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Abstract
When we have only interval ranges[xi, xi] of sample valuesx1, . . . , xn, what is the interval[V , V ] of possi-

ble values for the varianceV of these values? There are quadratic time algorithms for computing the exact lower
boundV on the variance of interval data, and for computingV under reasonable easily verifiable conditions. The
problem is that in real life, we often make additional measurements. In traditional statistics, if we have a new
measurement result, we can modify the value of variance in constant time. In contrast, previously known algo-
rithms for processing interval data required that, once a new data point is added, we start from the very beginning.
In this paper, we describe new algorithms for statistical processing of interval data, algorithms in which adding a
data point requires onlyO(n) computational steps.

1 Introduction: Data Processing in Intelligent Systems – From Comput-
ing to Probabilities to Intervals

Let’s start with a big picture. Before we describe a specific problem that we solve in this paper, let us first
describe how, in our view, this problem fits into a big picture of information processing in intelligent systems. One
of the main specific features of information processing in intelligent systems is that in such systems, we often have
very limited knowledge. As a result, processing ofimpreciseinformation is necessary in intelligent systems.

A typical example is the processing of linguistic information, i.e., information represented by experts in terms
of words from a natural language. This information can be modeled, e.g., byfuzzy sets(see, e.g., [16, 25]). For
such a modeling, when an expert states that the desired value is, say, small but not very small, we describe this
expert information in terms of an appropriate fuzzy set.

A particular case of such a statement is when an expert states that the actual value of the desired quantity is
between, say, 0.1 and 0.3. After such a statement, the only information about the actual (unknown) value of the
desired quantity is that it belongs to the interval[0.1, 0.3] – and each interval (and, more generally, each set) can
be viewed as a particular example of a more general concept of a fuzzy set.

Since the knowledge about each quantity is represented in such “set-valued” form, it is necessary to be able
to processsuch set-valued data, to developinference procedureswith such set-valued observations where the nu-
merical quantities of interest are not directly observable, but, instead, only know to lie in some sets. Mathematical
analysis of this problem of data processing and deriving inference is therefore crucial for designing intelligent
systems.

The analysis performed in this paper is a practically important part of this general problem. Specifically, in this
paper, we investigate the computational aspects of processing interval-valued data.

After this general introduction, let us now describe our problem and its motivation in more detail.

Why data processing? In intelligent systems, there are two sources of information about physical quantities:
measurements and expert estimates.

In many real-life situations, we are interested in the value of a physical quantityy that is difficult or impossible
to measure directly that are difficult for experts to estimate. Examples of such quantities are the distance to a star
and the amount of oil in a given well.

1



Since we cannot measure or estimatey directly, a natural idea is to measure or estimatey indirectly. Specifi-
cally, we find some easier-to-measure or easier-to-estimate quantitiesx1, . . . , xn which are related toy by a known
relationy = f(x1, . . . , xn). This relation may be a simple functional transformation, or a complex algorithm (e.g.,
for the amount of oil, a numerical solution to an inverse problem).

Comment.It is worth mentioning that in the vast majority of these cases, the functionf(x1, . . . , xn) that describes
the dependence between physical quantities is continuous.

In such case, to estimatey, we first measure or estimate the values of the quantitiesx1, . . . , xn, and then we use
the results̃x1, . . . , x̃n of these measurements or estimates to to compute an estimateỹ for y asỹ = f(x̃1, . . . , x̃n).

For example, to find the resistanceR, we measure or estimate currentI and voltageV , and then use the known
relationR = V/I to estimate resistance as̃R = Ṽ /Ĩ.

Computing an estimate fory based on the results of direct measurements or estimates is calleddata processing;
data processing is the main reason why computers were invented in the first place, and data processing is still one
of the main uses of computers as number crunching devices.

Comment.In this paper, for simplicity, we consider the case when the relation betweenxi andy is known exactly;
in some practical situations, we only known an approximate relation betweenxi andy.

Why interval computations? From computing to probabilities to intervals. Neither measurements nor esti-
mates are 100% accurate, so in reality, the actual valuexi of i-th measured quantity can differ from the resultx̃i

obtained by measurement or by estimation. Because of thesemeasurement (estimation) errors∆xi
def= x̃i − xi,

the result̃y = f(x̃1, . . . , x̃n) of data processing is, in general, different from the actual valuey = f(x1, . . . , xn)
of the desired quantityy [29].

It is desirable to describe the error∆y
def= ỹ−y of the result of data processing. To do that, we must have some

information about the errors of direct measurements and/or estimates.
What do we know about the errors∆xi related to expert estimation? Often, an expert can provide guaranteed

boundsxi andxi for the estimated quantityxi. If such bounds are known, then we are guaranteed that the actual
(unknown) value ofxi belongs to the intervalxi = [xi, xi]. Often, these bounds come in the form of a single
bound∆i on the expert’s estimation accuracy: for example, an expert may say that the actual fish population in a
lake is 50,000± 20,000. In this case,xi = x̃i −∆i andxi = x̃i + ∆i.

Often, in addition (or instead) the guaranteed bounds, an expert can provide bounds that containxi with a
certain degree of confidence. Often, we know several such bounding intervals corresponding to different degrees
of confidence. Such a nested family of intervals is also called afuzzy set, because it turns out to be equivalent to a
more traditional definition of fuzzy set [6, 16, 23, 24, 25] (if a traditional fuzzy set is given, then different intervals
from the nested family can be viewed asα-cuts corresponding to different levels of uncertaintyα).

What do we know about the errors∆xi of direct measurements? First, the manufacturer of the measuring
instrument must supply us with an upper bound∆i on the measurement error. If no such upper bound is supplied,
this means that no accuracy is guaranteed, and the corresponding “measuring instrument” is practically useless. In
this case, once we performed a measurement and got a measurement resultx̃i, we know that the actual (unknown)
valuexi of the measured quantity belongs to the intervalxi = [xi, xi], wherexi = x̃i −∆i andxi = x̃i + ∆i.

In many practical situations, we not only know the interval[−∆i, ∆i] of possible values of the measurement
or estimation error; we also know the probability of different values∆xi within this interval. This knowledge
underlies the traditional engineering approach to estimating the error of indirect measurement, in which we assume
that we know the probability distributions for measurement errors∆xi.

In practice, we can determine the desired probabilities of different values of∆xi by comparing the results of
measuring with this instrument (or results of expert estimation) with the results of measuring the same quantity
by a standard (much more accurate) measuring instrument. Since the standard measuring instrument is much
more accurate than the one used, the difference between these two measurement results is practically equal to the
measurement error; thus, the empirical distribution of this difference is close to the desired probability distribution
for measurement error. There are two cases, however, when this determination is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fundamental science. When a Hubble
telescope detects the light from a distant galaxy, there is no “standard” (much more accurate) telescope
floating nearby that we can use to calibrate the Hubble: the Hubble telescope is the best we have.
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• The second case is the case of measurements on the shop floor. In this case, in principle, every sensor can
be thoroughly calibrated, but sensor calibration is so costly – usually costing ten times more than the sensor
itself – that manufacturers rarely do it.

In both cases, we have no information about the probabilities of∆xi; the only information we have is the upper
bound on the measurement or estimation error.

In this case, after we performed a measurement and got a measurement resultx̃i, the only information that we
have about the actual valuexi of the measured quantity is that it belongs to the intervalxi = [x̃i −∆i, x̃i + ∆i].
In such situations, the only information that we have about the (unknown) actual value ofy = f(x1, . . . , xn) is
thaty belongs to the rangey = [y, y] of the functionf over the boxx1 × . . .× xn:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

For continuous functionsf(x1, . . . , xn), this range is an interval. The process of computing this interval range
based on the input intervalsxi is calledinterval computations; see, e.g., [13, 14, 15, 22].

Comment.When, instead of a single interval, we have several intervals corresponding to different levels of confi-
dence, we must perform interval computations on each level [6, 16, 23, 24, 25].

Interval computations techniques: brief reminder. Historically the first method for computing the enclosure for
the range is the method which is sometimes called “straightforward” interval computations. This method is based
on the fact that inside the computer, every algorithm consists of elementary operations (arithmetic operations,min,
max, etc.). For each elementary operationf(a, b), if we know the intervalsa andb for a andb, we can compute
the exact rangef(a,b). The corresponding formulas form the so-calledinterval arithmetic. For example,

[a, a] + [b, b] = [a + b, a + b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b), max(a · b, a · b, a · b, a · b)].
In straightforward interval computations, we repeat the computations forming the programf step-by-step, replac-
ing each operation with real numbers by the corresponding operation of interval arithmetic. It is known that, as a
result, we get an enclosureY ⊇ y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples below), the enclosure has excess
width.

There exist more sophisticated techniques for producing a narrower enclosure, e.g., a centered form method.
However, for each of these techniques, there are cases when we get an excess width. Reason: as shown in [18, 32],
the problem of computing the exact range is known to be NP-hard even for polynomial functionsf(x1, . . . , xn)
(actually, even for quadratic functionsf ).

What we are planning to do? In this paper, we analyze a specific interval computations problem – when we use
traditional statistical data processing algorithmsf(x1, . . . , xn) to process the results of direct measurements.

From the statistical viewpoint, this problem is a particular case of robust statistics.Interval uncertainty means
that we do not know the exact probability distribution for measurement or estimation error; instead, we only know
that this distribution belongs to a knowcollection of distribution – namely, to the collection of all probability
distributions that are located in the given interval with probability 1. Situations when we only know a collection
of distributions are described byrobust statistics(see, e.g., [12]), and our problem of estimating sample variance
is in line with the problems traditionally solved by robust statistics (see, e.g., [12]): many known algorithms in the
area of robust statistics also return a guaranteed robust estimate for the sample mean and sample variance, which
holds for a collection of distributions.

One would expect that these problems have already been solved in robust statistics. To our surprise, it turned
out that while robust statistics does have a lot of useful and interesting results about the guaranteed bounds on the
mean for many classes of distributions, the problem of how to compute guaranteed bounds on the sample variance
fast has not yet been solved satisfactorily.

Comment.In this paper, we solve a very specific problem related to a combination of interval and probabilistic
uncertainty. For a more general context and for other practical problems related to such a combination, see, e.g.,
[2, 3, 4, 5, 7, 10, 20, 21, 23, 30, 31, 33, 34] and references therein.
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2 Error Estimation for Traditional Statistical Data Processing Algorithms
under Interval Uncertainty: Known Results

Formulation of the problem. When we haven resultsx1, . . . , xn of repeated measurement or repeated expert
estimation of the same quantity (at different points, or at different moments of time, or by different experts),
traditional statistical approach usually starts with computing their sample averageE = (x1 + . . . + xn)/n and
their (sample) variance

V =
(x1 − E)2 + . . . + (xn − E)2

n
(1)

(or, equivalently, the sample standard deviationσ =
√

V ); see, e.g., [29].
In this paper, we consider situations when we do not know the exact values of the quantitiesx1, . . . , xn, we only

know the intervalsx1, . . . ,xn of possible values ofxi. In such situations, for different possible valuesxi ∈ xi, we
get different values ofE andV . The question is: what are the intervalsE andV of possible values ofE andV ?

The practical importance of this question was emphasized, e.g., in [26, 27] on the example of processing
geophysical data.

Bounds onE. ForE, the straightforward interval computations leads to the exact range:

E =
x1 + . . . + xn

n
, i.e.,E =

x1 + . . . + xn

n
, andE =

x1 + . . . + xn

n
.

For variance, the problem is difficult. ForV , straightforward interval computations lead to an excess width. For
example, forx1 = x2 = [0, 1], the variance isV = (x1 − x2)2/4 and hence, the actual rangeV = [0, 0.25]. On
the other hand,E = [0, 1], hence

(x1 −E)2 + (x2 −E)2

2
= [0, 1] ⊃ [0, 0.25].

More sophisticated methods of interval computations also sometimes lead to an excess width.
Reason: in the formula for the averageE, each variable only occurs once, and it is known that for such

formulas, straightforward interval computations lead to the exact range (see, e.g., [11]). In the expression for
variance, each variablexi occurs several times: explicitly, in(xi − E)2, and explicitly, in the expression forE.
In such cases, often, dependence between intermediate computation results leads to excess width of the results of
straightforward interval computations. Not surprisingly, we do get excess width when applying straightforward
interval computations to the formula (1).

For variance, it is known that computingV is NP-hard [8]. The very fact that computing the range of a quadratic
function is NP-hard was first proven by Vavasis [32] (see also [18]). We have shown that this difficulty happens
even for very simple quadratic functions frequently used in data processing.

A natural question is: maybe the difficulty comes from the requirement that the range be computed exactly?

In practice, it is often sufficient to compute, in a reasonable amount of time, a usefully accurate estimateṼ for V ,

i.e., an estimatẽV which is accurate with a given accuracyε > 0:
∣∣∣Ṽ − V

∣∣∣ ≤ ε. Alas, it can be shown (see, e.g.,

[8]), that for anyε, such computations are also NP-hard.
It is worth mentioning thatV can be computed exactly in exponential timeO(2n): it is sufficient to try all2n

possible combinations of valuesxi andxi [8].

Feasible algorithm for computing V . For computingV , there exists a feasible algorithm [8]: specifically, our
algorithm isquadratic-time, i.e., it requiresO(n2) computational steps (arithmetic operations or comparisons) for
n interval data pointsxi = [xi, xi].

This algorithmA is as follows:

• First, we sort all2n valuesxi, xi into a sequencex(1) ≤ x(2) ≤ . . . ≤ x(2n).

• Second, we computeE andE and select all “zones”[x(k), x(k+1)] that intersect with[E,E].
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• For each of the selected zones[x(k), x(k+1)], we compute the ratiork = Sk/Nk, where

Sk
def=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj , (2)

andNk is the total number of suchis andjs . If rk ∈ [x(k), x(k+1)], then we computeVk = Wk/n, where

Wk
def=

∑

i:x
i
≥x(k+1)

(xi − rk)2 +
∑

j:xj≤x(k)

(xj − rk)2. (3)

If Nk = 0, we takeVk
def= 0.

• Finally, we return the smallest of the valuesVk asV .

Feasible algorithm for computing V . NP-hardness of computingV means, crudely speaking, that there are no
general ways for solving all particular cases of this problem (i.e., computingV ) in reasonable time.

However, there are algorithms for computingV for many reasonable situations. Namely, there exists an
efficient algorithm [8] that computesV for the case when all the interval midpoints (“measured or estimated
values”) x̃i = (xi + xi)/2 are definitely different from each other, in the sense that the “narrowed” intervals
[x̃i −∆i/n, x̃i + ∆i/n] – where∆i = (xi − xi)/2 is the interval’s half-width – do not intersect with each other.

This algorithmA is as follows:

• First, we sort all2n endpoints of the narrowed intervalsx̃i −∆i/n andx̃i + ∆i/n into a sequencex(1) ≤
x(2) ≤ . . . ≤ x(2n). This enables us to divide the real line into2n + 1 segments (“zones”)[x(k), x(k+1)],

where we denotedx(0)
def= −∞ andx(2n+1)

def= +∞.

• Second, we computeE andE and pick all “zones”[x(k), x(k+1)] that intersect with[E, E].

• For each of remaining zones[x(k), x(k+1)], for eachi from 1 ton, we pick the following value ofxi:

• if x(k+1) < x̃i −∆i/n, then we pickxi = xi;

• if x(k) > x̃i + ∆i/n, then we pickxi = xi;

• for all otheri, we consider both possible valuesxi = xi andxi = xi.

As a result, we get one or several sequences ofxi. For each of these sequences, we check whether the
averageE of the selected valuesx1, . . . , xn is indeed within this zone, and if it is, compute the variance by
using the formula (2).

• Finally, we return the largest of the computed variances asV .

This algorithm also works when, for some fixedk, no more thank “narrowed” intervals can have a common point:

3 Real-Time Statistical Analysis: Problem and Results

Formulation of the problem. In practice, the measurement results and expert estimates arrive one after another.
To save time, it is desirable to start processing them as they come, without waiting for all of them to arrive. For
traditional statistical methods, this can be easily accomplished: once we know the averageE of n valuesx1, . . . , xn

and the corresponding varianceV , and a new measurement result (or a new expert estimate)xn+1 arrives, we can
compute the new valuesE′ andV ′ as follows:

E′ =
n · E + xn+1

n + 1
; M = V + E2; M ′ =

n ·M + x2
n+1

n + 1
; V ′ = M ′ − (E′)2,

whereM
def=

x2
1 + . . . + x2

n

n
is a (sample) second moment. In other words, if we have a new measurement result

or a new expert estimate, we can modify the value of the variance in constant time.
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This is also important because often, as a result of the statistical analysis of the existing measurement re-
sults and/or expert estimates, we conclude that we do not have enough measurements and estimates; hence, we
make additional measurements or expert estimates. The above formulas enables us to easily update the statistical
characteristics once the new measurement results and/or expert estimates are available.

Similar algorithms can be described for computingE andE:

E′ =
n · E + xn+1

n + 1
; E

′
=

n · E + xn+1

n + 1
. (4)

However, the above algorithms for computingV andV start with sorting the valuesxi andxi. Thus, we cannot
even start these algorithms unless we already know all the (interval) valuesx1, . . . ,xn before we start computa-
tions.

So, if we have a new measurement result or a new expert estimate, and we want to recompute the bounds onV ,
we must start from scratch and again applyO(n2) computational steps. Thus, if we add measurement results/expert
estimates one by one, we needO(12 + 22 + . . . + n2) = O(n3) computational steps.

A natural question is: if we simply add a new (interval) valuexn+1, can we use the previous computations to
re-computeV faster? In this paper, we show that such a speed-up is indeed possible. Specifically, we will show
that for both problems, it is possible to modify the algorithms in such a way that each algorithm requires onlyO(n)
steps after a new data pointxn+1 is added. In these new algorithms, to processn measurement results and expert
estimates one after another, we needO(1 + 2 + . . . + n) = O(n2) computational steps – same as before, but now
we do not have to wait until all the measurement results and expert estimates are available.

New algorithm for computing V : main idea. This new algorithm is a modification of the above described
algorithmA. Let us first describe the main three differences between the new algorithm and the previous one.

The first difference is that, in contrast toA, we will compute the valuesSk, Nk, rk, andVk for all zones
[x(k), xk+1)], not just for the zones that intersect with[E,E] and/or for whichrk belongs to the zone. (Of course,
when we computeV , we compute only the smallest of the valuesVk corresponding to the zones that intersect with
E and for whichrk belongs to the zone.)

Second, instead of computingVk by using formula (3), we use the following equivalent formula:

Wk = Mk − 2Sk · rk + Nk · r2
k, (5)

where
Mk

def=
∑

i:x
i≥x(k+1)

x2
i +

∑

j:xj≤x(k)

x2
j . (6)

This formula is similar to the known relationV = M − E2 between the varianceV , the second momentM , and
the averageE.

The third difference is that at the end of this algorithm, we keep not only the final valueV , but we also keep
all the intermediate computational results: the sequencex(i), the valuesE andE, and the valuesSk, Nk, rk, Mk,
andVk.

New algorithm for computing V : description and computational complexity. Let us now describe how this
new algorithm works. Suppose that we have already finished applying the algorithm ton intervalsx1, . . . ,xn, and
a new intervalxn+1 = [xn+1, xn+1] arrives.

First, we recompute the valuesE andE by applying the formulas (4). This requires a constant number of
computational steps.

Then, we find the place for the new boundsxn+1 andxn+1 in the sorted sequencex(1) ≤ x(2) ≤ . . . ≤ x(2n).
Since the sequencex(i) is sorted, finding a place for each of the bounds within this sequence can be done by
bisection (binary search), i.e., inO(log(n)) steps (see, e.g., [1]).

Each of the added bounds is either within one of the previous zone – in which case this zone splits into two
new smaller zones, or it is before or after all the previous zones – in which case a single new zone is added. In
both cases, adding one bound adds at most two new zones, so adding two bounds means that we have at most 4
new zones.

To proceed, we must update the valuesSk, Nk, rk, Mk, andVk corresponding to the old zones, and compute
the values corresponding to the new zones.
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For each old zone[x(k), xk+1)], the value ofSk will only change if we eitherxn+1 ≥ x(k+1) or xn+1 ≥ x(k).
In the first case, we addxn+1 to Sk; in the second case, we addxn+1 to Sk. In both cases, we add 1 toNk.

Similarly, the value ofMk will only change if we eitherxn+1 ≥ x(k+1) or xn+1 ≥ x(k). In the first case, we
addx2

n+1 to Mk; in the second case, we addx2
n+1 to Sk.

For each old zonek, once we updated the values ofSk, Nk, andMk, we can computerk andVk in finitely
many steps.

Thus, for each old zone, we need a constant number of computational steps for the update.
For each new zone, explicit computation ofSk andMk requires that we go over alln intervals, i.e., it requires

linear timeO(n).
Thus, the update of all intermediate values requires a constant timeO(1) for each ofO(n) old zones and a

linear timeO(n) for each of constantly manyO(1) new zones. Therefore, the total number of computational steps
needed for an update is equal toO(1) · O(n) + O(n) · O(1) = O(n). In other words, we do need linear time to
update.

Finally, we computeV as the smallest of≤ n valuesVk; this also requires linear time. We have therefore
proven that our algorithm indeed requires linear time to update the lower boundV on the varianceV .

New algorithm for computing V : numerical example. Let us illustrate the above algorithm on the example
when we process the following 3 intervals:x1 = [2.1, 2.6], x2 = [2.0, 2.1], andx3 = [2.2, 2.9].

We start with the intervalx1 = [2.1, 2.6]. We only have a single interval, so we only have two bounds: 2.1 and
2.6. These bounds are endpoints of the same interval, so they are already sorted, hencex(1) = 2.1 andx(2) = 2.6.
This is a degenerate case. In this case, we have only one zone[x(1), x(2)] = [2.1, 2.6]. For this zone,S1 = 0,
N1 = 0, r1 = S1/N1 is undefined,M1 = 0, andV1 = 0.

Then, we add the second intervalx2 = [2.0, 2.1]. To get the ordering of all 4 bounds, we must find the place
for the two new bounds,x2 = 2.0 andx2 = 2.1, in the sorted sequencex(1) = 2.1 < x(2) = 2.6. We find the
place for each of these bounds by bisection, so we get2.0 < 2.1 = 2.1 < 2.6. No new bounds split the old zone
[2.1, 2.6], so this zone remains, In addition to this old zone, we also have a new zone[2.0, 2.1].

In accordance with the algorithm, let us start with re-computing the valuesSk, . . . corresponding to the old
zone. The new intervalx2 is completely to the left of the old zone, so its upper bound 2.1 is added toS1 and 1 to
Nk. As a result, for this zone, we getS = 0+2.1 = 2.1 andN = 0+1 = 1. Hence, for this zone,r = S/N = 2.1.
Similarly, the valueM changes by adding2.12, so the new value ofM is 0 + 2.12 = 4.41. Finally, we compute

V =
M − 2S · r + N · r2

n
=

4.41− 2 · 2.1 · 2.1 + 1 · 2.12

2
= 0.

For the new zone, we explicitly computeS and M . In our case,S = 2.1, N = 1, r = S/N = 2.1,
M = 2.12 = 4.41, and

V =
4.41− 2 · 2.1 · 2.1 + 1 · 2.12

2
= 0.

Let us now add the third intervalx3 = [2.2, 2.9]. First, we find the place for the new bounds 2.2 and 2.9 in the
sorted sequence2.0 < 2.1 < 2.6. As a result, we get an enlarged sorted sequence2.0 < 2.1 < 2.2 < 2.6 < 2.9.
The zone[2.0, 2.1] stays, the zone[2.1, 2.6] is now split into two new zones:[2.1, 2.2] and[2.2, 2.6], and a new
zone[2.6, 2.9] has appeared.

For the old zone[2.0, 2.1], sincex3 = 2.2 is larger than the upper bound of this zone, we recalculateS
by adding the value 2.2 corresponding to the new intervalx3, i.e., replace the old valueS = 2.1 with S =
2.1 + 2.2 = 4.3. Correspondingly, we replace the old valueN = 1 with the new valueN = 1 + 1 = 2. Hence,
r = S/N = 2.15. Similarly, sincex3 ≥ 2.1, the valueM is changed from the old value 4.41 to the new value
4.41 + 2.22 = 7.25. Hence,

V =
7.25− 2 · 4.3 · 2.15 + 2 · 2.152

3
= 0.875.

For the new zone[2.1, 2.2], straightforward computations describeS asS = 2.1+2.2 = 4.3 andN = 2, hence
r = S/N = 2.15. Here,M = 2.12 + 2.22 = 7.25, hence, similarly to the previous zone, we haveV = 0.875.

For the new zone[2.2, 2.6], we haveS = 2.1 andN = 1, hencer = S/N = 2.1. Here,M = 2.12 = 4.41,
henceV = (4.41− 2 · 2.1 · 2.1 + 1 · 4.41)/3 = 0.
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Finally, for the new zone[2.6, 2.9], we haveS = 2.1 + 2.6 = 4.7 andN = 2, hencer = S/N = 2.35. Here,
M = 2.12 + 2.62 = 11.17, hence

V =
11.17− 2 · 4.7 · 2.35 + 2 · 2.352

3
= 0.541666 . . .

If these three intervals are all we have, then to get the actual value ofV , we consider only those zones for which
r is within this zone. Out of our 4 zones, only one zone has this property:[2.1, 2.2]. For this zone,V = 0.875, so
this is the desired lower endpointV .

New algorithm for computing V : main idea. Let us now describe how we can modify the above algorithmA so
that it will require linear time to update.

Similarly to the above algorithm, let us first describe the main difference between this modification and the
original algorithm.

The first difference is that, in contrast toA, we will perform the computations forall zones[x(k), xk+1)], not
just for the zones that intersect with[E, E]. (Of course, when we computeV , we compute only the smallest of the
valuesV corresponding to the zones that intersect withE.)

Second, at the end of this algorithm, we keep not only the final valueV , but we also keep all the intermediate
computational results: the sequencex(i), and, for each zone, all selected sequencesx1, . . . , xn and the valuesE
andV corresponding to these sequences.

New algorithm for computing V : description and computational complexity. Let us now describe how this
new algorithm works. Suppose that we have already finished applying the algorithm ton intervalsx1, . . . ,xn, and
a new intervalxn+1 = [xn+1, xn+1] arrives.

First, we recompute the valuesE andE by applying the formulas (4). This requires a constant number of
computational steps.

Then, we find the place for the new boundsxn+1 andxn+1 in the sorted sequencex(1) ≤ x(2) ≤ . . . ≤ x(2n).
Since the sequencex(i) is sorted, finding a place for each of the bounds within this sequence can be done by
bisection (binary search), i.e., inO(log(n)) steps (see, e.g., [1]).

Similarly to the previous modified algorithm, each of the added bounds is either within one of the previous
zone – in which case this zone splits into two new smaller zones, or it is before or after all the previous zones – in
which case a single new zone is added. In both cases, adding one bound adds at most two new zones, so adding
two bounds means that we have at most 4 new zones.

To proceed, we must update the sequences and the corresponding valuesE andV corresponding to the old
zones, and compute the values corresponding to the new zones.

For each old zone, and for each corresponding sequence, we must update this sequence by adding the cor-
responding value ofxn+1, and then re-computeE andV . Since no more thank narrowed intervals can have a
common point, for each zone, there are no more than2k corresponding sequences. Whenk is fixed, this means
that we have a constant numberO(1) of such sequences. For each sequence, updatingE andV can be done (as
we have already mentioned) in finitely many steps.

For each new zone, we need to fin all the sequences and compute the corresponding valuesE andV . Finding
all the sequences requires≤ 2k ·n = O(n) steps, and computingE andV for each of these sequences also requires
linear time.

Thus, the update of all intermediate values requires a constant timeO(1) for each ofO(n) old zones and a
linear timeO(n) for each of constantly manyO(1) new zones. Therefore, the total number of computational steps
needed for an update is equal toO(1) · O(n) + O(n) · O(1) = O(n). In other words, we do need linear time to
update.

Finally, we computeV as the largest of≤ n valuesV ; this also requires linear time. We have therefore proven
that our algorithm indeed requires linear time to update the lower boundV on the varianceV .
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