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Abstract

When we have only interval ranges [z;, T;] of sample values z1,...,Zn,
what is the interval [V, V] of possible values for the variance V of these
values? There are quadratic time algorithms for computing the exact
lower bound V on the variance of interval data, and for computing V
under reasonable easily verifiable conditions. The problem is that in real
life, we often make additional measurements. In traditional statistics, if
we have a new measurement result, we can modify the value of variance
in constant time. In contrast, previously known algorithms for processing
interval data required that, once a new data point is added, we start
from the very beginning. In this paper, we describe new algorithms for
statistical processing of interval data, algorithms in which adding a data
point requires only O(n) computational steps.



1 Introduction: Data Processing — From Com-
puting to Probabilities to Intervals

Why data processing? In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or impossible to measure directly.
Examples of such quantities are the distance to a star and the amount of oil in
a given well. Since we cannot measure y directly, a natural idea is to measure
y indirectly. Specifically, we find some easier-to-measure quantities xi,..., 2,
which are related to y by a known relation y = f(z1,...,%,); this relation
may be a simple functional transformation, or complex algorithm (e.g., for the
amount of oil, numerical solution to an inverse problem). Then, to estimate y,
we first measure the values of the quantities z1,...,%,, and then we use the
results Z1,...,T, of these measurements to to compute an estimate y for y as
§ = f(F1, .- 5n)-

For example, to find the resistance R, we measure current I and voltage V,
and then use the known relation R = V/I to estimate resistance as R = V/I.

Computing an estimate for y based on the results of direct measurements is
called data processing; data processing is the main reason why computers were
invented in the first place, and data processing is still one of the main uses of
computers as number crunching devices.

Comment. In this paper, for simplicity, we consider the case when the relation
between z; and y is known exactly; in some practical situations, we only known
an approximate relation between z; and y.

Why interval computations? From computing to probabilities to in-
tervals. Measurement are never 100% accurate, so in reality, the actual value
x; of i-th measured quantity can differ from the measurement result z;. Because

of these measurement errors Ax; def Z; —x;, the result § = f(Zy,...,%,) of data
processing is, in general, different from the actual value y = f(z1,...,z,) of the
desired quantity y [16].

It is desirable to describe the error Ay ef y — y of the result of data pro-
cessing. To do that, we must have some information about the errors of direct
measurements.

What do we know about the errors Az; of direct measurements? First, the
manufacturer of the measuring instrument must supply us with an upper bound
A; on the measurement error. If no such upper bound is supplied, this means
that no accuracy is guaranteed, and the corresponding “measuring instrument”
is practically useless. In this case, once we performed a measurement and got
a measurement result T;, we know that the actual (unknown) value z; of the
measured quantity belongs to the interval x; = [z;,T;], where z; = Z; — A; and
T; = % + A



In many practical situations, we not only know the interval [—A;, A;] of
possible values of the measurement error; we also know the probability of dif-
ferent values Az; within this interval. This knowledge underlies the traditional
engineering approach to estimating the error of indirect measurement, in which
we assume that we know the probability distributions for measurement errors
AZL’,’.

In practice, we can determine the desired probabilities of different values
of Az; by comparing the results of measuring with this instrument with the
results of measuring the same quantity by a standard (much more accurate)
measuring instrument. Since the standard measuring instrument is much more
accurate than the one use, the difference between these two measurement results
is practically equal to the measurement error; thus, the empirical distribution of
this difference is close to the desired probability distribution for measurement
error. There are two cases, however, when this determination is not done:

o First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When a Hubble telescope detects the light from a dis-
tant galaxy, there is no “standard” (much more accurate) telescope float-
ing nearby that we can use to calibrate the Hubble: the Hubble telescope
is the best we have.

e The second case is the case of measurements on the shop floor. In this
case, in principle, every sensor can be thoroughly calibrated, but sensor
calibration is so costly — usually costing ten times more than the sensor
itself — that manufacturers rarely do it.

In both cases, we have no information about the probabilities of Az;; the only
information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement
result Z;, the only information that we have about the actual value z; of the
measured quantity is that it belongs to the interval x; = [Z; — A;, Z; + A;]. In
such situations, the only information that we have about the (unknown) actual
valueof y = f(z1,...,2,) is that y belongs to the range y = [y, 9] of the function
f over the box x1 X ... X Xp: B

y:[g7§] :{f(xla"wwn)lwl €X1,..-,Tn exn}-

The process of computing this interval range based on the input intervals x; is
called interval computations; see, e.g., [5, 6, 7, 12].

Interval computations techniques: brief reminder. Historically the first
method for computing the enclosure for the range is the method which is some-
times called “straightforward” interval computations. This method is based
on the fact that inside the computer, every algorithm consists of elementary
operations (arithmetic operations, min, max, etc.). For each elementary oper-
ation f(a,b), if we know the intervals a and b for a and b, we can compute



the exact range f(a,b). The corresponding formulas form the so-called interval
arithmetic. For example,

[a,@] +[b,b] =[a+ba+b]; [a,a—[bb=[a—ba—

?

|

[Q,ﬁ] ) [Q:E] = [min(g-b,g-E,E-Q,E-E),max(g-l_),g-5,6-1_),6-5)].

In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result, we
get an enclosure Y D y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples
below), the enclosure has excess width.

There exist more sophisticated techniques for producing a narrower enclo-
sure, e.g., a centered form method. However, for each of these techniques, there
are cases when we get an excess width. Reason: as shown in [9, 17], the prob-
lem of computing the exact range is known to be NP-hard even for polynomial
functions f(z1,...,z,) (actually, even for quadratic functions f).

What we are planning to do? In this paper, we analyze a specific interval
computations problem — when we use traditional statistical data processing
algorithms f(z1,...,2,) to process the results of direct measurements.

2 Error Estimation for Traditional Statistical
Data Processing Algorithms under Interval
Uncertainty: Known Results

Formulation of the problem. When we have n results z1, .. ., z, of repeated
measurement of the same quantity (at different points, or at different moments
of time), traditional statistical approach usually starts with computing their
sample average E = (1 + ...+ z,)/n and their (sample) variance

(11— E)?+...+ (z, — E)?

V =

(1)

(or, equivalently, the sample standard deviation o = v/V); see, e.g., [16].

In this paper, we consider situations when we do not know the exact values
of the quantities 1, ...,2%,, we only know the intervals xy,...,%, of possible
values of x;. In such situations, for different possible values z; € x;, we get
different values of £ and V. The question is: what are the intervals E and V
of possible values of £ and V'?

The practical importance of this question was emphasized, e.g., in [13, 14]
on the example of processing geophysical data.



Bounds on E. For E, the straightforward interval computations leads to the
exact range:
T +...+2 T1+...+7,

. z Z. = _ 21
,ie, E=———"" and E =
n n n

For variance, the problem is difficult. For V, straightforward interval
computations lead to an excess width. For example, for x; = x2 = [0, 1], the
variance is V = (z1 — 72)?/4 and hence, the actual range V = [0,0.25]. On the
other hand, E = [0, 1], hence

(x1 —E)’ + (x2 — E)
2

S [0,1] > [0,0.25].

More sophisticated methods of interval computations also sometimes lead to an
excess width.

Reason: in the formula for the average F, each variable only occurs once, and
it is known that for such formulas, straightforward interval computations lead
to the exact range (see, e.g., [4]). In the expression for variance, each variable z;
occurs several times: explicitly, in (z; — F)?2, and explicitly, in the expression for
E. In such cases, often, dependence between intermediate computation results
leads to excess width of the results of straightforward interval computations.
Not surprisingly, we do get excess width when applying straightforward interval
computations to the formula (1).

For variance, it is known that computing V is NP-hard [2]. The very fact
that computing the range of a quadratic function is NP-hard was first proven
by Vavasis [17] (see also [9]). We have shown that this difficulty happens even
for very simple quadratic functions frequently used in data processing.

A natural question is: maybe the difficulty comes from the requirement that
the range be computed exactly? In practice, it is often sufﬁcignt to compute,

in a reasonable amount of time, a usefully accurate estimate V for V, ie., an
estimate V which is accurate with a given accuracy € > 0: ‘V - V‘ < e. Alas, it
can be shown (see, e.g., [2]), that for any ¢, such computations are also NP-hard.

It is worth mentioning that V' can be computed exactly in exponential time
O(2™): it is sufficient to try all 2" possible combinations of values z; and Z; [2].

Feasible algorithm for computing V. For computing V', there exists a fea-
sible algorithm [2]: specifically, our algorithm is quadratic-time, i.e., it requires
O(n?) computational steps (arithmetic operations or comparisons) for n interval
data points x; = [z;, T;].

This algorithm A is as follows:

e First, we sort all 2n values z;, T; into a sequence z(1) < T(2) < ... < T(2p).



¢ Second, we compute E and E and select all “zones” [%(k)> Z(k+1)] that
intersect with [E, E].

e For each of the selected zones [z (), Z(r4+1)], We compute the ratio r;, =
Sk /Ny, where
def _
Sk = Z z; + Z z;, (2)
T 2T (kt1) 75 <& (k)

and N, is the total number of such is and js . If v, € [k, Z(g41)], then
we compute

def 1 _
Vi = o Yoo@i-m)+ Y, @-m) - 3)
i:giZz(;H_l) j:fj§$(k)
def

If N, =0, we take V;, = 0.

e Finally, we return the smallest of the values V}, as V.

Feasible algorithm for computing V. NP-hardness of computing V means,
crudely speaking, that there are no general ways for solving all particular cases
of this problem (i.e., computing V) in reasonable time.

However, there are algorithms for computing V' for many reasonable situa-
tions. Namely, there exists an efficient algorithm [2] that computes V' for the
case when all the interval midpoints (“measured values”) Z; = (z,; + T;)/2 are
definitely different from each other, in the sense that the “narrowed” intervals
[Z; — Ai/n,Z; + A;/n] — where A; = (z; — T;)/2 is the interval’s half-width —
do not intersect with each other.

This algorithm A is as follows:

e First, we sort all 2n endpoints of the narrowed intervals z; — A;/n and
T; + Aj/n into a sequence (1) < 23y < ... < T(2,). This enables us to
divide the real line into 2n + 1 segments (“zones”) [2(x), T(k41)], Where we

denoted z(g) 2f _ o and Z(2n41) def +00.

e Second, we compute E and E and pick all “zones” [z(x), Z(x+1)] that in-

tersect with [E, E].

e For each of remaining zones [2(x), Z(541)], for each i from 1 to n, we pick
the following value of xz;:
o if 2(341) < T3 — Ay/n, then we pick z; = T;;
o if z() > Z; + A;/n, then we pick z; = z;;

o for all other i, we consider both possible values z; = Z; and z; = z;.



As a result, we get one or several sequences of x;. For each of these
sequences, we check whether the average E of the selected values z1, ..., %,
is indeed within this zone, and if it is, compute the variance by using the
formula (2).

e Finally, we return the largest of the computed variances as V.

This algorithm also works when, for some fixed k, no more than k¥ “narrowed”
intervals can have a common point:

3 Real-Time Statistical Analysis: Problem and
Results

Formulation of the problem. In practice, the measurement results arrive
one after another. To save time, it is desirable to start processing them as
they come, without waiting for all of them to arrive. For traditional statistical
methods, this can be easily accomplished: once we know the average E of n
values z1,...,z, and the corresponding variance V, and a new measurement
result z,,41 arrives, we can compute the new values E' and V' as follows:

g =Bt
n+1 '
M=V + E%
M/:n'M"_m?H-l.
n+1 '
VI:MI_(EI)2,

where ) )
def 7 +...+

n

M

is a (sample) second moment. In other words, if we have a new measurement
result, we can modify the value of the variance in constant time.

This is also important because often, as a result of the statistical analysis
of the existing measurement results, we conclude that we do not have enough
measurements; hence, we make additional measurements. The above formulas
enables us to easily update the statistical characteristics once the new measure-
ment results are available.

Similar algorithms can be described for computing E and E:

- K
g ="2 (4)
n+1

—! TLE+Z’”+1
N n+1



However, the above algorithms for computing V and V start with sorting the
values z; and ;. Thus, we cannot even start these algorithms unless we already
know all the (interval) values xy,...,x, before we start computations.

So, if we have a new measurement result, and we want to recompute the
bounds on V', we must start from scratch and again apply O(n?) computational
steps. Thus, if we add measurement results one by one, we need O(1% + 22 +
...+n?) = O(n?®) computational steps.

A natural question is: if we simply add a new (interval) value x,11, can
we use the previous computations to re-compute V faster? In this paper, we
show that such a speed-up is indeed possible. Specifically, we will show that for
both problems, it is possible to modify the algorithms in such a way that each
algorithm requires only O(n) steps after a new data point z,4; is added. In
these new algorithms, to process n measurement results one after another, we
need O(1+2+...+n) = O(n?) computational steps — same as before, but now
we do not have to wait until all the measurement results are available.

New algorithm for computing V. This new algorithm is a modification of
the above described algorithm A. Let us first describe the main three differences
between the new algorithm and the previous one.

The first difference is that, in contrast to A, we will compute the values S,
Ny, Tk, and Vi for all zones [z(yy, Ty41)], not just for the zones that intersect
with [E, E] and/or for which r; belongs to the zone. (Of course, when we
compute V, we compute only the smallest of the values Vi corresponding to the
zones that intersect with E and for which 7 belongs to the zone.)

Second, instead of computing Vj, by using formula (3), we use the following

equivalent formula:

My, — 25, - Ni -1
Ve= RIS T ©)

MmE S 2+ Y (7)

BZ; 2T (1) 375 S n)

where

This formula is similar to the know relation V = M — E? between the variance
V, the second moment M, and the average E.

The third difference is that at the end of this algorithm, we keep not only
the final value V, but we also keep all the intermediate computational results:
the sequence z(;), the values E and E, and the values Sy, Ny, ri, My, and V.

Let us now describe how this new algorithm works. Suppose that we have
already finished applying the algorithm to n intervals xi,...,X,, and a new
interval X,41 = [Z,,41,Tn1) arrives.

First, we recompute the values E and E by applying the formulas (4) and
(5). This requires a constant number of computational steps.

Then, we find the place for the new bounds z,,; and T4 in the sorted
sequence Z(1) < T(a) < ... < T(apn)- Since the sequence z(;) is sorted, finding



a place for each of the bounds within this sequence can be done by bisection
(binary search), i.e., in O(log(n)) steps (see, e.g., [1]).

Each of the added bounds is either within one of the previous zone — in
which case this zone splits into two new smaller zones, or it is before or after all
the previous zones — in which case a single new zone is added. In both cases,
adding one bound adds at most two new zones, so adding two bounds means
that we have at most 4 new zones.

To proceed, we must update the values S, Ny, rx, M}, and Vi corresponding
to the old zones, and compute the values corresponding to the new zones.

For each old zone [z(y), Z41)], the value of Sy will only change if we either
Zypi1 2 T(k41) OF Tpg1 > T(k)- In the first case, we add z,,,, to Si; in the
second case, we add ZT,41 to Sk. In both cases, we add 1 to Ny.

Similarly, the value of M} will only change if we either z,,; > ¥(341) or
Tnt1 > ZT(x)- In the first case, we add @%_H to My; in the second case, we add
T%_H to Sk.

For each old zone k, once we updated the values of Sy, N, and M}, we can
compute ry and Vj, in finitely many steps.

Thus, for each old zone, we need a constant number of computational steps
for the update.

For each new zone, explicit computation of Sy and My requires that we go
over all n intervals, i.e., it requires linear time O(n).

Thus, the update of all intermediate values requires a constant time O(1)
for each of O(n) old zones and a linear time O(n) for each of constantly many
O(1) new zones. Therefore, the total number of computational steps needed for
an update is equal to O(1) - O(n) + O(n) - O(1) = O(n). In other words, we do
need linear time to update.

Finally, we compute V as the smallest of < n values V}; this also requires
linear time. We have therefore proven that our algorithm indeed requires linear
time to update the lower bound V on the variance V.

New algorithm for computing V. Let us now describe how we can modify
the above algorithm A so that it will require linear time to update.

Similarly to the above algorithm, let us first describe the main difference
between this modification and the original algorithm.

The first difference is that, in contrast to A, we will perform the computa-
tions for all zones [2(x), Tr41)], not just for the zones that intersect with [E, E].
(Of course, when we compute V', we compute only the smallest of the values V
corresponding to the zones that intersect with E.)

Second, at the end of this algorithm, we keep not only the final value V,
but we also keep all the intermediate computational results: the sequence z;,
and, for each zone, all selected sequences xy,...,x, and the values £ and V
corresponding to these sequences.

Let us now describe how this new algorithm works. Suppose that we have



already finished applying the algorithm to n intervals xi,...,X,, and a new
interval X,41 = [Z,,,1,Tn1) arrives.

First, we recompute the values E and E by applying the formulas (4) and
(5). This requires a constant number of computational steps.

Then, we find the place for the new bounds z,,, and T4 in the sorted
sequence (1) < T(2) < ... < T(ap). Since the sequence ;) is sorted, finding
a place for each of the bounds within this sequence can be done by bisection
(binary search), i.e., in O(log(n)) steps (see, e.g., [1]).

Similarly to the previous modified algorithm, each of the added bounds is
either within one of the previous zone — in which case this zone splits into two
new smaller zones, or it is before or after all the previous zones — in which case
a single new zone is added. In both cases, adding one bound adds at most two
new zones, so adding two bounds means that we have at most 4 new zones.

To proceed, we must update the sequences and the corresponding values E
and V corresponding to the old zones, and compute the values corresponding
to the new zones.

For each old zone, and for each corresponding sequence, we must update
this sequence by adding the corresponding value of z,1, and then re-compute
FE and V. Since no more than k narrowed intervals can have a common point,
for each zone, there are no more than 2* corresponding sequences. When k is
fixed, this means that we have a constant number O(1) of such sequences. For
each sequence, updating E and V can be done (as we have already mentioned)
in finitely many steps.

For each new zone, we need to fin all the sequences and compute the corre-
sponding values E and V. Finding all the sequences requires < 2* - n = O(n)
steps, and computing E and V for each of these sequences also requires linear
time.

Thus, the update of all intermediate values requires a constant time O(1)
for each of O(n) old zones and a linear time O(n) for each of constantly many
O(1) new zones. Therefore, the total number of computational steps needed for
an update is equal to O(1) - O(n) + O(n) - O(1) = O(n). In other words, we do
need linear time to update.

Finally, we compute V as the largest of < n values V; this also requires
linear time. We have therefore proven that our algorithm indeed requires linear
time to update the lower bound V on the variance V.
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