Sensitivity Analysis of Neural Control

Chin-Wang Tao!, Hung T. Nguyen?,
J. T. Yao?, and Vladik Kreinovich*

!Department of Electrical Engineering
National I-Lan Institute of Technology
260 I-Lan, Taiwan
cwtao@mail.ilantech.edu.tw
2Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003, USA
hunguyen@nmsu.edu

3Department of Computer Science
University of Regina
Regina, Saskatchewan, Canada S4S 0A2
jtyao@Qcs.uregina.ca

“Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968, USA
vladik@cs.utep.edu

Abstract

‘We provide explicit formulas that describe how sensitive the resulting

signal of a neural network is to the measurement errors with which we
measure the inputs.

What are neural networks. Artificial neural networks (see, e.g., [2]) sim-
ulate a highly parallel way the human brain works. In the simplest 3-layer
back-propagation neural network, inputs signals z1,...,z, first go to K “hid-
den” neurons. Each of these neurons produces a signal

Yk = So(Wr1 - &1 + ...+ Wi - Tn +wpo) (1 <k <K),

where
1

) = e

is an activation function. Signals from these neurons are collected at the (linear)
output neuron, producing the final signal y = Wy -y1 + ...+ Wk -yx + W, i.e.,

K n
y=> Wi-so (Zwki-$i+wk0>+wo- (1)

k=1 i=1

Neurons in the hidden layer are called hidden because their signals are not
directly outputted to the outside world, they are only fed to the output neuron
that produces the final result.

Why neural networks. Neural networks are known to be universal approx-
imators, i.e., every continuous function y = f(z1,...,%,) on a box

[—A,A] x ... x [-A, 4],

and for every positive real number £ > 0, there exists a function of the type (1)
that approximates f(x1,...,%,) within a given accuracy e.

At the same time, they are fast to compute: if we implement all neurons in
hardware, then a 3-layer neural network means that no matter how complex the
function is, and how many variables it has, it only needs the processing time of
two layers to compute the desired value of the function.

‘We want a neural network to be trained. A typical application of neural
networks, e.g., in control, is based on the following idea. Often, we have skilled
operators who can control a given plant, but who cannot describe their control
in precise terms.

So, what we can do is collect the record of their skillful control, i.e., find
out what control y(® these skilled operators applied for different combinations
a;§”), et ,a:%p) of input variables, and train a neural network in such a way that
it will produce the same control for all given inputs.

How neural networks are trained. The universal approximation result
does not tell us how to train a neural network, i.e., how to find the values of
the weights wy; and Wy, that approximate a given function. For this training,
one of the most successful algorithms is back-propagation, which is, in effect,
a gradient descent method for the least square error. Namely, if we want the
neural network to produce the output y® for given inputs m§p VLo e if

we want to minimize the squared difference

J=u® —y@?,...,zP))?, (2)

where y(z1,...,z,) denotes the expression (1), then we must update the previ-
ously known weights to the new values

oJ

Whi = Whi — A - Bug; (3)
oJ

_y. 97 4

Wk =+ Wk =2 W’ (4)

where A > 0 is a step. Back-propagation is, in effect, a fast algorithm for
computing the corresponding partial derivatives.

While computation of y from given z,...,x, starts at the hidden neurons
and then goes to the output neuron, in the forward direction, the algorithm
for computing these derivatives starts with computing the derivatives corre-
sponding to the output neuron, and then moves to computing the derivatives
corresponding to the hidden layer, i.e., goes backwards. Thus, this algorithm is
called back-propagation.

How neural networks are used. In accordance with our description:

e first, we train the neural network to produce exactly the desired values,
and

e then, we “freeze” the weights, and use the neural network solely in forward
propagation mode.

Problem. The problem that we discuss in this paper is that in real-life control
applications, the values z; of input variables come from measurements, and
measurements are never 100% accurate. As a result, the values Z; that we
measure may be slightly different from the actual (unknown) z; values of the

corresponding physical quantities, i.e., the measurement error Az; def T; —x;
is, in general, different from 0.

How does this uncertainty affect the result of the neural network? In other
words, how is the computed value y def y(Z1,...,ZT,) different from the desired
value y def y(x1,...,2,)? In yet other words, how sensitive is the neural network
to the inaccuracy with which we know the inputs?

Measurement errors are usually relatively small. Measurement errors
are usually relatively small. So, to find the bounds on

o

f ~ ~ ~
Ay = y_yzy(xl7"'7xn)_y(wlr"amn):

y(ﬁla'-'a%n)_y(ﬁl_Azla-"ain_Axn)a (5)

we can expand the dependence (5) in Taylor series and retain only linear terms
in this expansion:
Jy

Oy
Ay = —- coi 77— Az,
Y= 50 Azy + ...+ B, Az (6)

Two cases: interval and statistical. The resulting estimate on Ay depends
on what we know about the measurement errors Az;. In all cases, the manu-
facturer of the measuring instrument provides us with an upper bound A; on
the measurement error: |Az;| < A,.

In some situations, this is the only information that we have. In such situa-
tions (see, e.g., [4, 5, 6, 7, 8]), the largest possible value of Ay is equal to

o

Oy
A=
oz,

-A
£ 1+ +

A, (7)

In other cases, in addition to the upper bound on the measurement errors, we
know the probabilities of different values of these errors. Usually (see, e.g.,
[10]), the corresponding probability distributions of Az; are independent, and
each Ax; is normally distributed with 0 average and known standard deviation
o;. In this case, the variance Vy], i.e., the mean squared value of Ay, can be
computed as follows:

Viy] = (%)2-Uf+...+(%>2-ag. ®)

In both cases, to estimate the effect, we must know the values of the partial
derivatives
9y

oz (9)

What is known. Several papers (see, e.g., [1, 3]) describe how to compute
the desired derivatives (9) on the training stage. On this stage, we know the
partial derivatives of J w.r.t. weights, and from these derivatives, we can easily
estimate the derivative (9).

Specifically, due to the chain rule, the derivative of J w.r.t wgo is equal to

oJ =
— 2. Ay Wy -5 i , 1
D y- Wi - s (;Zl Wi - T +wk0> (10)

where we denoted Ay & y(:cgp), ... ,m%p)) — 4@ while

8:1/ K n
o, = . Wy, - 86 (zzzl Wi " Ti + wk()) s Wki- (11)

Therefore,

6y. _ LZ oJ . (12)

What we will do. In this paper, we will provide an estimate for the desired
partial derivative on the usage stage, when no partial derivatives are known.
Preliminary results of this research were first announced in [11].

Our formula. The resulting formula is as follows:

‘ oy < i - max (Z(Wk “wgi) T,) (W "wki)_> ; (13)

ox;
¢ k k

where, for each real number a, a* def min(a,0) and a~ def min(—a,0). In other
words, the sum of a¥t is the sum of all positive terms W}, - wg;, and the sum of
all @~ is the sum of the absolute values of all negative terms.

Proof of correctness. Let us first prove that this formula is indeed correct.
Indeed, due to (11), we have

d X n
aj. - ZWk (Wi - 8 (Z Wi * Ti +wk0> . (14)
tok=1

= =1

It is known that s{(z) = so(z) - (1 — so(2)). The value so(z) goes from 0 to
1, hence s{(z) is always non-negative, and its largest value is attained when
so(z) = 0.5; then sj(z) = 0.5- (1 —0.5) = 1/4 (in this case, z = 0). So,
sp(z) <1/4 for all z.

If the desired partial derivative is positive, then its value cannot exceed
the sum of all the positive terms in the expression (14). Since s{(z) is always
positive, the sign of a term is determined by the product Wy, - wg;. Thus, if the
desired partial derivative is positive, then

1

Similarly, if the desired partial derivative is negative, then its absolute value
cannot exceed the sum of absolute values of the negative terms in the sum, i.e.,

‘By 1

Bz, < ;(Wk “wr;)” - sp(2) < 1 ‘;(Wk W)~ (16)

Combining (15) and (16), we conclude that in both cases, the absolute value of
the desired partial derivative cannot exceed the largest of these two bounds. In
other words, the formula (13) is indeed correct.

Can we get a better estimate? A natural question is: can we get a better
estimate? We will show if the number of hidden neurons does not exceed the
number of inputs (i.e., K < n), then, in almost all cases, the above estimate
cannot be improved.

Specifically, these estimates cannot be improved in the generic case, when

the corresponding weight vectors W, def (wk1, . . ., Wiy) are linearly independent.
Let us show that in this case, for every ¢ > 0, there exist values z1,...,z,
for which the upper bound is (13) is attained within accuracy e, i.e., for which

> % - max (Z(Wk 'wki)+:Z(Wk 'wkz’)) —é& (17)

k k

Oy
65[3,’

Without losing generality, let us consider the case when
D Wi wpi)t > Y (W wis) ™
k k

In this case, the desired equality (17) takes the equivalent form

Jy
ox i

> i -Xk:(wk Cwi) —e. (18)

Let K be the set of all the indices k for which Wy, - wg; > 0. Let us fix a large
number N and find the values z; for which:

Wkl *T1 + - -+ Wy - T +wgo =0 for k € I, (19)

Wpt *T1 + ... + Wiy - Ty +wio = N for k € K. (20)

Since K < n, and the vectors Wy, are linearly independent, this system of equa-
tions always has a solution, For this solution, the formula (14) leads to:

9y

Bwi

= i Z(W,c cwpg)t — (V) - Z(Wk W)~ - (21)
k

k

As N — oo, we have s{(N) = so(N) - (1 — so(N)) — 0, hence, for large enough
N, we have the inequality (18).
Thus, our bound cannot indeed be improved. The statement is proven.

Acknowledgments

This work was supported in part by NASA under cooperative agreement NCC5-
209, by the Future Aerospace Science and Technology Program (FAST) Cen-
ter for Structural Integrity of Aerospace Systems, effort sponsored by the Air
Force Office of Scientific Research, Air Force Materiel Command, USAF, under
grant F49620-00-1-0365, by NSF grants EAR-0112968 and EAR-0225670, by

the Army Research Laboratories grant DATM-05-02-C-0046, by the Hewlett-
Packard equipment grants 89955.1 and 89955.2, by the Personal Interface Ac-
cessGrid awarded by the Education, Outreach and Training Partnership for
Advanced Computational Infrastructure EOT-PACI, and by the IEEE/ACM
SC2003 Minority Serving Institutions Participation Grant.

References

[1]

[10]

[11]

C. Alippi, V. Piuri, and M. Sami, “Sensitivity to errors in Artificial Neural
Networks: a behavioral approach”, IEEE Transactions on Circuits and
Systems, I: Fundamental Theory and Applications, 1995, Vol. 42, No. 6,
pp- 358-361.

L. Fausett, Fundamentals of neural networks: Architectures, algorithms,
and applications, Prentice Hall, Englewood Cliffs, NJ, 1994.

S. Hashem, “Sensitivity analysis for feedforward Artificial Neural Networks
with differentiable activation functions”, Proceedings of the 1992 Interna-
tional Joint Conferences on Neural Networks, Baltimore, MD, IEEE Press,
1992, Vol. 1, pp. 419-424.

L. Jaulin, M. Keiffer, O. Didrit, and E. Walter, Applied Interval Analysis,
Springer-Verlag, Berlin, 2001.

R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer,
Dordrecht, 1996.

R. B. Kearfott and V. Kreinovich (eds.), Applications of Interval Compu-
tations, Kluwer, Dordrecht, 1996.

R. E. Moore, Methods and Applications of Interval Amnalysis, STAM,
Philadelphia, 1979.

A. Neumaier, Introduction to Numerical Analysis, Cambridge Univ. Press,
Cambridge, 2001.

H. T. Nguyen and V. Kreinovich, Applications of continuous mathematics
to computer science, Kluwer, Dordrecht, 1997.

S. Rabinovich, Measurement Errors: Theory and Practice, American Insti-
tute of Physics, New York, 1993.

J. T. Yao, “Sensitivity analysis for data mining”, Proceedings of the 22nd
International Conference of the North American Fuzzy Information Pro-
cessing Society NAFIPS’2008, Chicago, Illinois, July 24-26, 2003, pp- 420—
425.

