Fast Multiplication of Interval Matrices
(Interval Version of Strassen’s Algorithm)

Martine Ceberio and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
{mceberio,vladik} @cs.utep.edu

Abstract

Strassen’s algorithm multiplies two numerical matrices fast, but when applied to interval matrices,
leads to excess width. We use Rump’s interval arithmetic to propose an interval version of Strassen’s
algorithm whose only excess width is in second order terms.

Formulation of the problem. Many numerical algorithms — ranging from mathematical physics to rank-
ing webpages — include matrix multiplication, and multiplication of large matrices often takes a significant
portion of the algorithm’s running time. It is therefore desirable to multiply matrices fast.

The product C = AB = (¢;j);,; of the matrices A = (a;5);,; and B = (b;;); ; is defined as

Cij = D ik - bij. (1)
k

A straightforward algorithm for computing the product of two n x n matrices therefore requires O(n) arith-
metic operations to compute each of n x n elements ¢;; — to the total of O(n®) operations.

The first faster algorithm was proposed by Strassen in his 1969 paper [7]; this algorithm enables us to
multiply two matrices in time O(n'°827) (i.e., in O(n?®!) steps). Since then, even faster algorithms have
been proposed; the fastest one [2] requires only O(n?-37%) steps.

For a detailed description of Strassen’s algorithm, its advantages and disadvantages, and more recent
matrix multiplication algorithms see [3]. In particular, according to this exposition, one of the main dis-
advantages of Strassen’s and similar algorithms is that they are much more numerically unstable than the
straightforward O(n®) matrix multiplication.

For example, if we only know the values a;; and b;; with interval uncertainty — in other words, if, instead
of the actual (unknown) matrices A and B, we only know the interval matrices A = (a;;) and B = (b;;) that
contain A and B - then the straightforward algorithm leads to the exact range c;; of ¢;;, while Strassen’s
and other algorithms lead to excess width; see, e.g., [1].

The reason for this excess width is simple. In the formula (1), each variable occurs only once hence, as is
all other single-use expressions (SUE), straightforward interval computations leads to the exact range (see,
e.g., [4, 5]). For Strassen’s algorithm, e.g., for n = 2, ¢1» is computed as ¢12 = a1 - (b2 —bo2) +(a11 +a12) - bas;
the resulting dependency problems leads to excess width. Of course, we can apply algebraic transformations
to eliminate this dependency — but then we are back to the expression (1), i.e., we lose speed.

In this paper, we show that we can decrease the excess width while preserving the algorithm’s speed.

Rump’s operations. In our algorithm, instead of the standard formulas for interval computations —
formulas that describe, for arithmetic expressions, the exact range — we will use the simplified formulas first
proposed by S. Rump (see, e.g., [6]). In these formulas, every interval a = [a, @] is represented by its midpoint

a = (a+a)/2 and its half-width (radius) A® = (@—a)/2, so that a = [a— A®,a+ A?], and the corresponding
arithmetic operations take the following form:

G- A%G+ Ao b—A%b+ A" = [F— A°,T+ A7, 2)
where:
e fora®b=a+b, we have ¢ = a + b and A° = A% 4+ Ab;
e fora®b=a—b, wehave =3 — b and A° = A + A;
e fora®b=a-b, wehave ¢ =a-band A° = [@] - AP + [- A® + A% . Ab.

For addition and subtraction, these formulas are the same as the standard ones (and thus, lead to the exact
interval range). For multiplication, if we only consider the first order terms in terms of the half-widths A®
and AP of the intervals a and b, the new formula is exact; it does, however, lead to excess width if we take
second order terms into account.

We are using these not very exact formulas because they are faster (as the very title of Rump’s paper [6]
shows), and they are exact when it comes to first order terms.

Resulting algorithm. For each interval matrix A with elements a;; = [a;; — Af;, a;; + Af;], let us denote,

by A, the matrix formed by midpoints @;;, and by A4, the matrix formed by the interval half-widths AL,
Applying Rump’s formulas to the expression (1), we conclude that each element

— [~ . c .. C
cij = [¢ij — A, ¢ij + A

of the resulting interval matrix C has the following form:

T = Gk - by (3)
k
AG =Y (@] - AL + A, - [beg| + Af - AL), (4)
k
ie., L
C=AB (5)

and AC = |A|AP + A4|B| + AAAP, where |A| denotes a matrix with elements [a;;]-
Therefore, to compute C' and A, we can use the formulas (5) and

AY = (|A] + A%)(|B| + A®) - |4]|B|. (6)

These formulas reduces the multiplication of two n xn interval matrices to 3 multiplications of n xn numerical
matrices (and also three additions and subtractions of matrices, which only take O(n?) time). Thus, if we
use the O(n'°827) Strassen’s algorithm to multiply the corresponding numerical matrices, we thus get a
O(n'°827) algorithm for computing interval matrices.

Similarly, for every a > 2 for which there is a O(n?®) algorithm to multiply numerical matrices, if we
apply this algorithm to compute the products AB, (|A| + A4)(|B| + AB), and |A||B|, we thus get a O(n®)
algorithm for computing interval matrices.

Acknowledgments

This work was supported in part by NASA under cooperative agreement NCC5-209, by the Future Aerospace
Science and Technology Program (FAST) Center for Structural Integrity of Aerospace Systems, effort spon-
sored by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant
F49620-00-1-0365, by NSF grants EAR-0112968 and EAR-0225670, and by Army Research Laboratories
grant DATM-05-02-C-0046.

The authors are thankful to Andreas Griewank for the discussions that led to this result.

References

[1] R. Castrapel, Analysis of Error Propagation in Strassen’s M x M Algorithm Using Interval Arithmetic,
Sun Microsystems Technical Report, June 2001
www.sun.com/products-n-solutions/edu/events/archive/hpc/presentations/june01/rick_castrapel.pdf

[2] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progression”, Journal of Sym-
bolic Computation, 1990, Vol. 9, No. 3, pp. 251-280.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press,
Cambridge, MA, and Mc-Graw Hill Co., N.Y., 2001.

[4] E. Hansen, “Sharpness in interval computations”, Reliable Computing, 1997, Vol. 3, pp. 7-29.

[5] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis: With Examples in Parameter
and State Estimation, Robust Control and Robotics, Springer, London, 2001.

[6] S. M. Rump, “Fast and parallel interval arithmetic”, BIT Numerical Mathematics, 1999, Vol. 39, No. 3,
pp- 534-554.

[7] V. Strassen, “Gaussian Elimination is Not Optimal”, Numerische Mathematick, 1969, Vol. 14, No. 3, pp.
354-356.

