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Abstract
When we have only interval rangés,, 7;] of sample values, . . ., z,,, what is the intervalV’, V] of possi-

ble values for the variance of these values? There are quadratic time algorithms for computing the exact lower
boundV” on the variance of interval data, and for computinginder reasonable easily verifiable conditions. The
problem is that in real life, we often make additional measurements. In traditional statistics, if we have a new
measurement result, we can modify the value of variance in constant time. In contrast, previously known algo-
rithms for processing interval data required that, once a new data point is added, we start from the very beginning.
In this paper, we describe new algorithms for statistical processing of interval data, algorithms in which adding a
data point requires onl@(n) computational steps.

1 Introduction: Data Processing in Intelligent Systems — From Comput-
ing to Probabllities to Intervals

Let's start with a big picture. Before we describe a specific problem that we solve in this paper, let us first
describe how, in our view, this problem fits into a big picture of information processing in intelligent systems. One
of the main specific features of information processing in intelligent systems is that in such systems, we often have
very limited knowledge. As a result, processingrapreciseinformation is necessary in intelligent systems.

A typical example is the processing of linguistic information, i.e., information represented by experts in terms
of words from a natural language. This information can be modeled, e.fuzhy set¢see, e.g., [16, 25]). For
such a modeling, when an expert states that the desired value is, say, small but not very small, we describe this
expert information in terms of an appropriate fuzzy set.

A particular case of such a statement is when an expert states that the actual value of the desired quantity is
between, say, 0.1 and 0.3. After such a statement, the only information about the actual (unknown) value of the
desired quantity is that it belongs to the interffal, 0.3] — and each interval (and, more generally, each set) can
be viewed as a particular example of a more general concept of a fuzzy set.

Since the knowledge about each quantity is represented in such “set-valued” form, it is necessary to be able
to processsuch set-valued data, to develioference procedurewith such set-valued observations where the nu-
merical quantities of interest are not directly observable, but, instead, only know to lie in some sets. Mathematical
analysis of this problem of data processing and deriving inference is therefore crucial for designing intelligent
systems.

The analysis performed in this paper is a practically important part of this general problem. Specifically, in this
paper, we investigate the computational aspects of processing interval-valued data.

After this general introduction, let us now describe our problem and its motivation in more detail.

Why data processing? In intelligent systems, there are two sources of information about physical quantities:
measurements and expert estimates.

In many real-life situations, we are interested in the value of a physical quarthigt is difficult or impossible
to measure directly that are difficult for experts to estimate. Examples of such quantities are the distance to a star
and the amount of oil in a given well.



Since we cannot measure or estimatdirectly, a natural idea is to measure or estimatedirectly. Specifi-
cally, we find some easier-to-measure or easier-to-estimate quantities, x,, which are related tg by a known
relationy = f(z1,...,z,). This relation may be a simple functional transformation, or a complex algorithm (e.g.,
for the amount of oil, a numerical solution to an inverse problem).

Commentlt is worth mentioning that in the vast majority of these cases, the fun¢fion, . . ., z,,) that describes
the dependence between physical quantities is continuous.

In such case, to estimagewe first measure or estimate the values of the quantities . , z,,, and then we use
the resultsey, . . ., z,, of these measurements or estimates to to compute an esfifwatg asy = f(z1,...,Zn)-

For example, to find the resistanfie we measure or estimate currdrand voltage/, and then use the known
relationR = V/I to estimate resistance &= V'/I.

Computing an estimate fgrbased on the results of direct measurements or estimates isdaféeprocessing
data processing is the main reason why computers were invented in the first place, and data processing is still one
of the main uses of computers as humber crunching devices.

Commentln this paper, for simplicity, we consider the case when the relation betwesmdy is known exactly;
in some practical situations, we only known an approximate relation betwesmdy.

Why interval computations? From computing to probabilities to intervals. Neither measurements nor esti-
mates are 100% accurate, so in reality, the actual vajud i-th measured quantity can differ from the resiilt
obtained by measurement or by estimation. Because of theasurement (estimation) errofse; def T; — T,
the resulty = f(Z,,...,7,) of data processing is, in general, different from the actual valee f(z1,...,z,)

of the desired quantity [29].

Itis desirable to describe the errawy def y —y of the result of data processing. To do that, we must have some
information about the errors of direct measurements and/or estimates.

What do we know about the errofsz; related to expert estimation? Often, an expert can provide guaranteed
boundsz; andz; for the estimated quantity;. If such bounds are known, then we are guaranteed that the actual
(unknown) value ofr; belongs to the intervat; = [z,,7;]. Often, these bounds come in the form of a single
boundA; on the expert’s estimation accuracy: for example, an expert may say that the actual fish population in a
lake is 50,00Qt 20,000. In this case;; = z; — A; andz; = T; + A,.

Often, in addition (or instead) the guaranteed bounds, an expert can provide bounds thatagowitina
certain degree of confidence. Often, we know several such bounding intervals corresponding to different degrees
of confidence. Such a nested family of intervals is also calledzy setbecause it turns out to be equivalent to a
more traditional definition of fuzzy set [6, 16, 23, 24, 25] (if a traditional fuzzy set is given, then different intervals
from the nested family can be viewed@suts corresponding to different levels of uncertainjy

What do we know about the errorsz; of direct measurements? First, the manufacturer of the measuring
instrument must supply us with an upper boukdon the measurement error. If no such upper bound is supplied,
this means that no accuracy is guaranteed, and the corresponding “measuring instrument” is practically useless. In
this case, once we performed a measurement and got a measurement, regiknow that the actual (unknown)
valuez; of the measured quantity belongs to the intesvak= [z;, 7;], wherez, = z; — A; andz; = 7; + A,.

In many practical situations, we not only know the interfal\;, A;] of possible values of the measurement
or estimation error; we also know the probability of different valdes; within this interval. This knowledge
underlies the traditional engineering approach to estimating the error of indirect measurement, in which we assume
that we know the probability distributions for measurement erfors.

In practice, we can determine the desired probabilities of different valu&s:pby comparing the results of
measuring with this instrument (or results of expert estimation) with the results of measuring the same quantity
by a standard (much more accurate) measuring instrument. Since the standard measuring instrument is much
more accurate than the one used, the difference between these two measurement results is practically equal to the
measurement error; thus, the empirical distribution of this difference is close to the desired probability distribution
for measurement error. There are two cases, however, when this determination is not done:

e Firstis the case of cutting-edge measurements, e.g., measurements in fundamental science. When a Hubble
telescope detects the light from a distant galaxy, there is no “standard” (much more accurate) telescope
floating nearby that we can use to calibrate the Hubble: the Hubble telescope is the best we have.



e The second case is the case of measurements on the shop floor. In this case, in principle, every sensor can
be thoroughly calibrated, but sensor calibration is so costly — usually costing ten times more than the sensor
itself — that manufacturers rarely do it.

In both cases, we have no information about the probabilitiesgf the only information we have is the upper
bound on the measurement or estimation error.

In this case, after we performed a measurement and got a measurement;te¢belbnly information that we
have about the actual valug of the measured quantity is that it belongs to the interyak [Z; — A;, Z; + A;].
In such situations, the only information that we have about the (unknown) actual vajue-of (x4, ..., x,) is
thaty belongs to the rangg = [y, 7] of the functionf over the boxx; x ... x x;,:

y= [y7y] :{f($1,...,$n)|.’111 eXl,---,.’L'neXn}.

For continuous functiong (x4, ..., x,), this range is an interval. The process of computing this interval range
based on the input intervals is calledinterval computationssee, e.g., [13, 14, 15, 22].

CommentWhen, instead of a single interval, we have several intervals corresponding to different levels of confi-
dence, we must perform interval computations on each level [6, 16, 23, 24, 25].

Interval computations techniques: brief reminder. Historically the first method for computing the enclosure for

the range is the method which is sometimes called “straightforward” interval computations. This method is based
on the fact that inside the computer, every algorithm consists of elementary operations (arithmetic operatjons,
max, etc.). For each elementary operatipfu, b), if we know the intervala andb for ¢ andb, we can compute

the exact rangég(a, b). The corresponding formulas form the so-callegrval arithmetic For example,

[a,a] + [b,b] = [a+b,a+b]; [a,a]—[b,b]=[a—ba—b];

[Q»a] : [bvi} = [mln(gQ,QB,EQ,EE),max(gandb,ﬁg)]

In straightforward interval computations, we repeat the computations forming the prggstap-by-step, replac-
ing each operation with real numbers by the corresponding operation of interval arithmetic. It is known that, as a
result, we get an enclosu® D y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples below), the enclosure has excess
width.

There exist more sophisticated techniques for producing a narrower enclosure, e.g., a centered form method.
However, for each of these techniques, there are cases when we get an excess width. Reason: as shown in [18, 32],
the problem of computing the exact range is known to be NP-hard even for polynomial fungtions. . , z,,)

(actually, even for quadratic functiorf3.

What we are planning to do? In this paper, we analyze a specific interval computations problem — when we use
traditional statistical data processing algorithfiis, . . ., x,,) to process the results of direct measurements.

From the statistical viewpoint, this problem is a particular case of robust statisticsInterval uncertainty means

that we do not know the exact probability distribution for measurement or estimation error; instead, we only know
that this distribution belongs to a knogollection of distribution — namely, to the collection of all probability
distributions that are located in the given interval with probability 1. Situations when we only know a collection

of distributions are described bgbust statistic§see, e.g., [12]), and our problem of estimating sample variance

is in line with the problems traditionally solved by robust statistics (see, e.g., [12]): many known algorithms in the
area of robust statistics also return a guaranteed robust estimate for the sample mean and sample variance, which
holds for a collection of distributions.

One would expect that these problems have already been solved in robust statistics. To our surprise, it turned
out that while robust statistics does have a lot of useful and interesting results about the guaranteed bounds on the
mean for many classes of distributions, the problem of how to compute guaranteed bounds on the sample variance
fast has not yet been solved satisfactorily.

Comment.In this paper, we solve a very specific problem related to a combination of interval and probabilistic
uncertainty. For a more general context and for other practical problems related to such a combination, see, e.g.,
[2,3,4,5,7,10, 20, 21, 23, 30, 31, 33, 34] and references therein.



2 Error Estimation for Traditional Statistical Data Processing Algorithms
under Interval Uncertainty: Known Results

Formulation of the problem. When we have: resultszq, . .., z, of repeated measurement or repeated expert

estimation of the same quantity (at different points, or at different moments of time, or by different experts),

traditional statistical approach usually starts with computing their sample avéraggz; + ... + x,)/n and

their (sample) variance

(v1 —E)?+...+ (v, — E)?
n

(1)

(or, equivalently, the sample standard deviatioa \/V); see, e.g., [29].
In this paper, we consider situations when we do not know the exact values of the quantitiesz,,, we only
know the intervals,, . . . , x,, of possible values of;. In such situations, for different possible valugs= x;, we
get different values off andV. The question is: what are the intervésaandV of possible values of’ andV'?
The practical importance of this question was emphasized, e.g., in [26, 27] on the example of processing
geophysical data.

Bounds onFE. For E, the straightforward interval computations leads to the exact range:

E:7X1+”'+X”, i.e.,E:*xilJr"'Jrg", andF:LJr'”Jrf".

n - n n

For variance, the problem is difficult. For V, straightforward interval computations lead to an excess width. For
example, forx; = x5 = [0, 1], the variance i/ = (z; — x2)?/4 and hence, the actual ran§e= [0,0.25]. On
the other hand = [0, 1], hence

(x1 —E)* + (x2 — E)?
2

=[0,1] > [0,0.25].

More sophisticated methods of interval computations also sometimes lead to an excess width.

Reason: in the formula for the averagg each variable only occurs once, and it is known that for such
formulas, straightforward interval computations lead to the exact range (see, e.g., [11]). In the expression for
variance, each variable; occurs several times: explicitly, ifw; — E)?, and explicitly, in the expression fdr.

In such cases, often, dependence between intermediate computation results leads to excess width of the results of
straightforward interval computations. Not surprisingly, we do get excess width when applying straightforward
interval computations to the formula (1).

For variance, it is known that computifgis NP-hard [8]. The very fact that computing the range of a quadratic
function is NP-hard was first proven by Vavasis [32] (see also [18]). We have shown that this difficulty happens
even for very simple quadratic functions frequently used in data processing.

A natural question is: maybe the difficulty comes from the requirement that the range be computed exactly?

In practice, it is often sufficient to compute, in a reasonable amount of time, a usefully accurate astionate,
i.e., an estlmatéf which is accurate with a given accuracy> 0: ‘V V’ < e. Alas, it can be shown (see, e.g.,

[8]), that for anye, such computations are also NP-hard.
It is worth mentioning thal” can be computed exactly in exponential tim&"): it is sufficient to try all2”
possible combinations of values andz; [8].

Feasible algorithm for computing V.. For computingV, there exists a feasible algorithm [8]: specifically, our
algorithm isquadratic-timei.e., it requires)(n?) computational steps (arithmetic operations or comparisons) for
n interval data pointx; = [z;, %]

This algorithmA is as follows:

e First, we sort aln valuesz,, T; into a sequence ;) < z(z) < ... < x(2p).

e Second, we comput andE and select all “zonesfz (), z(,+1)] that intersect withE, E.



e For each of the selected zories,), ©(1+1)], we compute the ratig, = Sy /Ny, where

Sk dof Z z; + Z Zj, (2)

BT 2T (k41) 3T <T (k)

and N}, is the total number of sucts andjs . If ry, € [z (1), T(k+1)], then we computé), = Wy /n, where

W S (@-m)? Y @) (3)

BT, 2T (ht1) IS (k)

If N, = 0, we takeV;, < 0.

e Finally, we return the smallest of the valugsasy'.

Feasible algorithm for computing V. NP-hardness of computing means, crudely speaking, that there are no
general ways for solving all particular cases of this problem (i.e., compljrig reasonable time.

However, there are algorithms for computifgfor many reasonable situations. Namely, there exists an
efficient algorithm [8] that compute® for the case when all the interval midpoints (“measured or estimated
values”)z; = (z; + 7;)/2 are definitely different from each other, in the sense that the “narrowed” intervals
[T — Ai/n,Z; + A;/n] —whereA; = (z; — T;)/2 is the interval’s half-width — do not intersect with each other.

This algorithmA is as follows:

e First, we sort aln endpoints of the narrowed intervals — A; /n andz; + A;/n into a sequence ;) <
z@2) < ... < 1(2,). This enables us to divide the real line irto + 1 segments (“zones ), T (k+1)),
def def
where we denoted gy = —oo andz sz, 1) = +oc.

e Second, we computl andE and pick all “zones’[z ), z(x+1)] that intersect withE, E].
e For each of remaining zonés;), ¥ (,+1)], for eachi from 1 ton, we pick the following value of;:

o f T(k+1) < T; — Az/n, then we plCI@l =T;,
o if x> z; + Ay /n, then we picke; = z;;
o for all otheri, we consider both possible values= z; andz; = z;.

As a result, we get one or several sequences;ofFor each of these sequences, we check whether the
averageF of the selected values, . . ., z,, is indeed within this zone, and if it is, compute the variance by
using the formula (2).

e Finally, we return the largest of the computed varianceg as

This algorithm also works when, for some fixedno more thark “narrowed” intervals can have a common point:

3 Real-Time Statistical Analysis: Problem and Results

Formulation of the problem. In practice, the measurement results and expert estimates arrive one after another.
To save time, it is desirable to start processing them as they come, without waiting for all of them to arrive. For
traditional statistical methods, this can be easily accomplished: once we know the averfagealuesz, . .., x,

and the corresponding variante and a new measurement result (or a new expert estimatg)arrives, we can
compute the new valugs’ andV"’ as follows:

n-E—l—an'

Mevi g = M
TL+1 ’ )

E/: V/:M/_ El2
n+1 ' (B,

2 2
lef 7+ ...+ x2 . .
whereM = “L """ "n j5 g (sample) second moment. In other words, if we have a new measurement result

or a new expert estimate, we can modify the value of the variance in constant time.



This is also important because often, as a result of the statistical analysis of the existing measurement re-
sults and/or expert estimates, we conclude that we do not have enough measurements and estimates; hence, we
make additional measurements or expert estimates. The above formulas enables us to easily update the statistical
characteristics once the new measurement results and/or expert estimates are available.

Similar algorithms can be described for computfignd E:

1 n'ﬂ+£n+1_ *’7n'E+xn+l

- n+1

B=22 @)

However, the above algorithms for computiligand V' start with sorting the values; andz;. Thus, we cannot
even start these algorithms unless we already know all the (interval) values , x,, before we start computa-
tions.

So, if we have a new measurement result or a new expert estimate, and we want to recompute the Béunds on
we must start from scratch and again apply.?) computational steps. Thus, if we add measurement results/expert
estimates one by one, we ne@¢1? + 22 + ... + n?) = O(n3) computational steps.

A natural question is: if we simply add a new (interval) valyg, ;, can we use the previous computations to
re-computeV faster? In this paper, we show that such a speed-up is indeed possible. Specifically, we will show
that for both problems, it is possible to modify the algorithms in such a way that each algorithm requir@$only
steps after a new data point . ; is added. In these new algorithms, to processeasurement results and expert
estimates one after another, we né&d + 2 + ... + n) = O(n?) computational steps — same as before, but now
we do not have to wait until all the measurement results and expert estimates are available.

New algorithm for computing V: main idea. This new algorithm is a modification of the above described
algorithmA. Let us first describe the main three differences between the new algorithm and the previous one.
The first difference is that, in contrast (6, we will compute the values$;, N, rx, andV}, for all zones
[2(k), Tx+1)], NOt just for the zones that intersect wiii, E] and/or for whichr;, belongs to the zone. (Of course,
when we comput®’, we compute only the smallest of the vallgscorresponding to the zones that intersect with

E and for whichr, belongs to the zone.)

Second, instead of computing by using formula (3), we use the following equivalent formula:
Wi, = My — 28, - 1 + N - 1, (5)

where

ME N 2 Y 2 (6)

BT, 2T (k41) J%5 <T(k)

This formula is similar to the known relatidi = M — E? between the variancg, the second moment/, and
the averagd-.

The third difference is that at the end of this algorithm, we keep not only the final Valbat we also keep
all the intermediate computational results: the sequepgethe valuest andE, and the values),, Ny, 5, Mj,
andV.

New algorithm for computing V': description and computational complexity. Let us now describe how this
new algorithm works. Suppose that we have already finished applying the algorithmtewvalsxy, . . ., x,, and
anew intervak, ;1 = [z, 1, Tn41] arrives.

First, we recompute the valuds and E by applying the formulas (4). This requires a constant number of
computational steps.

Then, we find the place for the new boungs, ; andz,,,, in the sorted sequenag;) < z() < ... < x(2p).

Since the sequence;) is sorted, finding a place for each of the bounds within this sequence can be done by
bisection (binary search), i.e., ®(log(n)) steps (see, e.g., [1]).

Each of the added bounds is either within one of the previous zone — in which case this zone splits into two
new smaller zones, or it is before or after all the previous zones — in which case a single new zone is added. In
both cases, adding one bound adds at most two new zones, so adding two bounds means that we have at most 4
new zones.

To proceed, we must update the valugs Ny, rr, My, andV}, corresponding to the old zones, and compute
the values corresponding to the new zones.



For each old zongr ), 7141)], the value ofS,, will only change if we eithets,, , | > @ (41) OF Ty 1 > (1.
Inthe first case, we add, , , to Sy; in the second case, we adg; to Si. In both cases, we add 1 19.

Similarly, the value of\f;, will only change if we either,, ,; > x(41) Or Tp11 > z(g). In the first case, we
addz? | to M,; in the second case, we adfl, ; to Sy.

For each old zoné, once we updated the values 8f, Ny, and M}, we can compute;, andV}, in finitely
many steps.

Thus, for each old zone, we need a constant number of computational steps for the update.

For each new zone, explicit computation%f and M), requires that we go over allintervals, i.e., it requires
linear timeO(n).

Thus, the update of all intermediate values requires a constantQirhefor each ofO(n) old zones and a
linear timeO(n) for each of constantly man9 (1) new zones. Therefore, the total number of computational steps
needed for an update is equal®l) - O(n) + O(n) - O(1) = O(n). In other words, we do need linear time to
update.

Finally, we computd/ as the smallest oL n valuesV; this also requires linear time. We have therefore
proven that our algorithm indeed requires linear time to update the lower Béwmdthe variancé’.

New algorithm for computing V: numerical example. Let us illustrate the above algorithm on the example
when we process the following 3 intervals; = [2.1, 2.6], x2 = [2.0, 2.1], andx3 = [2.2,2.9].

We start with the intervak; = [2.1,2.6]. We only have a single interval, so we only have two bounds: 2.1 and
2.6. These bounds are endpoints of the same interval, so they are already sorted fjeacel andz ;) = 2.6.
This is a degenerate case. In this case, we have only onefzgner ()] = [2.1,2.6]. For this zoneS; = 0,

N; = 0,7 = S1/N; is undefined)M; = 0, andV; = 0.

Then, we add the second interwal = [2.0,2.1]. To get the ordering of all 4 bounds, we must find the place
for the two new boundsg, = 2.0 andz, = 2.1, in the sorted sequenag;) = 2.1 < z(3) = 2.6. We find the
place for each of these bounds by bisection, so w&gek 2.1 = 2.1 < 2.6. No new bounds split the old zone
[2.1,2.6], so this zone remains, In addition to this old zone, we also have a newzo6n21].

In accordance with the algorithm, let us start with re-computing the valyes . corresponding to the old
zone. The new intervat, is completely to the left of the old zone, so its upper bound 2.1 is addéd and 1 to
Ni. As aresult, for this zone, we g8t= 0+2.1 = 2.1andN = 0+1 = 1. Hence, for this zone, = S/N = 2.1.
Similarly, the valueM changes by adding.12, so the new value af/ is 0 + 2.12 = 4.41. Finally, we compute

M—-2S-r4+N-r> 441-2-21-21+1-21%

V:
n 2

0.

For the new zone, we explicitly compute and M. In our case,S = 2.1, N = 1,r = S/N = 2.1,

M =2.12 = 4.41, and
441-2-21-21+1-21%
5 =

Let us now add the third interval; = [2.2, 2.9]. First, we find the place for the new bounds 2.2 and 2.9 in the
sorted sequenc( < 2.1 < 2.6. As a result, we get an enlarged sorted sequérte: 2.1 < 2.2 < 2.6 < 2.9.
The zone]2.0, 2.1] stays, the zong.1, 2.6] is now split into two new zoneg2.1, 2.2] and[2.2,2.6], and a new
zone[2.6,2.9] has appeared.

For the old zond2.0,2.1], sincez; = 2.2 is larger than the upper bound of this zone, we recalcufate
by adding the value 2.2 corresponding to the new intergali.e., replace the old valus = 2.1 with S =
2.1 4+ 2.2 = 4.3. Correspondingly, we replace the old valye= 1 with the new valueV = 1 + 1 = 2. Hence,
r = S/N = 2.15. Similarly, sincez; > 2.1, the valueM is changed from the old value 4.41 to the new value
4.41 + 2.22 = 7.25. Hence,

0.

V =

725—-2-43-2.154+2-2.152
V= 3 + = 0.875.

For the new zon@.1, 2.2], straightforward computations descri@sS = 2.1+2.2 = 4.3 andN = 2, hence
r=S/N = 2.15. Here,M = 2.12 + 2.22 = 7.25, hence, similarly to the previous zone, we have- 0.875.

For the new zon€2.2,2.6], we haveS = 2.1 andN = 1, hencer = S/N = 2.1. Here,M = 2.12 = 4.41,
henceV = (4.41 —2-2.1-2.141-4.41)/3 =0.




Finally, for the new zoné2.6,2.9], we haveS = 2.1 + 2.6 = 4.7 andN = 2, hencer = S/N = 2.35. Here,
M =2.1% +2.6% = 11.17, hence

_1117-2-4.7-2.354 2 2.35%
B 3
If these three intervals are all we have, then to get the actual valdewé consider only those zones for which

r is within this zone. Out of our 4 zones, only one zone has this propjrty:2.2]. For this zone}) = 0.875, so
this is the desired lower endpoilit

|4 = 0.541666. ..

New algorithm for computing V': main idea. Let us now describe how we can modify the above algorithso
that it will require linear time to update.

Similarly to the above algorithm, let us first describe the main difference between this modification and the
original algorithm.

The first difference is that, in contrast # we will perform the computations fall zones[z ), x441)], not
just for the zones that intersect with, E]. (Of course, when we computé, we compute only the smallest of the
valuesV corresponding to the zones that intersect \Bith

Second, at the end of this algorithm, we keep not only the final Viluaut we also keep all the intermediate
computational results: the sequengg, and, for each zone, all selected sequenges. . , z,, and the valued?
andV corresponding to these sequences.

New algorithm for computing V: description and computational complexity. Let us now describe how this
new algorithm works. Suppose that we have already finished applying the algorithmtesvalsxy, . . . , x,, and
anew intervak,, ;1 = [z, ,,Tn41] arrives.

First, we recompute the valuds and E by applying the formulas (4). This requires a constant number of
computational steps.

Then, we find the place for the new boungs, ; andz,,,, in the sorted sequenag;) < z() < ... < x(2p).

Since the sequence; is sorted, finding a place for each of the bounds within this sequence can be done by
bisection (binary search), i.e., ®(log(n)) steps (see, e.g., [1]).

Similarly to the previous modified algorithm, each of the added bounds is either within one of the previous
zone — in which case this zone splits into two new smaller zones, or it is before or after all the previous zones —in
which case a single new zone is added. In both cases, adding one bound adds at most two new zones, so adding
two bounds means that we have at most 4 new zones.

To proceed, we must update the sequences and the correspondingivaued” corresponding to the old
zones, and compute the values corresponding to the new zones.

For each old zone, and for each corresponding sequence, we must update this sequence by adding the cor-
responding value af, 1, and then re-comput®& andV'. Since no more thak narrowed intervals can have a
common point, for each zone, there are no more tHanorresponding sequences. Wheis fixed, this means
that we have a constant numb@(1) of such sequences. For each sequence, updatiagdV can be done (as
we have already mentioned) in finitely many steps.

For each new zone, we need to fin all the sequences and compute the corresponding esld&s Finding
all the sequences requiregs2* -n = O(n) steps, and computing andV” for each of these sequences also requires
linear time.

Thus, the update of all intermediate values requires a constantQirhefor each ofO(n) old zones and a
linear timeO(n) for each of constantly man9 (1) new zones. Therefore, the total number of computational steps
needed for an update is equal®gl) - O(n) + O(n) - O(1) = O(n). In other words, we do need linear time to
update.

Finally, we computé’ as the largest of n valuesV’; this also requires linear time. We have therefore proven
that our algorithm indeed requires linear time to update the lower bbuonl the variancé’ .
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