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Abstract
When we have only interval rangés,, 7;] of sample values, . . ., z,,, what is the intervalV’, V] of possi-

ble values for the variance of these values? There are quadratic time algorithms for computing the exact lower
boundV” on the variance of interval data, and for computinginder reasonable easily verifiable conditions. The
problem is that in real life, we often make additional measurements. In traditional statistics, if we have a new
measurement result, we can modify the value of variance in constant time. In contrast, previously known algo-
rithms for processing interval data required that, once a new data point is added, we start from the very beginning.
In this paper, we describe new algorithms for statistical processing of interval data, algorithms in which adding a
data point requires onl@(n) computational steps.

1 Introduction: Data Processing in Intelligent Systems — From Probabil-
ities to Intervals

Let's start with a big picture. Before we describe a specific problem that we solve in this paper, let us first
describe how, in our view, this problem fits into a big picture of information processing in intelligent systems.
Readers who are familiar with this big picture and/or who are only interested in our technical results can skip this
subsection.

One of the main specific features of information processing in intelligent systems is that in such systems, we
often have very limited knowledge. As a result, processingngfreciseinformation is necessary in intelligent
systems.

A typical example is the processing of linguistic information, i.e., information represented by experts in terms
of words from a natural language. This information can be modeled, e.g., by fuzzy sets (see, e.g., [16, 25]).
For such modeling, when an expert states that a value is, say, small but not very small, we describe this expert
information in terms of an appropriate fuzzy set.

A particular case of such a statement is when an expert states that the actual value is between, say, 0.1 and
0.3. After such a statement, the only information about the actual (unknown) value of the desired quantity is that
it belongs to thenterval [0.1, 0.3] — and each interval (and, more generally, each set) can be viewed as a particular
example of a more general concept of a fuzzy set.

Since the knowledge about each quantity is represented in such a form, it is necessary to be able to develop
inference procedure®r such observations. Mathematical analysis of this problem is therefore crucial for designing
intelligent systems. In this paper, we analyze an important particular case of this set-valued data. Specifically, in
this paper, we investigate the computational aspects of processing interval-valued data. Let us now describe our
problem and its motivation in more detail.

Why data processing?In intelligent systems, there are at least two sources of information about physical quanti-
ties: measurements and expert estimates.

In many real-life situations, we are interested in the value of a physical quarthigt is difficult or impossible
to measure directly and difficult for experts to estimate. Examples of such quantities are the distance to a star and
the amount of oil in a given well.



Since we cannot measure or estimate the vglad the desired physical quantity directly, a natural idea is
to measure or estimageindirectly. Specifically, we find some easier-to-measure or easier-to-estimate quantities
x1,...,x, which are related tg by a known relatiory = f(z1,...,z,). For example, to find the resistanfe
we measure or estimate currdnand voltagel/, and then use the known relatidh= V/I to estimate resistance
asRk = X7/f. This relation may be a simple functional transformation, or a complex algorithm (e.g., for the amount
of oil, a numerical solution to an inverse problem). It is worth mentioning that In the vast majority of these cases,

the functionf (z1, . . ., z,,) that describes the dependence between physical quantities is continuous. In such cases,
to estimatey, we first measure or estimate the values of the quantitjes. . , z,,, and then we use the results
Z1,...,%, of these measurements or estimates to to compute an esfifuatg asy = f(Z1,...,Z5).

Commentln this paper, for simplicity, we consider the case when the relation betwesmdy is known exactly;
in practical situations, we often only know an approximate relation betweandy.

Why interval computations? From probabilities to intervals. Neither measurements nor estimates are 100%
accurate, so in reality, the actual valugof quantity: can differ from the resuli; obtained by measurement or

by estimation. Because of thes®asurement (estimation) errafsr; def Z; — x;, theresully = f(Z1,...,%,)

of data processing is, in general, different from the actual valsef (x4, ..., z,) of the desired quantity [29].

It is desirable to describe the errdy def y — y of the result of data processing. To do that, we must have some

information about the errors of direct measurements and/or estimates.

What do we know about the errofsz; related to expert estimation? Often, an expert can prdvadedsz;
andz; for the estimated quantity;. Then, the actual (unknown) value @f belongs to the intervat; = [z;,Z;].
Often, these bounds come in the form of an unsigned error estitnata the expert’'s estimation accuracy: for
example, an expert may say that the actual fish population in a lake is 58,80®00. In this case;; =50,000,
A; =20,000, SQr, = T, — A; andz; = 7; + A,

Comment.For readers who may be interested in how the above description is related to fuzzy sets, here is an
explanation. Often, in addition to (or instead of) the bounds, an expert can provide bounds that.cowitiira

certain degree of confidence (not necessarily represented by a probability). Often, we know several such bounding
intervals corresponding to different degrees of confidence. Such a nested family of intervals is alsofoaltgd a

set because it turns out to be equivalent to a more traditional definition of fuzzy set [6, 16, 23, 24, 25] (if a
traditional fuzzy set is given, then different intervals from the nested family can be vieweduts corresponding

to different levels of uncertainty).

What do we know about the errorsz; of direct measurements? First, the manufacturer of the measuring
instrument must supply us with an upper boukdon the measurement error. If no such upper bound is supplied,
this means that no accuracy is guaranteed, and the corresponding “measuring instrument” is practically useless. In
this case, once we perform a measurement and get a measurement tesalknow that the actual (unknown)
valuez; of the measured quantity belongs to the intesvak [z;, 7;], wherez;, = z; — A; andz; = 7; + A,.

In many practical situations, we not only know the interfval\;, A;] of possible values of the measurement
or estimation error; we also know the probability of different valdes; within this interval. This knowledge
underlies the traditional engineering approach to estimating the error of indirect measurement, in which we assume
that we know the probability distributions for measurement erfars.

In practice, we can determine the desired probabilities of different valu&s:pby comparing the results of
measuring with this instrument (or results of expert estimation) with the results of measuring the same quantity
by a standard (much more accurate) measuring instrument. Since the standard measuring instrument is much
more accurate than the one used, the difference between these two measurement results is practically equal to the
measurement error; thus, the empirical distribution of this difference is close to the desired probability distribution
for measurement error. There are two cases, however, when this determination is not done:

e Firstisthe case of cutting-edge measurements, e.g., measurements in fundamental science. When the Hubble
telescope detects the light from a distant galaxy, there is no “standard” (much more accurate) telescope
floating nearby that we can use to calibrate the Hubble: the Hubble telescope is the best we have.

e Second is the case of many commercial measuring instruments. In this case, in principle, every sensor can
be thoroughly calibrated, but sensor calibration is so costly — usually costing ten times more than the sensor
itself — that manufacturers rarely do it.



In both cases, we have no information about the probabilities ofAthg the only information we have is the
upper bound on the measurement or estimation error. Therefore, after we performed a measurement and got a
measurement result;, the only information that we have about the actual valuef the measured quantity is
that it belongs to the interval; = [z; — A;, z; + A;]. In such situations, the only information that we have about
the actual value of = f(x1,...,z,) is thaty belongs to the rangg = [y, 7] of the functionf over the box
X1 X .o X Xy B
y=1[v79={f(x1,...,2n) |21 EX1,...,Tn € Xp}.

For continuous functiong (x4, ..., x,), this range is an interval. The process of computing this interval range
based on the input intervals is calledinterval computationsee, e.g., [13, 14, 15, 22].

CommentWhen, instead of a single interval, we have several intervals corresponding to different levels of confi-
dence, we must perform interval computations on each level [6, 16, 23, 24, 25].

Interval computations techniques: brief reminder. Historically the first method for computing the enclosure for

the range is the method which is sometimes called “straightforward” interval computations. This method is based
on the fact that, inside the computer, every algorithm consists of elementary operations (arithmetic operatjons,
max, etc.). For each elementary operatiffu, b), if we know the interval& andb for « andb, we can compute

the exact rangg(a, b). The corresponding formulas form the so-callerval arithmetic For example,

[a,@] + [b,b] = [a +b,a+b]; [a,a] —[b,b] = [a—b,a— b];

[Q,a] : [977} = [mm(gQ,gB,EQ,EE),IH&X(QQ,QE,EQ,EB)]

In straightforward interval computations, we repeat the computations forming the expressfafofomore gen-
erally, a program for computing) step-by-step, replacing each operation on real numbers by the corresponding
operation on intervals. It is known that, as a result, we get an encladSurey for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples below), the enclosure has excess
width.

There exist more sophisticated techniques for producing a narrower enclosure, e.g., a centered form method.
However, for each of these techniques, there are cases when we get an excess width. The reason for such an excess
width is that, as shown in [18, 32], the problem of computing the exact range is known to be NP-hard even for
polynomial functionsf (x4, ..., z,) (actually, even for quadratic functiorfs.

In this paper, we analyze a specific class of interval computations problems —when the algésithm. , z,,)
is one of the traditional statistical data processing algorithms such as computing the mean or a variance of the
population sample, ..., x,.

From the statistical viewpoint, this problem is a particular case of robust statistics. Interval uncertainty

means that we do not know the exact probability distribution for measurement or estimation error; instead, we
only know that this distribution belongs to a knowaollection of distribution — namely, to the collection of all
probability distributions that are non-zero only in the given interval. Situations when we only know a collection of
distributions are described gbust statistic§see, e.g., [12]), and our problem of estimating population variance

is in line with the problems traditionally solved by robust statistics: many known algorithms in the area of robust
statistics also return a guaranteed robust estimate for the population mean and population variance, which holds
for a collection of distributions.

One may expect that these problems have already been solved in robust statistics. However, while robust
statistics does have a lot of useful and interesting results about the guaranteed bounds on the mean for many
classes of distributions, the problem of how to actually compute guaranteed bounds on the population variance has
not (as we have been able to determine) yet been solved.

Comment.In this paper, we solve a very specific problem related to a combination of interval and probabilistic
uncertainty. For a more general context and for other practical problems related to such a combination, see, e.g.,
[2,3,4,5,7,10, 20, 21, 23, 30, 31, 33, 34] and references therein.



2 Error Estimation for Traditional Statistical Data Processing Algorithms
under Interval Uncertainty: Known Results

Formulation of the problem. When we have: resultszq, . .., z, of repeated measurement or repeated expert

estimation of the same quantity (at different points, or at different moments of time, or by different experts),

traditional statistical approach usually starts with computing their population fean«; + ... + z,,)/n and

their (population) variance

(v1 —E)?+...+ (v, — E)?
n

(1)

(or, equivalently, the population standard deviatios: /V); see, e.g., [29].
In this paper, we consider situations when we do not know the exact values of the quantitiesz,,, we only
know the intervals,, . . . , x,, of possible values of;. In such situations, for different possible valugs= x;, we
get different values off andV. The question is: what are the intervésaandV of possible values of’ andV'?
The practical importance of this question was emphasized, e.g., in [26, 27] on the example of processing
geophysical data.

Bounds onFE. For E, the straightforward interval computations leads to the exact range:

E:7X1+”'+X”, i.e.,E:*xilJr"'Jrg", andF:LJr'”Jrf".

n - n n

For variance, the problem is difficult. For V, straightforward interval computations lead to excess width. For
example, fom = 2, we haveE = (z1 + x2)/2, hencer; — E = (x1 — z2)/2; similarly, v — E = (22 — 2)1)/2.
ThereforeV = ((z1 — E)? + (22 — E)?)/2 = (z1 — 22)?/4. Thus, whenx; = x» = [0, 1], the actual range of
the variance is equal W = [0, 0.25]. On the other handg = [0, 1], hence

(x1 —E)* + (x2 — E)?
2

=[0,1] > [0,0.25].

Even more sophisticated methods of interval computations also sometimes lead to an excess width.

Reason: in the formula for the med# each variable only occurs once, and it is known that for such formu-
las, straightforward interval computations lead to the exact range (see, e.g., [11]). In the expression for variance,
each variabler; occurs several times: explicitly, ior; — £)2, and implicitly, in the expression faE. In such
cases, often, dependence between intermediate computation results leads to excess width in the results of straight-
forward interval computations. Not surprisingly, we do get excess width when applying straightforward interval
computations to formula (1).

For variance, it is known that computifgis NP-hard [8]. The very fact that computing the range of a quadratic
function is NP-hard was first proven by Vavasis [32] (see also [18]). [8] shows that this difficulty happens even for
very simple quadratic functions frequently used in data processing.

A natural question is: does the difficulty come from the requirement that the range be computed exactly? In

practice, it is often sufficient to compute, in a reasonable amount of time, a usefully accurate egtifoale,
i.e., an esumaté’ which is accurate with a given accuracy- 0: ‘V V’ < e. Alas, it can be shown (see, e.g.,

[8]), that for anye, such computations are also NP-hard.
It is worth mentioning thal” can be computed exactly in exponential timé"): it is sufficient to try all2”
possible combinations of values andz; [8].

Feasible algorithm for computing V. For computingV, there exists a feasible algorithm [8]: specifically, our
algorithm isquadratic-timei.e., it requiresO(n?) computational steps (arithmetic operations or comparisons) for
n interval data points; = [z,, T;].

This algorithmA is as follows:

e First, we sort aln valuesz,, 7; into a sequence ;) < z(z) < ... < x(2p).

e Second, we computg andE and select all “zoneslz (), z (1] that intersect withE, E].



e For each of the selected zories,), ©(1+1)], we compute the ratig, = Sy /Ny, where
Sp Z z; + Z zj, (2)
BT, 2T (k41) 7T ST (k)
and Ny is the total number of sucts andjs . If ry, € [, 7(x41)], then we computé), = W}, /n, where
def _
Wi = Y ()it Y, (@) (3)
UL, 2T (k41) 31T < (k)

If N}, = 0, we takeV;, < 0.

e Finally, we return the smallest of the valugsasy .
Comment.A reader may be somewhat puzzled by the fact that there is a feasible algorithm for computing the

smallest possible valug of the variancé/, while the problem of computing its largest possible valués NP-
hard.

Such a difference could not be possible, e.g., for the nféarndeed, for the meanf(—x1,...,—x,) =
—E(x1,...,x,). Since replacingZ with —E reverses the order, the smallest possible valug(efx, ..., —x,)
corresponds to the largest possible valuefigfy, . .., x,): E(—x1,...,—%,) = —E(x1,...,%,). Thus, if
we have a fast algorithm for computirg, then we could apply it to the intervalsxy, ..., —x,, and therefore,
computeE asE(x1,...,%,) = —E(—x,...,—x,). For the variances, however, this idea will not work because
V(—21,...,—2n) =V (x1,...,2,) henceV (—xy,...,—x,) = V(X1,...,Xpn).

Another explanation is that the functidn(z,...,z,) is a convex function. It is known that computing a

minimum of a convex function is rather easy, but computing its maximum can be time-consuming.

Feasible algorithm for computing V. NP-hardness of computing means, crudely speaking, that there are no
general ways for solving all particular cases of this problem (i.e., compljrig reasonable time.

However, there are algorithms for computifgfor certain common situations. For example, there exists
an efficient O(n?)) algorithm [8] that compute¥ for the case when all the interval midpoints (“measured or
estimated values”y; = (z; + 7;)/2 are definitely different from each other, in the sense that the “narrowed”
intervals[z; — A;/n,z; + A;/n] —whereA; = (z; — T;)/2 is the interval’s half-width — do not intersect with
each other. This situation is common because the actual values , x,, are usually different, so if we measure
them with a sufficient accuracy, we get non-intersecting intefdals- A; /n, z; + A;/n].

This algorithmA is as follows:

e First, we sort alkn endpoints of the narrowed intervals — A; /n andz; + A;/n into a sequence ;) <
T2y < ... < (2n). This enables us to divide the real line irto + 1 segments (“zones’ i), =(x41)),

where we denoted) def _ o andzs, 1) def L

e Second, we computg andE and pick all “zones’{zx), z(;+1)] that intersect withE, E.
e For each of remaining zonés;), z (1], for eachi from 1 ton, we pick the following value of;:

o if x,11) < ¥ — Ai/n, then we pickr; = Z;;
o if x> T + Ay /n, then we picke; = z;;
o for all otheri, we consider both possible values= z; andz; = z;.
As a result, we get one or several sequences dfor each of these sequences, we check whether the mean

F of the selected values, . . ., x,, is indeed within this zone, and if it is, compute the variance by using the
formula (2).

e Finally, we return the largest of the computed varianceg as

This algorithm also works when, for some fix&d any collection of more thak “narrowed” intervals does not
have a common point.



3 On-Line Statistical Analysis: Problem and Results

Formulation of the problem. In practice, measurements and expert estimates can arrive one after another. It is
desirable to start processing them as they come, without waiting for all of them to arrive. This is also important
because often, as a result of the statistical analysis of the existing measurement results and/or expert estimates, we
conclude that we do not have enough measurements and estimates; hence, we make additional measurements or
expert estimates. For traditional statistical methods, this can be easily accomplished: once we know tfi@mean

n valueszy, ..., x, and the corresponding variante and a new measurement result (or a new expert estimate)

Tny1 arrives, we can compute the new valugsandV”’ as follows:

-E+zx, M + 2
E/:n n:::g{ +1_7 ]\4:‘/4>Ev27 ]Vf/:n n+1xn+1; V/:]\/Ilf(E/)Q,
def T3+ ...+ 22 .
whereM = ——— ™ is a (population) second moment.
n

Comment. For readers who are not very familiar with formulas from mathematical statistics, here is a simple
derivation of the formula\/ = E + V2 since(x; — E)? = 2? — 2z, - E + E?, the averagéd’ of the squares
(x; — E)? can be represented as follows:

n

1 - R
V=—. i —E)?=—. 2 (= | - E+FE*=M—-2E*>+ E* = M — E*.
> (e B) =~ ;x (n ;x) + +

n -
i=1

In other words, if we have a new measurement result or a hew expert estimate, we can modify the value of the
variance in constant time —i.e., by using the number of computational steps that does not grawMi¢habove
formulas enable us to easily update the statistical characteristics once the new measurement results and/or expert
estimates are available.

Similar algorithms can be described for computfgnd E:

’ n'E—‘rgn—i-l. *’7n'E+xn+1

- n+1

B =22 )

However, the above algorithms for computiligand V' start with sorting the values; andz;. Thus, we cannot
even start these algorithms unless we already know all the (interval) vw&jues , x,, before we start computa-
tions.

So, if we have a new measurement result or a new expert estimate, and we want to recompute the Béunds on
we must start from scratch and again apply.?) computational steps. Thus, if we add measurement results/expert
estimates one by one, we ne@(1? + 2% + ... + n?) = O(n®) computational steps.

A natural question is: if we simply add a new (interval) valyg, ;, can we use the previous computations to
re-computeV faster? In this paper, we show that such a speed-up is indeed possible. Specifically, we will show
that it is possible to modify the algorithms in such a way that each algorithm require®©onjysteps after a new
data pointc,, ;1 is added. In these new algorithms, to processeasurement results and expert estimates one after
another, we nee@(1 + 2 + ... +n) = O(n?) computational steps — same as before, but now we do not have to
wait until all the measurement results and expert estimates are available.

New algorithm for computing V: main idea. This new algorithm is a modification of the above described
algorithmA. Let us first describe the main three differences between the new algorithm and the previous one.
The first difference is that, in contrast i, we will compute the values$;, N, rx, andV}, for all zones
[2(k), Tx+1)], NOt just for the zones that intersect wiii, E] and/or for whichr;, belongs to the zone. (Of course,
when we comput®’, we compute only the smallest of the vallégscorresponding to the zones that intersect with

E and for whichr;, belongs to the zone.)

Second, instead of computing by using formula (3), we use the following equivalent formula:

Wy = My, — 2Sk - 1% + Ny - 73, (5)
where et
M= > mi+ )T (6)
LT, 2T (k41) T <T (k)



CommentThe formula (5) is similar to the above-mentioned known relatios: M — E? between the variance

V', the second moment/, and the meark, and its proof is similar to the proof of that relation. Indeed, since
(z—rg)? = 2% —2x -1, +7}, we can represent each of the two sums in the formula (3) as three sums, corresponding
to the sums of:? andz?, the sum ofz; andz;, and the sum ofV;, identical terms-Z. The first sum leads td/,,

the second sum — by definition &, — leads to—2S5), - 7, and the third sum results iNj, - r2.

The third difference is that at the end of this algorithm, we keep not only the final Valbet we also keep
all the intermediate computational results: the sequepgethe valuest and £/, and the values),, Ny, 7%, M,
andV;.

New algorithm for computing V': description and computational complexity. Let us now describe how this
new algorithm works. Suppose that we have already finished applying the algorithmtewvalsxy, . . ., x,,, and
anew intervak, ;1 = [z, 1, Tn41] arrives.

First, we recompute the valuds and E by applying the formulas (4). This requires a constant number of
computational steps.

Then, we find the place for the new boungs, ; andz,,,, in the sorted sequenag;) < z() < ... < x(2p).

Since the sequence;) is sorted, finding a place for each of the bounds within this sequence can be done by
bisection (binary search), i.e., ®(log(n)) steps (see, e.g., [1]).

Each of the added bounds is either within one of the previous zone — in which case this zone splits into two
new smaller zones, or it is before or after all the previous zones — in which case a single new zone is added. In
both cases, adding one bound adds at most two new zones, so adding two bounds means that we have at most 4
new zones.

To proceed, we must update the valigs Ny, rr, My, andV} corresponding to the old zones, and compute
the valuesSy, Ny, ri, M}, andV}, corresponding to the new zones.

For each old zongr ), z(;+1)], the value ofS,. will only change if eitherz,, , | > (1) OF Tpy1 > z(ry. IN
the first case, we add, , ; to Sy; in the second case, we agg, to S;. In both cases, we add 1 19;.

Similarly, the value ofMf;, will only change if we either,, ,; > x(j41) Or Tp,11 > x(1). In the first case, we
add;%+1 to M,.; in the second case, we aﬁEjH to Si.

For each old zong, once the values &y, N, andM;, are updated, we can computgandV;, in O(1) steps,

i.e., by using the number of computational steps that remains bounded by a constant iwbmrases and thus,
does not increase with.

Thus, for each old zone, we ne€d1) computational steps for the update.

For each new zone, explicit computation$f and M}, requires that we go over allintervals, i.e., it requires
linear timeO(n).

Thus, the update of all intermediate values requires a constantQirhefor each ofO(n) old zones and a
linear timeO(n) for each ofO(1) new zones. Therefore, the total number of computational steps needed for an
update is equal t@(1) - O(n) + O(n) - O(1) = O(n). In other words, we need linear time to update.

Finally, we computd/ as the smallest of£ n valuesVy; this also requires linear time. We have therefore
proven that our algorithm indeed requires linear time to update the lower B6wmdthe variancé’.

New algorithm for computing V: numerical example. Let us illustrate the above algorithm on the example
when we process the following 3 intervals; = [2.1,2.6], x5 = [2.0,2.1], andx3 = [2.2,2.9]. We start with

the intervalx; = [2.1,2.6]. We only have a single interval, so we only have two bounds: 2.1 and 2.6. These
bounds are endpoints of the same interval, so they are already sortedshgnee2.1 andx ;) = 2.6. This is

a degenerate case. In this case, we have only one[zpnex(,)| = [2.1,2.6]. For this zoneS; = 0, N; = 0,

r1 = S1/N; is undefined); = 0, andV; = 0.

Then, we add the second interwal = [2.0,2.1]. To get the ordering of all 4 bounds, we must find the place
for the two new boundsg, = 2.0 andz, = 2.1, in the sorted sequenag;) = 2.1 < z(3 = 2.6. We find the
place for each of these bounds by bisection, so w&gek 2.1 = 2.1 < 2.6. No new bounds split the old zone
[2.1,2.6], so this zone remains, In addition to this old zone, we also have a newzon21].

In accordance with the algorithm, let us start with re-computing the valiyes . corresponding to the old
zone. The new intervat, is completely to the left of the old zone, so its upper bound 2.1 is addéd and 1 to
Ni. As aresult, for this zone, we gft= 0+2.1 = 2.1 andN = 0+1 = 1. Hence, for this zone, = S/N = 2.1.



Similarly, the valueM changes by adding 12, so the new value af/ is 0 + 2.12 = 4.41. Finally, we compute

M—25-r+N~r2_4.41—2-2.1'2.1—#1-2.12_
n - 2 -

V= 0.

For the new zone, we explicitly compute and M. In our case,S = 2.1, N = 1,r = §/N = 2.1,

M =2.1% =4.41, and
441-2-21-2141-21%
5 =

Let us now add the third interval; = [2.2, 2.9]. First, we find the place for the new bounds 2.2 and 2.9 in the
sorted sequence0 < 2.1 < 2.6. As a result, we get an enlarged sorted sequérites 2.1 < 2.2 < 2.6 < 2.9.
The zone]2.0, 2.1] stays, the zong.1, 2.6] is now split into two new zoneg2.1, 2.2] and[2.2, 2.6], and a new
zone[2.6,2.9] has appeared.

For the old zond2.0,2.1], sincez; = 2.2 is larger than the upper bound of this zone, we recalcufate
by adding the value 2.2 corresponding to the new intergali.e., replace the old valu§ = 2.1 with S =
2.1 + 2.2 = 4.3. Correspondingly, we replace the old valive= 1 with the new valueV = 1 + 1 = 2. Hence,
r = S/N = 2.15. Similarly, sincez; > 2.1, the valueM is changed from the old value 4.41 to the new value
4.41 +2.22 = 7.25. Hence,

V= 0.

25—2-43-2.15+2-2.152
V:7 > 5 3 bt > = 0.875.

For the new zon@.1, 2.2], straightforward computations descrif@sS = 2.1+2.2 = 4.3 andN = 2, hence
r=S/N = 2.15. Here,M = 2.12 + 2.22 = 7.25, hence, similarly to the previous zone, we have- 0.875.

For the new zon€2.2, 2.6], we haveS = 2.1 andN = 1, hencer = S/N = 2.1. Here,M = 2.12 = 4.41,
henceV = (4.41 —2-2.1-2.1+41-4.41)/3 =0.

Finally, for the new zoné2.6, 2.9], we haveS = 2.1 + 2.6 = 4.7 andN = 2, hencer = S/N = 2.35. Here,
M =212 + 2.6 = 11.17, hence

1117 -2-4.7-2.35+ 2 2.352
- 3

V = 0.541666. ..

If these three intervals are all we have, then to get the actual valdewé consider only those zones for which
r is within this zone. Out of our 4 zones, only one zone has this propjrty:2.2]. For this zone}y = 0.875, so
this is the desired lower endpoilit

New algorithm for computing V: main idea. Let us now describe how we can modify the above algorithm
so that it will require linear time to update for the case when, for some fikedny collection of more thai’
“narrowed” intervals does not have a common point.

Let us first describe the main difference between this modification and the original algorithm.

The first difference is that, in contrast #, we will perform the computations fel zones|r (i), Tr+1)), NOt
just for the zones that intersect with, E]. (Of course, when we compuié, we compute only the largest of the
valuesV corresponding to the zones that intersect \Eith

Second, at the end of this algorithm, we keep not only the final Vidluaut we also keep all the intermediate
computational results: the sequengg, and, for each zone, all selected sequengegs. ., z,, and the values’
andV corresponding to these sequences.

New algorithm for computing V: description and computational complexity. Let us now describe how this
new algorithm works. Suppose that we have already finished applying the algorithmtéwvalsxy, . .., x,, and
anew intervak,, ;1 = [z, 1, Tn41] arrives.

First, we recompute the valuggandE by applying formulas (4). This requires a constant number of compu-
tational steps.

Then, we find the place for the new boungs, ; andz,,,, in the sorted sequenag;) < z() < ... < x(2p).
Since the sequenceg;) is sorted, finding a place for each of the bounds within this sequence can be done by
bisection (binary search), i.e., ®(log(n)) steps (see, e.g., [1]).

Similarly to the previous modified algorithm, each of the added bounds is either within a previous zone — in
which case this zone splits into two new smaller zones, or it is before or after all the previous zones — in which case



a single new zone is added. In both cases, adding one bound adds at most two new zones, so adding two bounds
means that we have at most 4 new zones.

To proceed, we must update the sequences and the correspondingivaued” corresponding to the old
zones, and compute the values corresponding to the new zones.

For each old zone, and for each corresponding sequence, we must update this sequence by adding the corre-
sponding value of, 1, and then re-computing andV. Since no more tha’ narrowed intervals can have a
common point, for each zone, there are no more tHamorresponding sequences. Whiris fixed, this means
that we have a constant numb@(1) of such sequences. For each sequence, updatiagdV can be done (as
we have already mentioned) (1) steps, i.e., in the number of steps that does not depend on

For each new zone, we need to find all the sequences and compute the corresponding aalligs Finding
all the sequences requires 2% - n = O(n) steps, and computing andV for each of these sequences also
requires linear time.

Thus, the update of all intermediate values requires a constanQirhefor each ofO(n) old zones and a
linear timeO(n) for each ofO(1) new zones. Therefore, the total number of computational steps needed for an
update is equal t&(1) - O(n) + O(n) - O(1) = O(n). In other words, we do need linear time to update.

Finally, we computé’ as the largest of » valuesV; this also requires linear time. We have therefore proven
that our algorithm indeed requires linear time to update the lower bbuon the variancé’.
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