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Abstract

For univariate polynomials f(z1), Horner scheme provides the fastest way to compute the
value. For multivariate polynomials, several different version of Horner scheme are possible; it
is not clear which of them is optimal. In this paper, we propose a greedy algorithm that will
hopefully lead to good computation times.

A univariate Horner scheme has another advantage: if the value x; is known with uncertainty,
and we are interested in the resulting uncertainty in f(x;), then Horner scheme leads to a better
estimate for this uncertainty that many other ways of computing f(z1). The second greedy
algorithm that we propose tries to find the multivariate Horner scheme that leads to the best
estimate for the uncertainty in f(z1,...,2,).

1 Introduction
It is well known (see, e.g., [11]) that if we want to compute the value of a univariate polynomial
f(:v):a0+a1-:B+a2-:132+...+ad_1-:Bdil-i-ad-xd, (1)
then the fastest way to compute it is to use the Horner scheme
f@)=ap+z-(a1+z-(...(ag1+T-ag)...). (2)

For univariate polynomials, Horner’s scheme is the one with the smallest overall number of arith-
metic operations (additions and multiplications).

For multivariate polynomials, it is not known which scheme leads to the smallest possible
number of arithmetic operations. One approach — implemented in MatLab and Mathematica — is
to use multivariate Horner scheme. In this scheme, we choose a variable, say z1 and apply Horner
scheme as if all the other variables were constants. The resulting coefficients a; are then functions
of all the other variables xo,...,z,. To compute these coefficients, we select one of the remaining
variables and apply Horner scheme with this variable, etc. For example, for

f@1,m9,m3) = 23 -z + 27 - 23+ 27 - 13 - 73, 3)
if we first select z1, then we get
f(@1, 39, 23) = 2 - (ag + 21 - a3), (4)

where
ag = T3 - T3+ 3; a3 = T2, (5)



ie.,
f(z1,39,73) = 37 - (T2 - T3 + T3 + T1 - T2). (6)

If we now select z3 as the next variable, we get
ag = z3+ (72 + 1), (7)

ie.,
fz1,zo,23) = 22 - (z3 - (z2 + 1) + 1 - z2). (8)

It is known (see, e.g., [8]) that for some polynomials, there are faster computation schemes than
multivariate Horner, but in many practical cases, for an appropriately selected sequence of variables,
the multivariate Horner scheme works reasonably well; see, e.g., [12, 13].

The problem is that it is sometimes difficult to select the appropriate order of variables, and
with the wrong order, we may end up performing much more arithmetic operations to compute the
value of the same polynomial. For example, for the polynomial (3), the above scheme (8) requires
4 multiplications and 2 additions. However, if we selected x5 first, and z3 next, then we would end
up with the scheme

f(z1, @2, 23) = z9 - (3 + 27 - x3) + 27 - 23, )

that requires the same number (2) of additions, but 7 multiplications: 2 to compute z3, 1 to
compute z?, one to compute z? - z3, one to compute zz - (z3 + z? - 3), 1 to compute z?, and 1 to
compute z7 - x3. Even if we take into consideration that in this procedure, we compute z? twice,
we still end up with 6 > 4 multiplications.

How can we select the order of the variables so as to minimize the overall number of arithmetic
operations?

2 First Greedy Algorithm: Motivation

There is no known method for selecting an optimal order. Let us therefore describe a (heuristic)
greedy algorithm for finding such an order. The main idea behind greedy algorithms (see, e.g., [4])
is that if we have a sequence of choices, then we make each choice in such a way that after this
choice, the minimized function gets the largest possible decrease.

What does this general idea translate into for multivariate Horner scheme? Let us first describe
its application to the selection of the first variable. We start with a polynomial f that is a sum of
monomials My, Mo, ...:

f(.’El,,.’L'n) :ZMk (10)
k

If we select x; as the first variable, then we group together all monomials that contain z; — and
have z; as a common factor — and keep all other monomials intact. In other words, we replace the
expression (10) by a new expression

f(.’IIl,...,.’L‘n)Z.Ti-< Z Mé)-ﬁ- Z My, (11)

k:x;€Mj k:x; ¢ My,

where M! % My, /x; is the result of taking z; out as a factor.
With this transformation, the number of additions does not change, but the number of mul-
tiplication decreases. Indeed, If we use the original formula (10) as the computation scheme,



then we have to we compute all the terms M} that do not contain z;, and we also compute all

the terms M} that contain z;. Computing a monomial M) = :1:‘11’“ . mf’“ S xﬁkn of order

de Wiy + .. £ dy + ... + dgy, requires di — 1 multiplications.

If we use the formula (11) as the computation scheme, then we still have to compute all the
terms M}, that do not contain xz;. However, for each term M}, that contains x;, we do not compute
the monomial M}, of degree dj, anymore: instead, we compute the auxiliary monomial M}, = M} /x;
of degree dj, = d, — 1, and this computations requires dj, — 1 = dj, — 2 multiplications. After that,
we need an extra multiplication by z;.

Thus, we use one extra multiplication, but we save one multiplication for each monomial that
contains z;. So, if we denote the total number of such monomials by N;, then we save N; — 1
multiplications if we choose z;.

According to the idea of a greedy algorithm, it is therefore reasonable to select z; for which this
decrease is the largest, i.e., for which the value NV; is the largest. Thus, we arrive at the following
algorithm.

3 First Greedy Algorithm: Description and Example

In the proposed algorithm, given a polynomial f(z1,...,z,), we count, for each variable x;, the
number of monomials NN; that contain this variable. We then select a variable with the largest
value of N;, and represent the original polynomial as f = Ag + A; - z;, where Ag is the sum of all
monomials that do not contain x;, and A; is the sum of all the terms M, ,’C = Mj,/z; corresponding
to all the monomials M}, that do contain x;.

Then, we apply the same algorithm to each of the resulting terms Ay and A;, etc. — until we
get a computation scheme.

Let us show how this algorithm will work on the above polynomial (3). For this polynomial,
Ny =2, Ny = 2, and N3 = 2. The variable with the largest value of N; is z1, so we select x; for
the first step of our multivariate Horner scheme. Here, all three monomials contain x1, so Ay = 0,
and we get the decomposition f = zy - A1, where

A1:$%-.’L‘2—|—$1-.’E3+$1-{E2-$3. (12)

Similarly, for A;, we have Ny = 3 > N, = N3 = 2, so we again select x1, and get the following
expression:

f=a-2 - AL (13)

where e
All = X1 T+ X3+ T2 - T3. (14)

For A}, we select either z5 or z3. If we select o, we get
f=x1 21 (32 (21 + 23) + 23). (15)

If we select z3, we get
fzivl'$1-($3-($2+1)+CE1-3)2). (16)

In both cases, we get no more multiplications than in the above form (9), but if we select z2, we
get even fewer multiplications: 3 instead of 4.

This example also shows why selecting xo as the first variable led to too many multiplications:
for xo, we have No = 2 < Nj.



4 How Good Is This Method?

The above algorithm is based on the heuristic idea of greedy algorithms. In general, heuristic
methods are not always optimal. How good is our method? Our preliminary tests show that this
method works well. It is desirable to test this method further.

What we can do ourselves is to test this new method as follows: we can design a generator
for generating “random” polynomials (corresponding to some reasonable probability distribution
on the set of all polynomials), and then test our method on the polynomials generated by this
generator. However, the problem with this test is that its results may depend on the choice of
the probability distribution used in this generation. Thus, even if we get good results for some
probability distribution, it will always be possible that the method does not work as well on
polynomials from practical problems.

We would therefore like to test this algorithm on polynomials encountered in real-life problems,
and the only way to do it is to publicize our algorithm and to ask the readers to try it. We would
greatly appreciate the results.

5 Error Propagation: Another Reason Why Horner Schemes Are
Good

The Horner scheme not only saves on computation time, it also helps in error propagation: namely,
if we only know the value of the input with some uncertainty, it helps to estimate the resulting
uncertainty in the output. In precise terms, the uncertainty in the input x; means that instead of
knowing the exact value of z;, we know the approximate value Z; of the corresponding quantity,
and we know the accuracy A; of this approximation, i.e., we know that the difference between the
actual (unknown) value z; and this approximation cannot exceed A;: |Z; — z;| < A. This means
that the only information that we have about z; is that it belongs to the interval x; = [z;,T;],
where z; = T; — A; and T; = &; + A;.

Different values z; € x; lead to different values of the polynomial y = f(z1,...,zy,). It is
therefore to estimate the range of the possible values of this polynomial, i.e., the interval

vy & F @, ) [T Ex & .. & o € X0) (17)

The problem of computing the exact range is NP-hard; see, e.g., [9, 17], so, in general, we cannot
feasibly compute the exact bounds on the accuracy of y. We should therefore aim for reasonable
upper bounds, i.e., for a reasonable enclosure Y D y.

A natural way to compute such an enclosure is to use a technique called straightforward interval
computations (see, e.g., [5, 6, 7, 10, 11]). This technique uses the fact that for the polynomials that
represent simple arithmetic operations, we get explicit expressions for y:

e for f(xz1,29) = x1 + x2, we have
[v,7] = [z1 + 22,71 + To); (18)
e for f(z1,z2) = 1 — x2, we have

[v,7] = [z1 — T2, %1 — Zo); (19)



e for f(z1,z2) = 21 - x2, we have

ly, 7] = [min(z; - Zo, 21 - To, T1 - Ty, T1 - T2), max(z; - T, Ty - To, T1 - T, T1 - T2)]. (20)

These formulas are called interval arithmetic; they can be used to compute the desired enclosure
for an arbitrary polynomial f(z1,...,z,) as follows. In the computer, an arbitrary computation is
eventually translated (“parsed”) into a code list, which is a sequence of elementary arithmetic oper-
ations. In straightforward interval computations, we replace each real operand with the correspond-
ing interval x;, and replace each arithmetic operation with real numbers with the corresponding
interval-arithmetic operation.

It is known that, as a result, we always obtain an enclosure Y of the desired interval y, i.e., an
interval for which Y D y. For example, if f(z1) = 21 — 22, a natural parsing leads to r; := z? and
y := x1 — 1. Then, for x; = [0, 1], straightforward interval evaluation leads to the estimates

R, :=10,1] - [0,1] = [min(0-0,0-1,1-0,1-1), max(0-0,0-1,1-0,1-1)] (21)

and Y :=1[0,1] — [0,1] = [-1, 1].
The problem with this technique is that, as we have mentioned, this enclosure can be wider than
the actual (desired) range. For example, in the above example, the actual range is y = [0, 0.25].
One way to make the enclosure more accurate is to use the fact that interval arithmetic is
semi-distributive, i.e., that for every three intervals a, b, and ¢, we have

a-(b+c)Ca-b+a-c. (22)

In many cases, the inclusion is proper. For example, if a = [0, 1], b = [1, 1], and ¢ = [-1, —1], then
b+c=][1,1] +[-1,—1] = [0, 0], hence

a-(b+c)=10,1]-[0,0] = [0,0]. (23)
On the other hand, a-b =[0,1]-[1,1] =[0,1] and a-¢ = [0,1] - [-1,—1] = [-1, 0], hence
a-b+a-c=1[0,1]+[-1,0] = [-1,1] D [0,0]. (24)

Due to this property, if two terms in the description of a polynomial have a common factor, then
we get a narrower interval if we apply interval computations to the expression in which this factor
has been explicitly factored out.

For univariate polynomials f(z1), the natural common factor is z1, and factoring out this
common factor is exactly what the Horner scheme is doing. Thus, for univariate polynomials,
the Horner scheme does lead to narrower intervals than an application of straightforward interval
computation to the original expression (1).

We can apply the same idea for multivariate polynomials. For example, in [1, 2], we have shown
that an algorithm similar to the first greedy algorithm often leads to a drastic decrease in the width
of the corresponding interval enclosure. General formulas for the numerical accuracy resulting from
different Horner schemes are also given in [12, 13].

The question is: which of the possible multivariate Horner schemes is the best? In the following
section, we will describe a greedy algorithm that tries to minimize the width of the resulting interval
enclosure for the range f(x1,...,Xp).



6 Second Greedy Algorithm: Motivation

As we have mentioned, the main idea behind a greedy algorithm is that at each step, we maximize
the effect of this step on the final result. To apply this idea to interval estimates, let us estimate
the gain resulting when we move from the original expression a - b+ a - ¢ to the factored expression
a-(b+c).

In this estimate, instead of the above formulas for interval computations — formulas that de-
scribe, for arithmetic expressions, the exact range — we will use the simplified formulas first proposed
by S. Rump (see, e.g., [14]). In these formulas, every interval a = [a,@] is represented by its mid-
point @ = (a + @)/2 and its half-width (radius) A, = (@ —a)/2, so that a = [a — Ay, a + A,], and
the corresponding arithmetic operations take the following form:

[@— Aa,d+ Ag] +[b— Ay, b+ Ap] = [6— A, e+ A,

where ¢=a+b and A=A, + Ay (25)
[@— Ag,a+ Ay —[b— Ay, b+ Ay] = [¢— A, e+ AL,
where ¢=a—b and A=Ay + Ay (26)
[@—Ag,d+Ag]-[b— Ay, b+ Ayl = [E— A, T+ A,
where ¢=a-b and A, =[a|-Ap+[b]- Ay + Ay - Ay (27)

For addition and subtraction, these formulas are the same as the above ones (and thus, lead to
the exact interval range). For multiplication, if we only consider the first order terms in terms of
the half-widths A, and Ay of the intervals a and b, the new formula is exact; it does, however,
lead to excess width if we take second order terms into account. We are using these not very exact
formulas because they are faster (as the very title of Rump’s paper [14] shows), and they are exact
when it comes to first order terms — and these are the terms that we will be minimizing.

By using formulas of Rump’s arithmetic, we conclude that b + ¢ = [d — Ay, d + Ay], where
d="b+7¢and Ag = Ay + A, and therefore, if we ignore second order terms:

a-(b+c)=[l—Al+A, (28)
where _ N
L=a-(b+¢) (29)
and N
Ag=al- (Ap+ AL +|b+7¢|- A, (30)

On the other hand, a-b=[¢— A, ¢+ A Janda-c =[f — A, f + Af], whereé=a-b, f = a - ¢,
Ac=lal - Ap+|b| - Ag, and Ay = |a| - A+ |€] - A,. Therefore,

a-bt+a-c=[F—A, 7+ A, (31)
where N
r=a-b+a-c (32)
and N
Ar = ‘a| 'Ab+|a|'Ac+|b| 'Aa+|5| 'Aa- (33)



By comparing (29) with (32) and (30) with (33), we conclude that the two resulting intervals have
the same midpoint £ = 7, and that the radius A, of the left-hand side interval is narrower by the
amount

Ar— Ay = (B + 1] = [6+2)) - A, (34)

In general, if we replace a-b; +...+a- b, with a- (by +...+by), the radius of the resulting interval
is narrower by the value N N N N
(|1] + .-+ |bp| = (b1 + ...+ by|) - A (35)

The expression (35) can be further simplified if we separate positive and negative terms b;. Then,
the sum |by |+ ..+ |by| is equal to ST+ S, where ST is the sum of all the positive values b; and S~
is the sum of the absolute values of all the negatlve values b;. Similarly, the expression bi+...+by is
equal to ST —S7, so the coefficient at A, in (35) is equal to ST+S~—|ST—S~|. By considering both
possible cases ST > S~ and St < S~ we can conclude that ST+ S~ —|ST—S~| = 2min(S*,S7).
Thus, when we replace a - by + ... +a-b, with a- (by + ...+ b,), we gain 2A, - min(S*, S7).

For multivariate Horner scheme, when we select z; as a common factor, the gain can be expressed
as follows:

28;-min [ > M, > M|, (36)

k:M; >0 k:M; <0

where M} runs over all monomials that contain z;, Mk is the value of the monomial M) when

T = T1, -.., Tp = Ty, and M. = Mk /T;. This expression can be further simplified into the
following;:
2A\; - min > My, > | M| | - (37)
ki € My, & My >0 ke € My, & My <0

According to the main idea behind a greedy algorithm, at each stage, we must select a variable z;
that leads to the largest decrease in the resulting interval range. Thus, at each stage, for factoring,
we must select the variable z; for which the value (37) is the largest.

7 Second Greedy Algorithm: Description

In the proposed algorithm, given a polynomial f(z1,...,zy) and the intervals [Z; — A1, Z1 + A4],

s [Zn — Ap, T+ Ay], we compute, for each monomial My, its value My, for £, = T, ..., Tn = Tp.
Then, for each variable z;, we compute the value (37), select a variable z; with the largest value of
this quantity, and represent the original polynomial as f = Ay + A; - x;, where Ay is the sum of all
monomials that do not contain z;, and A; is the sum of all the terms M}, = My /z; corresponding
to all the monomials M, that do contain x;.

Then, we apply the same algorithms to each of the resulting terms Ay and Aj, etc. — until we
get a computation scheme.

8 Discussion

Due to semi-distributivity, this method always leads to a better (or at least not worse) estimate than
a simple application of straightforward interval computations to the original polynomial. However,
since — just like the previous greedy algorithm — this algorithm is based on a heuristic idea, we do
not have any guarantee that this method will always lead to an optimal estimate. To see how good



it is for polynomials coming from practical problems, it is desirable to test this method on such
polynomials. We would welcome all results of such testing.

What we know for sure is that even if the resulting range estimates are the best among all
possible Horner scheme, these estimates cannot always be optimal — because the Horner scheme
is a feasible (polynomial-time) algorithm, and the problem of computing the exact range of a
polynomial is (as we have mentioned) NP-hard. It is worth mentioning that, as we have shown
in [16], this NP-hardness — i.e., the possibility to reduce any NP problem to the problem of range
estimation — is not just a negative result, it can be used in a positive way: a (similar) greedy
algorithm for estimating an interval range leads to a reasonably efficient greedy-type algorithm for
solving the original NP-hard problem of checking satisfiability of propositional formulas.

It is also desirable to see what happens if, in addition to the above-described formulas of interval
arithmetic, we use expressions for the interval of the power:

e For f(z1) = z¥ with odd &,

v, 7] = [z1,71]; (38)
e for f(z1) = 2} with even £,
[y, 7] = [}, 7] if 0 < z; (39)
v, 9] = [z}, 2] it 71 <0; (40)
v, 7] = [0, max(z},77)] if 2 <0 < T (41)

The use of these formulas leads to narrower intervals: e.g., when we estimate the range of the
function f(x1) = x? on the interval x; = [—1,1], straightforward interval computations lead to
[-1,1]-[-1,1] = [-1,1], while the use of the formula for z? leads to the exact range [0, 1]. However,
Horner scheme does not necessarily narrow the interval, because for 2, Horner scheme would lead
exactly to x1 - z1. In algebraic terms, if we add these functions, semi-distributivity is no longer
always true.

In [3], we showed, for univariate polynomials, how we can get narrow bounds in the presence of
interval power functions. It is desirable to extend this approach to multivariate polynomials.
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