaller
d we want, the larger ¢ we must take).

General comment about quantum algorithms. For our applications, it is important to know
that for Grover’s algorithm (and for all the other quantum algorithms that we will describe and
use), the entries a; do not need to be all physically given, it is sufficient to have a procedure that,
given %, produces a;.

o If all the entries are physically given, then this procedure simply consists of fetching the i-th
entry from the database.

e However, it is quite possible that the entries are given implicitly, e.g., a; can be given as the
value of a known function at ¢-th grid point; we have this function given as a program, so,
when we need a;, we apply this function to i-th grid point.
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Algorithm for quantum counting. Brassard et al. used the ideas behind Grover’s algorithm
to produce a new quantum algorithm for quantum counting; see, e.g., [4, 50]. Their algorithm,
given:

¢ a database aq,...,ay with N entries,
e a property P (i.e., an algorithm that checks whether P is true), and
e an allowable error probability 4,

returns an approximation ¢ to the total number ¢ of entries a; that satisfy the property P.
This algorithm contains a parameter M that determines how accurate the estimates are. The
accuracy of this estimate is characterized by the inequality

7.(.2

~ 2
-t <7 Vi+ oo (1)
that is true with probability > 1 — 4.
This algorithm requires ¢ - M - v/N steps (= calls to P), where the factor ¢ depends on § (the

smaller § we want, the larger ¢ we must take).
In particular, to get the exact value ¢, we must attain accuracy ‘f— t‘ < 1, for which we need

M ~ +/N. In this case, the algorithm requires O(v/t - N) steps.

Quantum algorithms for finding the minimum. Diirr et al. used Grover’s algorithm to
produce a new quantum algorithm for minimization; see, e.g., [7, 50]. Their algorithm applied
to the database whose entries belong to the set with a defined order (e.g., are numbers). This
algorithm, given:

e a database a1,...,any with N entries, and
e an allowable error probability 9,

returns the index 7 of the smallest entry a;, with probability of error < 4.
This algorithm requires c¢-1v/N steps (= calls to P), where the factor ¢ depends on § (the smaller
d we want, the larger ¢ we must take).

Main idea behind quantum computing of the minimum. The main idea behind the above
algorithm can be illustrated on the example when all the entries a; are integers. The algorithm
requires that we know, e.g., a number M such that all the entries belong to the interval [—M, M].
For every value m between —M and M, we can use Grover’s algorithm to check whether there is
an entry a; for which a; < m.

. £
e If such an entry exists, then my 4 min(a;) < m;
e otherwise mg > m.

Thus, for every m, we can check, in O(v/N) steps, whether my < m.
We can therefore apply bisection to narrow down the interval containing the desired until it
narrows down to a single integer.

e We start with an interval [M, M| = [-M, M].
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e At each iteration, we pick a midpoint

and check whether my < M.

— If my < My, this means that mgy € [M, My];

— otherwise, mgy € [My, M].
In both cases, we get a half-size interval containing my.

o After log,(2M) iterations, this interval becomes so narrow that it can only contain one integer
— which is myg.

Thus, in logy(M) - O(v/N) steps, we can compute the desired minimum.

Quantum algorithm for computing the mean. The above algorithms can be used to compute
the average of several numbers, and, in general, the mean of a given random variable. The first
such algorithm was proposed by Grover in [18]; for further developments, see, e.g., [21, 49, 53].

The traditional Monte-Carlo method for computing the mean consists of picking M random
values and averaging them. It is a well known fact [59, 68], that the accuracy of this method
is ~ 1/ VM, so, to achieve the given accuracy e, we need M = e~2 iterations. Another way to
compute the average of n given numbers is to add them up and divide by n, which requires n steps,
Thus:

e when n < £72, it is faster to add all the values;
e otherwise, it is better to use the Monte-Carlo method.

Grover’s quantum analog of the Monte-Carlo method attains accuracy ~ 1/M after M itera-
tions; thus, for a given accuracy €, we only need M =~ ¢! steps.
Similarly to the traditional Monte-Carlo methods, this quantum algorithm can compute

multi-dimensional integrals [ ... [ f(z1,...,zy,)dz; ...dz,: indeed, if we assume that the vector
(1,...,zy) is uniformly distributed over the corresponding domain, then this integral is propor-
tional to the average value of f(zy,...,z,).

Quantum algorithms for probabilistic analysis. In the probabilistic case, the problem of
describing the influence of the input uncertainty on the result of data processing takes the following
form (see, e.g., [59, 68]). Given:

e the data processing algorithm f(z1,...,z,) that transforms any n input values z1,...,z,
into the result of y = f(x1,...,z,) of data processing, and

e the mean values Z; and standard deviations o; of the inputs,

compute the standard deviation ¢ of the result y of data processing.
This standard deviation can be described as a mean (= mathematical expectation) of the square
(y — )%, where

gdéff(?éla"'ain% ydéff(xla"'aan (3)
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and each z; is normally distributed with mean Z; and standard deviation ;. Traditional Monte-
Carlo algorithm requires ~ 1/¢? iterations to compute this average; thus, for accuracy 20%, we
need 25 iterations; see, e.g., [65].

The quantum Monte-Carlo algorithm to compute this mean with accuracy € in ~ 1/¢ iterations;
so, for accuracy 20%, we only need 5 iterations. Since computing f may take a long time, this
drastic (5 times) speed-up may be essential.

Quantum algorithms for interval computations: problem. In interval computations (see,
e.g., [25, 26, 46]), the main objective is as follows. Given:

e intervals [z;, T;] of possible values of the inputs z1,...,z,, and

e the data processing algorithm f(x1,...,z,) that transforms any n input values z1,...,z,
into the result of y = f(z1,...,z,) of data processing,

compute the exact range [y, 7] of possible values of y.
We can describe each interval in a more traditional form

[T — Ai, T + Ay, (4)

where T; is the interval’s midpoint, and A; is its half-width. The resulting range can also be
described as [y — A,y + A], where 7 is determined by (3), and A is the desired largest possible
difference |y — 7|.

Quantum algorithms for interval computations: case of relatively small errors. When
the input errors are relatively small, we can linearize the function f around the midpoints Z;. In
this case, Cauchy distributions turn out to be useful, with probability density

1
(z—a)®
A2

p(z) ~ (5)

1+

It is known [65] that if we take z; distributed according to Cauchy distribution with a center a = Z;
and the width parameter A;, then the difference y — § between the quantities (3) is also Cauchy
distributed, with the width parameter equal to the desired value A.

For Cauchy distribution, the standard deviation is infinite, so we cannot literally apply the
idea that worked in the probabilistic case. However, if we apply a function g(z) (e.g., arctan) that
reduces the entire real line to an interval, then the expected value of g ((y — 7)?) — that depends
only on A — can be computed by the quantum Monte-Carlo algorithm; from this value, we can
reconstruct A.

So, in this case, quantum techniques also speed up computations.

Quantum algorithms for interval computations: general case. Known results about the
computational complexity of interval computations (see, e.g., [33]) state that in the general case,
when the input errors are not necessarily small and the function f may be complex, this problem
is NP-hard. This, crudely speaking, means that in the worst case, we cannot find the exact range
for y faster than by using some version of exhaustive search of all appropriate grid points.

The problem is not in exactness: it is also known that the problem of computing the range with
a given approximation accuracy ¢ is also NP-hard.
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How can we actually compute this range? We can find, e.g., y with a given accuracy 4 as follows.
The function f is continuous; hence, for a given &, there exists an § such that the < §-difference in
z; leads to < ¢ change in y. Thus, within a given accuracy ¢, it is sufficient to consider a grid with
step d, and take the smallest of all the values of f on this grid as y.

If the linear size of the domain is D, then, in this grid, we have D/§ values for each of the
variables, hence, the total of (D/§)™ points.

In non-quantum computations, to compute the minimum, we need to check every points from
this grid, so we must use N = (D/6§)™ calls to f. The quantum algorithm for computing minimum
enables to use only v N = (D/§)™? calls.

Thus, quantum algorithms can double the dimension of the problem for which we are able to
compute the desired uncertainty.

Quantum algorithms for the case when we have several different types of uncertainty.
How can we extend the above results to the case when we have several different types of uncertainty?
In this section, we present preliminary result about the case when we have both probabilistic and
interval uncertainty.

When we have n measurement results 1, ..., z,, traditional statistical approach usually starts
with computing their sample average

(6)

and their sample variance
(r1 —E)?+...+ (zn, — E)?
n

V=

(7)

(or, equivalently, the sample standard deviation o = v/V); see, e.g., [59]. If we know the exact
values of z;, then these formulas require linear computation time O(n).
As we have mentioned, in many practical situations, we only have intervals x; = [z;, ;]| of
possible values of z;. As a result, the sets of possible values of E and V are also intervals.
The function E is monotonic in each z;, so the range [E, E] for E can be easily computed:
§1+...+§n_ = T1+...+7THy

==Lt Ton o
n n

(8)

In [9, 10], we have shown that the problem of computing the range [V, V] is, in general, NP-
hard (even when we are interested in computing this range with a given accuracy); we have also
described a quadratic-time O(n?) algorithm A for computing V and a a quadratic-time algorithm
A that computes V for all the cases in which, for some integer C', no more than C' “narrowed”
intervals [Z; — A;/n, T; + A;/n] can have a common intersection.

Let us first show that by using Monte-Carlo simulations, we can compute V. with given accuracy
in time O(n - logy(n)) < O(n?); to be more precise, we need time O(n - logy(n)) time to sort 2n
values and then O(n) steps to complete the computations.

Indeed, the algorithm A from [9, 10] is as follows:

o First, we sort all 2n values z;, T; into a sequence z(1) < Z(9) < ... < Z(ay)-

e Second, we compute E and E and select all zones [T (k) T(k4+1)] that intersect with [E, E].
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e For each of the selected small zones [z (1), T(x+1)], We compute the ratio ry = Sy /N, where

Sy oo+ ) Ty, 9)

U, 2T (1) JiT5 <& (k)

and Ny is the total number of such is and js. If ry € [a:(k), a:(k+1)], then we compute V| as

1

—-( Y (- + Y (@'—rk)2>-

n . -
BT 2T (k41) VEARSI0S

If Nj, =0, we take V;/ def

e Finally, we return the smallest of the values V) as V.

For each k, the value r; is a mean, so, by using Monte-Carlo methods, we can compute it in
time that does not depend on n at all; similarly, we can compute V} in constant time. The only
remaining step is to compute the smallest of < 2n values V}; this requires O(n) steps.

If quantum computing is available, then we can compute the minimum in O(y/n) steps; thus,
we only need O(y/n) steps after sorting.

Similarly, the algorithm A is as follows:

e First, we sort all 2n endpoints of the narrowed intervals z; — A;/n and z; + A;/n into a

sequence z(1) < Z(g) < ... < ZT(gy). This enables us to divide the real line into 2n + 1 zones

[T (k)» T(k+1)], where we denoted (g 4 and T(2n+41) | .

e Second, we compute E and E and select all zones [z ), (41)] that intersect with [E, E].

e For each of remaining zones [z (), T(x41)], for each i from 1 to n, we pick the following value
of z;:
o if 7(411) < — A;j/n, then we pick z; = T;;
o if 74y > Z; + A;/n, then we pick z; = z;;
e for all other ¢, we consider both possible values z; = T; and z; = z;.
As a result, we get one or several sequences of z;. For each of these sequences, we check

whether the average E of the selected values z1,...,z, is indeed within the corresponding
zone, and if it is, we compute the sample variance by using the formula (7).

e Finally, we return the largest of the computed sample variances as V.

It is shown that we end up with < 2¢ - 2n = O(n) sample variances.

Here also, computing F and V can be done in constant time, and selecting the largest of O(n)
variances requires linear time O(n) for non-quantum computations and O(y/n) time for quantum
computing.
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Can quantum computers be still useful when there are not yet enough qubits? In view
of the great potential for computation speedup, engineers and physicists are actively working on the
design of actual quantum computers. There already exist working prototypes: e.g., a several mile
long communication system, with simple quantum computers used for encoding and decoding, is at
government disposal. Microsoft and IBM actively work on designing quantum computers. However,
at present, these computers can only solve trivial instances of the above problems, instances that
have already been efficiently solved by non-quantum computers. Main reason: the existing quantum
computers have only a few qubits, while known quantum algorithms require a lot of qubits. For
example, Grover’s algorithm requires a register with ¢ = log(N) qubits for a search in a database
of n elements.

Of course, while we only have 2 or 3 or 4 qubits, we cannot do much. However, due to the active
research and development in quantum computer hardware, we will (hopefully) have computers with
larger number of qubits reasonably soon.

A natural question is: while we are still waiting for the qubit register size that is necessary
to implement the existing quantum computing algorithms (and thus, to achieve the theoretically
possible speedup), can we somehow utilize the registers of smaller size to achieve a partial speed
up?

In this section, we start answering this question by showing the following: for quantum search,
even when we do not have enough qubits, we can still get a partial speedup; for details, see [40].
The fact that we do get a partial speedup for quantum search makes us hope that even when we do
not have all the qubits, we can still get a partial speedup for other quantum computing algorithms
as well.

Let us assume that we are interested in searching in an unsorted database of n elements, and
that instead of all log(N) qubits that are necessary for Grover’s algorithm, we only have, say 90%
or 50% of them. To be more precise, we only have a register consisting of r = « - log(N) qubits,
where 0 < a < 1. How can we use this register to speed up the search?

Grover’s algorithm enables us to use a register with  qubits to search in a database of M = 27
elements in time C - /M. For our available register, 7 = « - log(N), hence M = 2" = N?, so
we can use Grover’s algorithm with this qubit register to search in a database of size N® in time
C-vVM =C- N2

To search in the original database of size N, we can do the following;:
e divide this original database into N1~ pieces of size N®; and then

e consequently apply Grover’s algorithm with a given qubit register to look for the desired
element in each piece.

Searching each piece requires C' - N /2 gteps, so the sequential search in all N'=¢ pieces requires
time N'=@. (C- N*/?) = C . N'=%/2, Since a > 0, we get a speedup.

When « tends to 0, the computation time tends to C' - N, i.e., to the time of non-quantum
search; when « tends to 1, the computation time tends to C - N'/2, i.e., to the time of quantum
search.

8 Does “NP-Hard” Really Mean “Intractable”?

Introduction. Most of the computational problems related to interval computations are, in gen-
eral, NP-hard. Most computer scientists believe that NP-hard problem are really computationally
intractable. This belief is well justified for traditional computers, but there are non-traditional
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physical and engineering ideas that may make NP-hard problem easily solvable. Let us briefly
overview these ideas.

Within Newtonian physics, NP-hardness does seem to mean “intractable”. The com-
mon belief that NP-hard means intractable is based on the abilities of the physical processes that
are used in the existing computers; it has been proven that is we only use processes from Newtonian
physics, then we do not add additional ability to the computational devices (for exact formulations
and proofs, see, e.g., Gandy [12, 13]).

Within traditional (Newtonian) physical and engineering solutions, NP-hard seems to indeed
mean “intractable”. Indeed, the existing computations schemes describe (more or less accurately)
the ability of the modern computers. The only thing that is missing from the standard algorithms
is randomness, i.e., the ability to input truly random data and use them in computations. In the
language of theory of computation, the outside source of data is called an oracle. As early as 1981,
Bennet et al. have shown [2] that if we allow a random sequence as an oracle, and correspondingly
reformulate the definitions of the classes P and NP, then we can prove that P#NP [2].

What if we use non-traditional physical and engineering ideas in computer design?
Since we seem not to be able to avoid the unrealistic exponential time with traditional, Newtonian-
physics-based computers, a question naturally appears: what if in the future, we will find non-
Newtonian processes; will then NP-hard problems still be intractable? This question was first
formulated by G. Kreisel [36].

Traditional computers use discrete-oriented deterministic processes in normal space and time.
In reality, physical processes are (1) continuous, (2) non-deterministic (as described by quantum
mechanics), and (3) they occur in non-traditional (curved) space-time. So, to describe how using
additional physical processes will help in computations, we must consider how these three fac-
tors (adding non-determinism and taking curvature into consideration) change our computational
abilities.

Non-Newtonian processes of first type: Use of physical fields. For a physical field, the
value f(Z,t) of the field f in a future moment of time ¢ can be expressed in terms of the current state
of this field f(#,0) by an explicit integral formula. This formula is usually computable on existing
computers, and therefore, the evolution described by the fields is recursive (relevant theorems are
proved, e.g., in Pour-El et al. [58]).

In some cases, however, f(Z,t) is described as an integral in terms of the function f(Z,t) and
its spatial derivatives. So, if we start with a function f(#,0) that is recursive, but whose (spatial)
derivatives are not recursive, we may end up with a non-recursive value f(%,t). This was shown by
Pour-El et al. in [57] (see also Beeson [1], Ch. 15, and Pour-El et al. [58]). This result generalizes
a theorem proved by Aberth in 1971 and rediscovered in Pour-El et al. [56].

Comment. This result does not necessarily mean that we have found a way to compute a function
that is not computable on a normal computer (see, e.g., Kreisel [37]), because for that, we would
need to find a way to implement the initial conditions with a non-recursive derivative. A more
definite possibility of solving NP-hard problem fast comes from the other two aspects of physical
processes.

Non-Newtonian processes of second type: Quantum processes (adding non-
determinism). We have already mentioned that quantum computing can solve several useful
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problems-like factoring integers—faster than non-quantum ones; see, e.g., [50]. It may be possible
to use them for solving NP-hard problems. Several such hypothetic schemes—using quantum field
theory—have been proposed by Freedman, Kitaev. etc.

We propose to use one more phenomenon: namely, some potentially observable dependencies
between physical quantities become not only non-smooth but even discontinuous; these cases have
been summarized in a recent monograph [15]. From the computational viewpoint, this seems to
open the doors to the possibility of checking whether a given real number is equal to 0 or not,
something that the halting problem explicitly prohibits us from doing for normal (non-quantum)
computing. We are therefore planning to investigate the possibility of using this new opportunity
in actual computing. Our preliminary results are presented in [20].

Non-Newtonian processes of third type: Using curved space-time for computations.
If we allow heavily curved space (e.g., semi-closed black holes, we can get the results faster if we
stay in the area where the curvature is strong and time goes slower, and let the computations be
done outside (see, e.g., Morgenstein et al. [30, 48]); then, we will even be able to compute NP-hard
problems in polynomial time.

A similar speed-up can be obtained if we assume that our space-time is hyperbolic [24, 30, 48].

Previously described non-Newtonian processes relate to well-recognized physics, but there are
other physical theories that describe possible but not universally accepted physics. Namely, several
physical theories has led to the appearance of closed timelike curves, the possibility to go back in
time. Suffice it to say that one of the main ideas which helped R. Feynman to develop a modern
version of quantum electrodynamics was the idea of positrons as electrons going back in time [11].

Until late 1980s, these possibilities were largely dismissed by mainstream physics as mathemat-
ical artifacts which cannot lead to actual going back in time. Only when Kip Thorne, the world’s
leading astrophysicist, published several papers on acausal solutions in Physical Reviews, the topic
became more mainstream.

Acausal anomalies were discovered in solutions of general relativity (around a massive fast
rotating cylinder), in string theory, in inflation-theory related cosmological models, etc.; see, e.g.,
[64] and references therein.

The main obstacle to accepting acausal phenomena used to be paradoxes associated with time
travel. These paradoxes can be illustrated on a commonsense example of a “father paradox”: a
time traveler can go to the past and kill his father before he himself was conceived, thus creating
a paradox. The accepted solution to the acausal paradoxes can also be illustrated on the “father
paradox” example: since the time traveler was born, this means that some unexpected event pre-
vented him from killing his father. Maybe a policeman stopped him, maybe his gun malfunctioned.
Even is the time traveler takes care of all such probably events, there are always events with small
probability — like a meteorite falling on the traveler’s head — which cannot be all avoided. Thus,
all we will achieve if we try to implement a paradox is that some event with a very low probability
will occur.

There are several ways to use acausal processes in computing. The trivial way is to let a
computer run a long program for whatever it takes and then send the results back in time. A
less trivial way of saving time is similar to quantum “computing without computing” — speeding
up without actually using time machines. This method was originally proposed in [29]; see also
[28, 42, 47]. This method is related to the above solution to the father paradox. Indeed, to solve,
e.g., a propositional satisfiability problem with n variables, we generate n random bits and check
whether they satisfy a given formula; if not, we launch a time machine that is set up to implement
a low-probability event (with some probability pg < 1). Nature has two choices: either it generates
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n variables which satisfy the given formula (probability of this is 27™), or the time machine is used
which leads to an event with a probability po. If 27 > pg, then statistically, the first event is
much more probable, and so, the solution to the satisfiability problem will actually be generated
without the actual use of a time machine.

Yet another possibility: Gell-Mann’s approach to complex systems. In several papers
and in his book [14], a Nobelist physicist M. Gell-Mann suggests that our difficulties in describing the
dynamics of complex systems can be resolved if we assume that the true physical equations actually
explicitly contain Kolmogorov complexity of the described system. In [34], we show that a natural
physical approach indeed leads to new equations which are equivalent to an explicit incorporation
of Kolmogorov complexity. Since Kolmogorov complexity is not computable (see, e.g., [39]), the
possibility described by Gell-Mann’s hypothesis can be used to speed up computations.
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