Real-Time Algorithmsfor Statistical Analysis of Interval Data

Berlin Wu
Dept. of Mathematics
National Chengchi University
Taipei, Taiwan
berlin@math.nccu.edu.tw

Hung T. Nguyen
Dept. of Mathematics
New Mexico State Univ.
Las Cruces, NM 88003, USA El Paso, TX 79968, USA
hunguyen@nmsu.edu

Vladik Kreinovich
Computer Science
University of Texas

vladik@cs.utep.edu

Abstract: When we have only interval ranges [z;, Z;] of sample

values z1, .. ., z,, what is the interval [V, V] of possible values for
the variance V' of these values? There are quadratic time algorithms
for computing the exact lower bound V_ on the variance of
interval data, and for computing V' under reasonable easily
verifiable conditions. The problem is that in real life, we often make
additional measurements. In traditional statistics, if we have a new
measurement result, we can modify the value of variance in constant
time. In contrast, previously known algorithms for processing interval
data required that, once a new data point is added, we start from the
very beginning. In this paper, we describe new algorithms for
statistical processing of interval data, algorithms in which adding a
data point requires only O(n) computational steps.
Keywords: interval computations, probabilistic uncertainty, real-time computations

1 Introduction: Data Processing —
From Computing to Probabilities to
Intervals

Why data processing? In many real-life situations,
we are interested in the value of a physical quantity
y that is difficult or impossible to measure directly.
Examples of such quantities are the distance to a star
and the amount of oil in a given well. Since we can-
not measure y directly, a natural idea is to measure
y indirectly. Specifically, we find some easier-to-
measure quantities x4, ..., x, which are related to
y by a known relationy = f(x1,...,2,). This re-
lation may be a simple functional transformation, or
complex algorithm (e.g., for the amount of oil, nu-
merical solution to an inverse problem).

It is worth mentioning that in the vast majority
of these cases, the function f(zy,...,z,) that de-
scribes the dependence between physical quantities
is continuous.

Then, to estimate y, we first measure the values of
the quantities x4, . . ., z,,, and then we use the results
Zi,-.., I, Of these measurements to to compute an
estimate y fory asy = f(T1,...,Tn).

For example, to find the resistance R, we measure
current I and voltage V, and then use the known re-
lation R = V/I to estimate resistance as R = V' /I.

Computing an estimate for y based on the results of
direct measurements is called data processing; data
processing is the main reason why computers were
invented in the first place, and data processing is still
one of the main uses of computers as number crunch-
ing devices.

Comment. In this paper, for simplicity, we consider
the case when the relation between z; and y is known
exactly; in some practical situations, we only known
an approximate relation between z; and y.

Why interval computations? From computing to
probabilities to intervals. Measurement are never
100% accurate, so in reality, the actual value z; of
i-th measured quantity can differ from the measure-
ment result z;. Because of these measurement errors

Az; € 5 — 2, the result § = f(F4,...,5n) Of
data processing is, in general, different from the ac-
tual value y = f(z1,...,z,) of the desired quantity
y [16].

It is desirable to describe the error Ay ef y—y of the
result of data processing. To do that, we must have
some information about the errors of direct measure-
ments.

What do we know about the errors Azx; of direct
measurements? First, the manufacturer of the mea-
suring instrument must supply us with an upper
bound A; on the measurement error. If no such up-
per bound is supplied, this means that no accuracy
is guaranteed, and the corresponding “measuring in-
strument” is practically useless. In this case, once
we performed a measurement and got a measurement
result z;, we know that the actual (unknown) value
x; of the measured quantity belongs to the interval
x; = [z;,%;], Wwherez, = Z; — A; and T; = Z; + A;.

In many practical situations, we not only know the
interval [—A;, A;] of possible values of the measure-
ment error; we also know the probability of differ-
ent values Ax; within this interval. This knowledge
underlies the traditional engineering approach to es-
timating the error of indirect measurement, in which
we assume that we know the probability distributions
for measurement errors Ax;.

In practice, we can determine the desired probabili-
ties of different values of Ax; by comparing the re-
sults of measuring with this instrument with the re-
sults of measuring the same quantity by a standard
(much more accurate) measuring instrument. Since
the standard measuring instrument is much more ac-
curate than the one use, the difference between these
two measurement results is practically equal to the
measurement error; thus, the empirical distribution
of this difference is close to the desired probability
distribution for measurement error. There are two
cases, however, when this determination is not done:

o First is the case of cutting-edge measurements,
e.g., measurements in fundamental science.
When a Hubble telescope detects the light from
a distant galaxy, there is no “standard” (much
more accurate) telescope floating nearby that
we can use to calibrate the Hubble: the Hubble
telescope is the best we have.

e The second case is the case of measurements
on the shop floor. In this case, in principle,
every sensor can be thoroughly calibrated, but
sensor calibration is so costly — usually costing
ten times more than the sensor itself — that man-
ufacturers rarely do it.

In both cases, we have no information about the

probabilities of Az;; the only information we have
is the upper bound on the measurement error.

In this case, after we performed a measurement and
got a measurement result z;, the only information
that we have about the actual value z; of the mea-
sured quantity is that it belongs to the interval x; =
[Z; — Ay, T; + A;]. In such situations, the only in-
formation that we have about the (unknown) actual
value of y = f(z1,...,2,) is that y belongs to
the range y = [y, 7] of the function f over the box
X1 X ... X Xpl

y= [gay] =

{f(z1,...,25) | ®1 € X1,...,2n € Xp}.

For continuous functions f(z1,...,z,), this range
is an interval. The process of computing this interval
range based on the input intervals x; is called inter-
val computations; see, e.g., [5, 6, 7, 12].

Interval computations techniques: brief re-
minder. Historically the first method for computing
the enclosure for the range is the method which is
sometimes called “straightforward” interval compu-
tations. This method is based on the fact that inside
the computer, every algorithm consists of elementary
operations (arithmetic operations, min, max, etc.).
For each elementary operation f(a,b), if we know
the intervals a and b for a and b, we can compute
the exact range f(a, b). The corresponding formulas
form the so-called interval arithmetic. For example,

[a,a@] + [b,b] = [a+b,a+ b];

[Q,E] - [bab] = [Q—E,ﬁ—b];
[a,a] - [b,0] =
[min(a-b,a-b,a-b,a-b),max(a-b,a-b,a-b,a-b)).

In straightforward interval computations, we repeat
the computations forming the program f step-by-
step, replacing each operation with real numbers by
the corresponding operation of interval arithmetic. It
is known that, as a result, we getan enclosureY D y
for the desired range.

In some cases, this enclosure is exact. In more com-
plex cases (see examples below), the enclosure has
excess width.

There exist more sophisticated techniques for pro-
ducing a narrower enclosure, e.g., a centered form
method. However, for each of these techniques, there
are cases when we get an excess width. Reason: as
shown in [9, 17], the problem of computing the exact

range is known to be NP-hard even for polynomial
functions f(x1, ..., z,) (actually, even for quadratic
functions f).

What we are planning to do? In this paper, we
analyze a specific interval computations problem —
when we use traditional statistical data processing al-
gorithms f(x1,...,z,) to process the results of di-
rect measurements.

2 Error Estimation for Traditional Sta-
tistical Data Processing Algorithms
under Interval Uncertainty: Known
Results

Formulation of the problem. When we have n

results z1,...,x, of repeated measurement of the

same quantity (at different points, or at different mo-
ments of time), traditional statistical approach usu-

ally starts with computing their sample average £ =
(z1 + ...+ z,)/n and their (sample) variance

(11 —E)*+...+ (z, — E)?

V=

(1)

(or, equivalently, the sample standard deviation o =
VV); see, e.g., [16].

In this paper, we consider situations when we do not
know the exact values of the quantities z1, ..., z,,
we only know the intervals x,...,x, of possible
values of z;. In such situations, for different possible
values z; € x;, we get different values of E and V.
The question is: what are the intervals E and V of
possible values of E and V?

The practical importance of this question was em-
phasized, e.g., in [13, 14] on the example of process-
ing geophysical data.

Bounds on E. For E, the straightforward interval
computations leads to the exact range:
X1 +...+X,

D
n

ie.,

i +...+2 — ZT1+...+7
E=2T" T2 =T
n n

For variance, the problem is difficult. For V,
straightforward interval computations lead to an ex-
cess width. For example, for x; = x2 = [0, 1], the
variance is V = (z1 — z2)?/4 and hence, the actual

range V = [0,0.25]. On the other hand, E = [0, 1],
hence
(x1 —E)’> + (x2 — E)?
2

More sophisticated methods of interval computations
also sometimes lead to an excess width.

=1[0,1] D [0,0.25].

Reason: in the formula for the average E, each vari-
able only occurs once, and it is known that for such
formulas, straightforward interval computations lead
to the exact range (see, e.g., [4]). In the expression
for variance, each variable x; occurs several times:
explicitly, in (z; — E)?, and explicitly, in the ex-
pression for E. In such cases, often, dependence be-
tween intermediate computation results leads to ex-
cess width of the results of straightforward interval
computations. Not surprisingly, we do get excess
width when applying straightforward interval com-
putations to the formula (1).

For variance, it is known that computing V' is NP-
hard [2]. The very fact that computing the range
of a quadratic function is NP-hard was first proven
by Vavasis [17] (see also [9]). We have shown that
this difficulty happens even for very simple quadratic
functions frequently used in data processing.

A natural question is: maybe the difficulty comes
from the requirement that the range be computed ex-
actly? In practice, it is often sufficient to compute, in
a reasonable amount of time, a usefully accurate es-

timate V for V, i.e., an estimate V which is accurate
with a given accuracy € > 0: ‘V—V‘ < . Alas,

it can be shown (see, e.g., [2]), that for any ¢, such
computations are also NP-hard.

It is worth mentioning that V' can be computed ex-
actly in exponential time O(2™): it is sufficient to try
all 2™ possible combinations of values z; and Z; [2].

Feasible algorithm for computing V. For comput-
ing V, there exists a feasible algorithm [2]: specifi-
cally, our algorithm is quadratic-time, i.e., it requires
O(n?) computational steps (arithmetic operations or
comparisons) for n interval data points x; = [z;, Z;].

This algorithm A is as follows:

o First, we sort all 2n values z;, ; into a se-
quence z(1) < T(2) < ... < T(ap)-

e Second, we compute E and E and select
all “zones” [z(r),zk41)] that intersect with

[E, E].

e For each of the selected zones [z), #(x+1)], We
compute the ratio ry, = Sy, /Ny, where

S Y m+ Y om, @

BL; 2T (k1) JT; ST (1)

and Ny, is the total number of such 4s and js .
If e € [z(k), (k41)], then we compute Vj, =
Wi, /n, where

W S (-

BT 2T (ot 1)

Y @) 3)

3T ST (k)
def
If N, =0, wetake V;, = 0.
o Finally, we return the smallest of the values V,
asV.

Feasible algorithm for computing V. NP-hardness
of computing V' means, crudely speaking, that there
are no general ways for solving all particular cases of
this problem (i.e., computing V) in reasonable time.

However, there are algorithms for computing V' for
many reasonable situations. Namely, there exists
an efficient algorithm [2] that computes V' for the
case when all the interval midpoints (“measured val-
ues”) z; = (z; + %;)/2 are definitely different from
each other, in the sense that the “narrowed” intervals
[%z —A,/n,ﬁﬁ—Al/n] —where A; = (gl —fl)/Q is
the interval’s half-width — do not intersect with each
other.

This algorithm A is as follows:

o First, we sort all 2n endpoints of the narrowed
intervals z; — A;/n and Z; + A;/n into a se-
quence z(1) < z(z) < ... < Tap). Thisen-
ables us to divide the real line into 2n + 1 seg-
ments (“zones”) [z(xy, Z(x+1)], Where we de-

noted o) 4 _ o and T(2nt1) € J o

e Second, we compute E and E and pick
all “zones” [z, T(k+1)] that intersect with

[E, E].

e For each of remaining zones [z (), T (k1)) for
each ¢ from 1 to n, we pick the following value
of z;:

o ifz(y1) < T —Ai/n, then we pick z; =
Ti,

o if x) > ¥ + A;/n, then we pick z; =

gi!

o for all other 4, we consider both possible
values z; = 7; and z; = z,.

As a result, we get one or several sequences
of z;. For each of these sequences, we check
whether the average E of the selected values
Z1,--.,Z, i indeed within this zone, and if it
is, compute the variance by using the formula

Q).

e Finally, we return the largest of the computed
variances as V.

This algorithm also works when, for some fixed k,
no more than k& “narrowed” intervals can have a com-
mon point:

3 Real-Time Statistical Analysis: Prob-
lem and Results

Formulation of the problem. In practice, the mea-
surement results arrive one after another. To save
time, it is desirable to start processing them as they
come, without waiting for all of them to arrive. For
traditional statistical methods, this can be easily ac-
complished: once we know the average E of n val-
ues zi,...,x, and the corresponding variance V,
and a new measurement result z,, 1 arrives, we can
compute the new values E’ and V' as follows:

n-E—}—wn_H.

B = n+1 ’
M =V + E%
A — n-M+ax, .,

n+1 ’
V= M — (B2,

where

def T3 + ...+ 22

- n

is a (sample) second moment. In other words, if we
have a new measurement result, we can modify the
value of the variance in constant time.

M

This is also important because often, as a result of
the statistical analysis of the existing measurement
results, we conclude that we do not have enough
measurements; hence, we make additional measure-
ments. The above formulas enables us to easily up-
date the statistical characteristics once the new mea-
surement results are available.

Similar algorithms can be described for computing
Eand E: .

g =" ()

n+1

-/ n-E+ Tn+1

B = n+1l 5)
However, the above algorithms for computing V_and
V start with sorting the values z; and Z;. Thus, we
cannot even start these algorithms unless we already
know all the (interval) values x, ..., x, before we
start computations.

So, if we have a new measurement result, and we
want to recompute the bounds on V, we must start
from scratch and again apply O(n?) computational
steps. Thus, if we add measurement results one by
one, we need O(1% + 2% + ... + n?) = O(n3) com-
putational steps.

A natural question is: if we simply add a new (inter-
val) value x,,1, can we use the previous computa-
tions to re-compute V faster? In this paper, we show
that such a speed-up is indeed possible. Specifically,
we will show that for both problems, it is possible to
modify the algorithms in such a way that each algo-
rithm requires only O(n) steps after a new data point
Zn+1 IS added. In these new algorithms, to process
n measurement results one after another, we need
O(1 +2+...+n) = O(n?) computational steps
— same as before, but now we do not have to wait
until all the measurement results are available.

New algorithm for computing V. This new algo-
rithm is a modification of the above described algo-
rithm A. Let us first describe the main three differ-
ences between the new algorithm and the previous
one.

The first difference is that, in contrast to 4, we will
compute the values Sy, Ny, ¢, and V4, for all zones
[%(k), Zr1)], nOt just for the zones that intersect with
[E, E] and/or for which 7, belongs to the zone. (Of
course, when we compute V, we compute only the
smallest of the values Vi, corresponding to the zones
that intersect with E and for which r, belongs to the

Zone.)

Second, instead of computing V}, by using formula
(3), we use the following equivalent formula:

Wk:Mk—2Sk-Tk+Nk-Ti, (6)

where

My, & Z i + Z ;. ()

BT, 2T (kt1) J %5 < (x)

This formula is similar to the known relation V' =
M — E? between the variance V, the second moment
M, and the average E.

The third difference is that at the end of this algo-
rithm, we keep not only the final value V/, but we
also keep all the intermediate computational results:
the sequence x;), the values E and E, and the values
Sk, Ni, rr, My, and V.

Let us now describe how this new algorithm works.
Suppose that we have already finished applying the
algorithmto n intervals x4, . . ., x,,, and a new inter-
val X411 = [Z,,1 1, Tnt1] arrives.

First, we recompute the values E and E by applying
the formulas (4) and (5). This requires a constant
number of computational steps.

Then, we find the place for the new bounds z,, ,
and Z,41 in the sorted sequence z(;y < z(z) <
... < m(2p)- Since the sequence z ;) is sorted, find-
ing a place for each of the bounds within this se-
quence can be done by bisection (binary search), i.e.,
in O(log(n)) steps (see, e.g., [1]).

Each of the added bounds is either within one of the
previous zone — in which case this zone splits into
two new smaller zones, or it is before or after all the
previous zones — in which case a single new zone is
added. In both cases, adding one bound adds at most
two new zones, so adding two bounds means that we
have at most 4 new zones.

To proceed, we must update the values Sy, Ng, %,
My, and Vj, corresponding to the old zones, and
compute the values corresponding to the new zones.

For each old zone [z (), 241)], the value of Sy, will
only change if we either z,,, ; > % (j41) Of Tpy1 >
x(k). In the first case, we add z,,,, to Si; in the
second case, we add T, 1 to Sg. In both cases, we
add 1 to Ny,.

Similarly, the value of M, will only change if we
either z,, .1 > Z(pyq) OF .En-i-l > z(ry- Inthe first
case, we add giH to My; in the second case, we add
fi—i—l to S.

For each old zone k, once we updated the values
of Sk, Ni, and My, we can compute r; and Vj in
finitely many steps.

Thus, for each old zone, we need a constant number
of computational steps for the update.

For each new zone, explicit computation of S, and
M;, requires that we go over all n intervals, i.e., it
requires linear time O(n).

Thus, the update of all intermediate values requires
a constant time O(1) for each of O(n) old zones
and a linear time O(n) for each of constantly many
O(1) new zones. Therefore, the total number of
computational steps needed for an update is equal to
O(1)-O(n) + O(n) - O(1) = O(n). In other words,
we do need linear time to update.

Finally, we compute V' as the smallest of < n values
Vi this also requires linear time. We have therefore
proven that our algorithm indeed requires linear time
to update the lower bound V' on the variance V.

New algorithm for computing V': numerical ex-
ample. Let us illustrate the above algorithm on the
example when we process the following 3 intervals:
x; = [2.1,2.6], X2 = [2.0,2.1], and x3 = [2.2,2.9].

We start with the interval x; = [2.1,2.6]. We only
have a single interval, so we only have two bounds:
2.1 and 2.6. These bounds are endpoints of the same
interval, so they are already sorted, hence z(;) = 2.1
and z(2y = 2.6. This is a degenerate case. In this
case, we have only one zone [z (), ()] = [2.1,2.6].
For this zone, S1 = 0, Ny = 0, 11 = S1/Ny is
undefined, M; = 0,and V; = 0.

Then, we add the second interval x, = [2.0,2.1]. To
get the ordering of all 4 bounds, we must find the
place for the two new bounds, z, = 2.0 and T, =
2.1, in the sorted sequence

Ty = 2.1< T(o) = 2.6.

We find the place for each of these bounds by bisec-
tion, so we get

20<21=21<2.6.

No new bounds split the old zone [2.1, 2.6], so this
zone remains, In addition to this old zone, we also
have a new zone [2.0,2.1].

In accordance with the algorithm, let us start with
re-computing the values Sy, . . . corresponding to the
old zone. The new interval x5 is completely to the
left of the old zone, so its upper bound 2.1 is added
to S; and 1 to Ny. As a result, for this zone, we get
S=0+21=21land N =0+ 1 = 1. Hence,
for this zone, r = S/N = 2.1. Similarly, the value
M changes by adding 2.12, so the new value of M is
0 + 2.12 = 4.41. Finally, we compute
M—-2S-r+N-r?

V: =
n

441-2-21-2141-21%

5 0.

For the new zone, we explicitly compute S and M.
Inourcase, S = 21, N =1,r = §/N = 2.1,
M =2.12 = 4.41, and

441-2-21-2141-212

v 2

0.

Let us now add the third interval x3 = [2.2,2.9].
First, we find the place for the new bounds 2.2 and
2.9 in the sorted sequence

20<21<26.
As a result, we get an enlarged sorted sequence
20<21<22<26<29.

The zone [2.0,2.1] stays, the zone [2.1,2.6] is now
split into two new zones: [2.1,2.2] and [2.2, 2.6], and
a new zone [2.6, 2.9] has appeared.

For the old zone [2.0,2.1], since z; = 2.2 is larger
than the upper bound of this zone, we recalculate S
by adding the value 2.2 corresponding to the new in-
terval x3, i.e., replace the old value S = 2.1 with
S = 2.1+ 22 = 4.3. Correspondingly, we re-
place the old value N = 1 with the new value
N =1+1 = 2. Hence,r = S/N = 2.15. Similarly,
since z; > 2.1, the value M is changed from the
old value 4.41 to the new value 4.41 + 2.22 = 7.25.
Hence,

_725-2-43-215+2-2.15

v 3

= 0.875.

For the new zone [2.1, 2.2], straightforward compu-
tations describe S as S = 2.1 + 2.2 = 4.3 and
N = 2, hence r = S/N = 2.15. Here, M =
2.12 + 2.2%2 = 7.25, hence, similarly to the previous
zone, we have V' = 0.875.

For the new zone [2.2,2.6], we have S = 2.1 and
N =1,hencer = S/N = 2.1. Here, M = 2.12 =
4.41,hence V = (4.41—2-2.1-2.1+1-4.41)/3 = 0.

Finally, for the new zone [2.6,2.9], we have S =
21+426=4.Tand N = 2, hencer = S/N = 2.35.
Here, M = 2.12 + 2.6 = 11.17, hence

1117 -2-47-2.35+2- 2.352 _

= 3 =

0.541666 . . .

v

If these three intervals are all we have, then to get the
actual value of V, we consider only those zones for
which r is within this zone. Out of our 4 zones, only
one zone has this property: [2.1,2.2]. For this zone,
V' = 0.875, so this is the desired lower endpoint V.

New algorithm for computing V. Let us now de-
scribe how we can modify the above algorithm A so
that it will require linear time to update.

Similarly to the above algorithm, let us first describe
the main difference between this modification and
the original algorithm.

The first difference is that, in contrast to 4, we will
perform the computations for all zones [z (r), Zj41)],
not just for the zones that intersect with [E, E]. (Of
course, when we compute V, we compute only the
smallest of the values V' corresponding to the zones
that intersect with E.)

Second, at the end of this algorithm, we keep not
only the final value V, but we also keep all the in-
termediate computational results: the sequence z;),
and, for each zone, all selected sequences z1, - .., z,
and the values E and V' corresponding to these se-
quences.

Let us now describe how this new algorithm works.
Suppose that we have already finished applying the
algorithm to n intervals x4, . . ., x,,, and a new inter-
val Xp11 = [Z,41,Tny1] arrives.

First, we recompute the values E and E by applying
the formulas (4) and (5). This requires a constant
number of computational steps.

Then, we find the place for the new bounds z,,, ,
and Tn41 in the sorted sequence z(;) < z(g) <
... < m(2p)- Since the sequence ;) is sorted, find-
ing a place for each of the bounds within this se-
quence can be done by bisection (binary search), i.e.,
in O(log(n)) steps (see, e.g., [1]).

Similarly to the previous modified algorithm, each of
the added bounds is either within one of the previous
zone — in which case this zone splits into two new
smaller zones, or it is before or after all the previous
zones — in which case a single new zone is added. In
both cases, adding one bound adds at most two new
zones, so adding two bounds means that we have at
most 4 new zones.

To proceed, we must update the sequences and the
corresponding values E and V' corresponding to the

old zones, and compute the values corresponding to
the new zones.

For each old zone, and for each corresponding se-
guence, we must update this sequence by adding the
corresponding value of z,1, and then re-compute
E and V. Since no more than & narrowed intervals
can have a common point, for each zone, there are
no more than 2* corresponding sequences. When &
is fixed, this means that we have a constant number
O(1) of such sequences. For each sequence, updat-
ing E and V' can be done (as we have already men-
tioned) in finitely many steps.

For each new zone, we need to fin all the sequences
and compute the corresponding values E and V.
Finding all the sequences requires < 2% - n = O(n)
steps, and computing E and V' for each of these se-
guences also requires linear time.

Thus, the update of all intermediate values requires
a constant time O(1) for each of O(n) old zones
and a linear time O(n) for each of constantly many
O(1) new zones. Therefore, the total number of
computational steps needed for an update is equal to
0(1)-0O(n)+ O(n) -O(1) = O(n). In other words,
we do need linear time to update.

Finally, we compute V' as the largest of < n values
V; this also requires linear time. We have therefore
proven that our algorithm indeed requires linear time
to update the lower bound V" on the variance V.

Acknowledgments

This work was supported in part by NASA grant
NCC5-209, by the AFOSR grant F49620-00-1-0365,
by NSF grants EAR-0112968 and EAR-0225670, by
IEEE/ACM SC2001 and SC2002 Minority Serving
Institutions Participation Grants, by a research grant
from Sandia National Laboratories as part of the
Department of Energy Accelerated Strategic Com-
puting Initiative (ASCI), and by Small Business In-
novation Research grant 9R44CA81741 to Applied
Biomathematics from the National Cancer Institute
(NCI), acomponent of NIH. The authors are thankful
to the anonymous referees for valuable suggestions.

References

[1] Cormen, Th. H., Leiserson, C. E., Rivest, R. L.,
and Stein, C. (2001) “Introduction to Algo-
rithms”, MIT Press, Cambridge, MA.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Ferson S., Ginzburg L., Kreinovich V., Longpré
L., and Aviles M. (2002), “Computing Variance
for Interval Data is NP-Hard”, ACM SIGACT
News, vol. 33, 108-118.

Ferson S., Ginzburg L., Kreinovich V., and
Lopez J. (2002), “Absolute Bounds on the
Mean of Sum, Product, etc.. A Probabilis-
tic Extension of Interval Arithmetic”, Extended
Abstracts of the 2002 SSAM Workshop on Val-
idated Computing, Toronto, Canada, May 23—
25, 70-72.

Hansen, E. (1997), “Sharpness in interval com-
putations”, Reliable Computing, vol. 3, 7-29.

Jaulin L., Kieffer M., Didrit O., and Walter E.
(2001), “Applied Interval Analysis”, Springer-
Verlag, Berlin.

Kearfott R. B. (1996), “Rigorous Global
Search: Continuous Problems”, Kluwer, Dor-
drecht.

Kearfott R. B. and Kreinovich V., eds.
(1996), “Applications of Interval Computa-
tions” (Pardalos. P. M., Hearn, D., “Applied
Optimization”, Vol. 3), Kluwer, Dordrecht.

Kreinovich, V. “Probabilities, Intervals, What
Next? Optimization Problems Related to Ex-
tension of Interval Computations to Situations
with Partial Information about Probabilities”,
Journal of Global Optimization (to appear).

Kreinovich V., Lakeyev A., Rohn J., and
Kahl P. (1997), “Computational Complexity
and Feasibility of Data Processing and Inter-
val Computations” (Pardalos. P. M., Hearn,
D., “Applied Optimization”, Vol. 10), Kluwer,
Dordrecht.

Kreinovich V., Nguyen H. T., Ferson S,
and Ginzburg L. (2002), “From Computation
with Guaranteed Intervals to Computation with
Confidence Intervals”, Proc. 21st Int'l Conf.
of North American Fuzzy Information Pro-
cessing Society NAFIPS 2002, New Orleans,
Louisiana, 418-422.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Kuznetsov V. P. (1991), “Interval Statistical
Models”, Radio i Svyaz, Moscow (in Russian).

Moore R. E. (1979), “Methods and Applica-
tions of Interval Analysis”, SIAM, Philadel-
phia.

Nivlet P., Fournier F., and Royer J. (2001), “A
new methodology to account for uncertainties
in 4-D seismic interpretation”, Proceedings of
the 71st Annual International Meeting of the
Society of Exploratory Geophysics SEG' 2001,
San Antonio, Texas, September 9-14, 1644—
1647.

Nivlet P., Fournier F., and Royer J. (2001),
“Propagating interval uncertainties in super-
vised pattern recognition for reservoir char-
acterization”, Proceedings of the 2001 Soci-
ety of Petroleum Engineers Annual Conference
SPE’ 2001, New Orleans, Louisiana, September
30-October 3, paper SPE-71327.

Osegueda, R., Kreinovich, V., Potluri, L., and
Al6 R. (2002), “Non-Destructive Testing of
Aerospace Structures: Granularity and Data
Mining Approach”, Proceedings of FUZZ-
IEEE’ 2002, Honolulu, Hawaii, May 12-17,
\ol. 1, 685-689.

Rabinovich S. (1993), “Measurement Errors:
Theory and Practice”, American Institute of
Physics, New York.

Vavasis S. A. (1991), “Nonlinear Optimization:
Complexity Issues”, Oxford University Press,
N.Y.

Walley, P. (1991), “Statistical Reasoning with
Imprecise Probabilities”, Chapman and Hall,
N.Y.

