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Abstract

When a physicist writes down equations, or formulates a theory in any other terms, he or she usually means
not only that these equations are true for the real world, but also that the model corresponding to the real
world is “typical” among all the solutions of these equations. This type of argument is used when physicists
conclude that some property is true by showing that it is true for “almost all” cases. There are formalisms that
partially capture this type of reasoning, e.g., techniques based on the Kolmogorov-Martin-Löf definition of a
random sequence. The existing formalisms, however, have difficulty formalizing, e.g., the standard physicists’
argument that a kettle on a cold stove cannot start boiling by itself, because the probability of this event is
too small.

We present a new formalism that can formalize this type of reasoning. This formalism also explains “physical
induction”(if some property is true in sufficiently many cases, then it is always true), and many other types
of physical reasoning.

Keywords: Non-Monotonic Reasoning, Typical, Kolmogorov Complexity.

1. Introduction

At present, there is sometimes a disconnect be-
tween the physicists’ intuition and the corre-
sponding mathematical theories.

First, in the current mathematical formalizations
of physics, physically impossible events are some-
times mathematically possible. For example, from
the physical and engineering viewpoints, a cold
kettle placed on a cold stove will never start boil-
ing by itself. However, from the traditional prob-
abilistic viewpoint, there is a positive probabili-

ty that it will start boiling, so a mathematician
might say that this boiling event is rare but still
possible.

Second, in the current formalizations, physically
possible indirect measurements are often mathe-
matically impossible. For example, in engineering
and in physics, we often cannot directly measure
the desired quantity; instead, we measure relat-
ed properties and then use the measurement re-
sults to reconstruct the measured values. In math-
ematical terms, the corresponding reconstruction
problem is called the inverse problem. In practice,
this problem is efficiently used to reconstruct the
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signal from noise, to find the faults within a met-
al plate, etc. However, from the purely mathe-
matical viewpoint, most inverse problems are ill-
defined meaning that we cannot really reconstruct
the desired values without making some addition-
al assumptions.

A physicist would explain that in both situations,
the counter-examples like a kettle boiling on a
cold stove or a weird configuration that is math-
ematically consistent with the measurement re-
sults are abnormal. In this paper, we show that
if we adequately formalize this notion of abnor-
mality, we will be able to weed out these coun-
terexamples and thus, make the formalization of
physics better agreeing with common sense and
with the physicists’ intuition.

Our approach uses the notion of Kolmogorov
complexity.

2. Physicists Assume that
Initial Conditions and
Values of Parameters are
Not Abnormal

To a mathematician, the main contents of a phys-
ical theory is the equations. The fact that the the-
ory is formulated in terms of well-defined math-
ematical equations means that the actual field
must satisfy these equations. However, this fact
does not mean that every solution of these equa-
tions has a physical sense. Let us give three ex-
amples:

Example 1. At any temperature greater than
absolute zero, particles are randomly moving. It
is theoretically possible that all the particles start
moving in one direction, and, as a result, a per-
son starts lifting up into the air. The probabili-
ty of this event is small (but positive), so, from
the purely mathematical viewpoint, we can say
that this event is possible but highly unprobable.
However, the physicists say plainly that such an
abnormal event is impossible (see, e.g., [3]).

Example 2. Another example from statistical
physics: Suppose that we have a two-chamber
camera. The left chamber is empty, the right one
has gas in it. If we open the door between the
chambers, then the gas would spread evenly be-
tween the two chambers. It is theoretically pos-
sible (under appropriately chosen initial condi-

tions) that the gas that was initially evenly dis-
tributed would concentrate in one camera. How-
ever, physicists believe this abnormal event to
be impossible. This is an example of a “micro-
reversible” process: on the atomic level, all equa-
tions are invariant with respect to changing the
order of time flow (t → −t). So, if we have a pro-
cess that goes from state A to state B, then, if
while at B, we revert all the velocities of all the
atoms, we will get a process that goes from B
to A.

However, in real life, many processes are clear-
ly irreversible: an explosion can shatter a stat-
ue but it is hard to imagine an inverse process:
an implosion that glues together shattered pieces
into a statue. Boltzmann himself, the 19th cen-
tury author of statistical physics, explicitly stat-
ed that such inverse processes “may be regarded
as impossible, even though from the viewpoint of
probability theory that outcome is only extremely
improbable, not impossible.” [1].

Example 3. If we toss a fair coin 100 times in a
row, and get heads all the time, then a person who
is knowledgeable in probability would say that it
is possible – since the probability is still positive.
On the other hand, a physicist (or any person who
uses common sense reasoning) would say that the
coin is not fair – because if it is was a fair coin,
then this abnormal event would be impossible.

In all these cases, physicists (implicitly or explic-
itly) require that the actual values of the physical
quantities must not only satisfy the equations but
they must also satisfy the additional condition:
that the initial conditions should not be abnor-
mal.

Comment. In all these examples, a usual math-
ematician’s response to physicists’ calling some
low-probability events “impossible”, is just to say
that the physicists use imprecise language.

It is indeed true that the physicists use impre-
cise language, and it is also true that in the vast
majority of practical applications, a usual prob-
abilistic interpretation of this language perfectly
well describes the intended physicists’ meaning.
In other words, the probability language is per-
fectly OK for most physical applications.

However, there are some situations when the
physicists’ intuition seem to differ from the results
of applying traditional probability techniques:

From the probability theory viewpoint,
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there is no fundamental difference between
such low-probability events as a person win-
ning a lottery and the same person being
lifted up into the air by the Brownian mo-
tion. If a person plays the lottery again and
again, then – provided that this person lives
for millions of years – he will eventually
win. Similarly, if a person stands still every
morning, then – provided that this person
lives long enough – this person will fly up
into the air.

On the other hand, from the physicist view-
point, there is a drastic difference between
these two low-probability events: yes, a per-
son will win a lottery but no, a person will
never lift up into the air no matter how
many times this person stands still.

We have just mentioned that the traditional
mathematical approach is to treat this difference
of opinion as simply caused by the imprecision of
the physicists’ language. What we plan to show
is that if we take this difference more seriously
and develop a new formalism that more accurate-
ly captures the physicists’ reasoning, then we may
end up with results and directions that are, in
our opinion, of potential interest to foundations
of physics. In other words, what we plan to show
is that if we continue to use the traditional prob-
ability approach, it is perfectly OK but if we try
to formalize the physicists’ opinion more closely,
we may sometimes get even better results.

3. How is All This Connect-
ed with the Existing Work
in NMR, in Particular, in
Probability-Based NMR

There is a massive body of work by J. Pearl,
H. Geffner, E. Adams, F. Bacchus, Y. Halpern,
and others on probability-based non-monotonic
reasoning; many of them are cited in a book
[5] that also describes other existing approach-
es to non-monotonic reasoning, approaches found
in the AI and Knowledge Representation commu-
nities. The existing approaches have shown that
many aspects of non-monotonic reasoning can in-
deed be captured by the existing logic-related and
probability-related ideas. In this paper, we con-
sider aspects of non-monotonic reasoning expert
that are not captured by the previous formalisms,

and we produce a new probability-related formal-
ism for capturing these aspects.

In the future, it is desirable to combine our
new approach with the existing logic-based and
probability-based NMR into a single NMR tech-
nique.

4. The Notion of “Not Ab-
normal” is Difficult to For-
malize

At first glance, it looks like in the probabilistic
case, the notion of “not abnormal” has a natu-
ral formalization: if the probability of an event is
small enough, i.e., ≤ p0 for some very small p0,
then this event cannot happen.

The problem with this approach is that every se-
quence of heads and tails has exactly the same
probability. So, if we choose p0 ≥ 2−100, we will
thus exclude all possible sequences of 100 heads
and tails as physically impossible. However, any-
one can toss a coin 100 times, and this proves that
some such sequences are physically possible.

Historical comment. This problem was first no-
ticed by Kyburg under the name of Lottery para-
dox [11]: in a big (e.g., state-wide) lottery, the
probability of winning the Grand Prize is so small
that a reasonable person should not expect it.
However, some people do win big prizes.

5. Kolmogorov’s Idea: Use
Complexity

Crudely speaking, the main problem arises be-
cause we select the same threshold p0 for all
events. For example, if we toss a fair coin 100
times then a sequence consisting of all heads
should not be possible, and it is a reasonable
conclusion because the probability that tossing
a fair coin will lead to this sequence is extremely
small: 2−100.

On the other hand, whatever specific sequence of
heads and tails we get after tossing a coin, this se-
quence also has the same small probability 2−100.
In spite of this, it does not seem to be reasonable
to dismiss such sequences.



4 Inteligencia Artificial Vol. XX, NoXX, 2008

Several researchers thought about this, one of
them A.N. Kolmogorov, the father of the mod-
ern probability theory. Kolmogorov came up with
the following idea: the probability threshold t(E)
below which an event E is dismissed as impossi-
ble must depend on the event’s complexity. The
event E1 in which we have 100 heads is easy to de-
scribe and generate; so for this event, the thresh-
old t(E1) is higher. If t(E1) > 2−100 then, with-
in this Kolmogorov’s approach, we conclude that
the event E1 is impossible. On the other hand, the
event E2 corresponding to the actual sequence of
heads and tails is much more complicated; for this
event E2, the threshold t(E2) should be much low-
er. If t(E2) < 2−100, we conclude that the event
E2 is possible.

The general fact that out of 2n equally probable
sequences of n 0s and 1s some are “truly random”
and some are not truly random was the moti-
vation behind Kolmogorov and Martin-Löf’s for-
malization of randomness (and behind the related
notion of Kolmogorov complexity; the history of
this discovery is described in detail in [12]).

This notion of Kolmogorov complexity was in-
troduced independently by several people: Kol-
mogorov in Russia and Solomonoff and Chaitin
in the US. Kolmogorov defined complexity K(x)
of a binary sequence x as the shortest length of
a program which produces this sequence. Thus,
a sequence consisting of all 0s or a sequence
010101. . . both have very small Kolmogorov com-
plexity because these sequences can be generated
by simple programs; on the other hand, for a se-
quence of results of tossing a coin, probably the
shortest program is to write print(0101. . . ) and
thus reproduce the entire sequence. Thus, when
K(x) is approximately equal to the length len(x)
of a sequence, this sequence is random, otherwise
it is not. (The best source for Kolmogorov com-
plexity is a book [12].)

However, the existing Kolmogorov complexity
theory does not yet lead to a formalism describing
when low-probability events do not happen; we
must therefore extend the original Kolmogorov’s
idea so that it would cover this case as well.

6. Important Comment: We
May Not Know Probabili-
ty at All

In the above three physical examples (Examples
1–3), we know the probabilities of different situa-
tions. For example, when we toss a coin, we know
the exact probabilities of different sequences of
heads and tails; in statistical physics, there are
known formulas that describe the probability that
all the particles accidentally start moving in the
same direction, etc. In these situations, “abnor-
mal” events clearly mean low-probability events.

In some cases, however, physicists do not know
the probabilities and still talk about “abnormal”
situations. In such situations, it is impossible to
formalize “abnormal” event as a low-probability
event.

A good example of such a situation is cosmology.
In this text, we will briefly describe the corre-
sponding situation; for a more detailed descrip-
tion see, e.g., [13]. The simplest possible space-
time models are isotropic (direction-independent)
pseudo-Riemannian spaces, i.e., spaces of the type
IR × S, in which the geometry is the same in all
directions. In more precise terms, in an isotrop-
ic space, for every two spatial points x ∈ S and
x′ ∈ S and for every two directions e and e′ (unit
vectors in the tangent spaces to S at x and x′),
there exists an isometry that maps, for every re-
al number t, the point (t, x) into the point (t, x′)
and the vector e into the vector e′.

In General Relativity Theory, all isotropic so-
lutions of the corresponding partial differential
equation (that describe space-time geometry)
have a singularity: a space-time point where the
solution is no longer smooth or even continuous.
In physical terms, the singularity point of the
standard solutions is what is usually called a Big
Bang – the moment of time at which our Uni-
verse started, the point at which the radius of
the Universe was 0 and the density of matter was
therefore infinite.

In the isotropic case, the equations can be sim-
plified to the extent that we have an explicit an-
alytical expression for the solution. For all these
isotropic solutions, there is always a singularity.
A natural question is: is there a singularity in the
real world?

Several non-isotropic analytical solutions to the
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corresponding equations have been found, some
of these solutions have a singularity, some do not.
Physicists have shown that for generic initial con-
ditions (i.e., for the class of initial conditions that
is open and everywhere dense in an appropriate
topology), there is a singularity.

From this, physicists conclude that the solution
that corresponds to the geometry of the actual
world has a singularity (see, e.g., [13]): their ex-
planation is that the initial conditions that lead
to a non-singularity solution are abnormal (atyp-
ical), and the actual initial conditions must be
typical.

This physicists’ argument is similar to the argu-
ments they make in a probabilistic case; the differ-
ence is that here, we do not know the probability
of different initial conditions.

7. How to Formalize the No-
tion of “Not Abnormal”:
Idea

“Abnormal” means something unusual, rarely
happening: if something is rare enough, it is not
typical (“abnormal”). Let us describe what, e.g.,
an abnormal height may mean. If a person’s
height is ≥ 6 ft, it is still normal (although it
may be considered abnormal in some parts of the
world). Now, if instead of 6 ft, we consider 6 ft
1 in, 6 ft 2 in, etc., then sooner or later we will
end up with a height h0 such that everyone who
is taller than h0 will be definitely called atypical,
abnormal (to be more precise, a person of abnor-
mal height). We may not be sure what exactly
value h experts will use as a threshold for “ab-
normal” but we are sure that such a value exists.

While every person whose height is > h0 is def-
initely atypical, a person whose height is below
h0 is not necessarily typical: he may be atypical
because of some other properties.

For example, we may consider people atypical be-
cause of an unusual weight. Similarly, there exists
a weight w0 such that everyone whose weight ex-
ceeds w0 will be called atypical.

Comment. In general, “abnormal”is clearly a
fuzzy, non-binary notion. A lot of research has
gone into formalizing and understanding what we
mean by abnormal in our common sense reason-
ing. In comparison with this vast area of research,

the main objective of this section is very narrow:
to formalize one specific (binary) aspect of the no-
tion “abnormal” – its use by physicists to indicate
events that are physically impossible.

Let us express the above idea is general terms. We
have a universal set, i.e., the set U of all objects
that we will consider. In the above example, U is
the set of all people. Some of the elements of the
set U are abnormal (in some sense), and some are
not. Let us denote the set of all elements that are
typical (not abnormal) by T .

On the set U , we have several decreasing se-
quences of sets A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . with
the property that

⋂
n

An = ∅.

In the height example, A1 is the set of all people
whose height is ≥ 6 ft, A2 is the set of all people
whose height is ≥ 6 ft 1 in, A3 is the set of all
people whose height is ≥ 6 ft 2 in, etc.

In the weight example, A1 is the set of all people
whose weight is ≥ 150 lb, A2 is the set of all peo-
ple whose weight is ≥ 160 lb, A3 is the set of all
people whose weight is ≥ 170 lb, etc.

We know that for each of these sequences, if we
take a sufficiently large n, then all elements of An

are abnormal (i.e., none of them belongs to the
set T of not abnormal elements). In mathemati-
cal terms, this means that for some integer N , we
have AN ∩ T = ∅.

In the case of a coin: U is the set of all infinite se-
quences ω = (ω1 . . . ωn . . .) of results of flipping a
coin; An is the set of all sequences that start with
n heads H. . . H but have some tails T afterwards:

An =

{ω |ω1 = . . . = ωn = H & ∃nt > n (ωnt = T)}.

Here,
⋂
n

An = ∅. Therefore, we can conclude that

there exists an integer N for which all elements
of AN are abnormal: AN ∩ T = ∅.

According to mechanics, the result of tossing a
coin is uniquely determined by the initial condi-
tions, i.e., by the initial positions and velocities
of the atoms that form our muscles, atmosphere,
etc. So, if we assume that in our world, only typ-
ical (= not abnormal) initial conditions can hap-
pen, we can conclude that the actual result ω of
tossing a coin again and again is also typical (not
abnormal): ω ∈ T .
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Therefore, since for the above N , we have

AN ∩ T = ∅,
we conclude that the actual sequence of results of
flipping a coin cannot belong to AN . By defini-
tion, the set AN consists of all the sequences that
start with N heads and have at least one tail after
that. So, the fact that the actual sequence does
not belong to AN means that if the actual se-
quence ω starts with N heads, then this sequence
ω cannot have any further tails and therefore, will
consist of all heads.

In plain words, if we have tossed a coin N times,
and the results are N heads, then this coin is bi-
ased: it will always fall on heads.

The Cantor set U = {H,T}IN = {0, 1}IN of all bi-
nary sequences (used in the coin tossing example)
will be one of our main examples of the universal
set. Other examples include general metric spaces
– such as the space C([a, b]) of all continuous func-
tions on [a, b] with a sup norm.

Let us describe the above abnormality idea in
mathematical terms [4, 6, 7, 10]. To make for-
mal definitions, we must fix a formal theory L
that has sufficient expressive power and deductive
strength to conduct all the arguments and calcu-
lations necessary for working physics. For simplic-
ity, in the arguments presented in this paper, we
consider ZF, one of the most widely used formal-
izations of set theory.

Using ZF is a little bit of an overkill; a weaker
arithmetic system RCA0 is believed to be quite
sufficient to formalize all of nowadays physics.
Our definitions and results will not seriously de-
pend on what exactly theory we choose – in the
sense that, in general, these definitions and proofs
can be modified to fit other appropriate theo-
ries L.

Definition 1. Let L be a theory, and let P (x)
be a formula from the language of the theory L,
with one free variable x for which, in the theory
L, there exists a set {x |P (x)}. We will then call
the set {x |P (x)} L-definable.

Crudely speaking, a set is L-definable if we can
explicitly define it in L. The set of all real num-
bers, the set of all solutions of a well-defined equa-
tion, every set that we can describe in mathemat-
ical terms is L-definable.

This does not mean, however, that every set is L-
definable: indeed, every L-definable set is unique-

ly determined by formula P (x), i.e., by a text
in the language of set theory. There are only de-
numerably many words and therefore, there are
only denumerably many L-definable sets. Since,
e.g., in a standard model of set theory ZF, there
are more than denumerably many sets of integers,
some of them are thus not L-definable.

A sequence of sets {An} is, from the mathemati-
cal viewpoint, a mapping from the set of natural
numbers to set of sets, i.e., a set of all the pairs
〈n,An〉. Thus, we can naturally define the notion
of an L-definable sequence:

Definition 2. Let L be a theory, and let P (n, x)
be a formula from the language of the theory
L, with two free variables n (for integers) and
x. If, in some model of the theory L, the set
{〈n, x〉 |P (n, x)} is a sequence (i.e., for every
n, there exists one and only one x for which
P (x, n)), then this sequence will be called L-
definable.

Our objective is to be able to make mathematical
statements about L-definable sets. Therefore, in
addition to the theory L, we must have a stronger
theoryM in which the class of all L-definable sets
is a set – and it is a countable set.

Denotation. For every formula F from the the-
ory L, we denote its Gödel number by bF c.

Comment. A Gödel number of a formula is an in-
teger that uniquely determines this formula. For
example, we can define a Gödel number by de-
scribing what this formula will look like in a com-
puter. Specifically, we write this formula in LATEX,
interpret every LATEX symbol as its ASCII code
(as computers do), add 1 at the beginning of the
resulting sequence of 0s and 1s, and interpret the
resulting binary sequence as an integer in binary
code.

Definition 3. We say that a theory M is
stronger than L if it contains all formulas, all
axioms, and all deduction rules from L, and also
contains a special predicate def(n, x) such that for
every formula P (x) from L with one free variable,
the formula

∀y (def(bP (x)c, y) ↔ P (y))

is provable in M.

The existence of a stronger theory can be easily
proven:

Proposition 1. For L=ZF, there exists a
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stronger theory M.

Proof. We will prove that, as an example of such
a stronger theory, we can simply take the theory L
plus all countably many equivalence formulas as
described in Definition 3 (formulas corresponding
to all possible formulas P (x) with one free vari-
able). This theory clearly contains L and all the
desired equivalence formulas, so all we need to
prove is that the resulting theory M is consistent
(provided that L is consistent, of course).

Due to compactness principle, it is sufficient to
prove that for an arbitrary finite set of formulas
P1(x), . . . , Pm(x), the theory L is consistent with
the above reflexion-principle-type formulas corre-
sponding to these properties P1(x), . . . , Pm(x).

This auxiliary consistency follows from the fact
that for such a finite set, we can take

def(n, y) ↔ (n = bP1(x)c&P1(y)) ∨ . . .∨
(n = bPm(x)c&Pm(y)).

This formula is definable in L and satisfies all m
equivalence properties. The proposition is proven.

Important comments. 1) In the following text, we
will assume that a theoryM that is stronger than
L has been fixed; proofs will mean proofs in this
selected theory M.

2) An important feature of a stronger theory M
is that the notion of an L-definable set can be
expressed within the theory M: a set S is L-
definable if and only if

∃n ∈ IN∀y(def(n, y) ↔ y ∈ S).

In the following text, when we talk about defin-
ability, we will mean this property expressed in
the theory M. So, all the statements involving
definability (e.g., the Definition 4 below) become
statements from the theory M itself, not state-
ments from metalanguage.

We have already mentioned that a sequence of
sets {An} is, from the mathematical viewpoint, a
mapping from the set of natural numbers to set of
sets, i.e., a set of all the pairs 〈n,An〉. Thus, the
notion of an L-definable sequence of sets can be
also described by a formula in the language M.
So, the following definition is valid in M:

Definition 4. Let U be a universal set.

A non-empty set T ⊆ U is called a set of
typical (not abnormal) elements if for every

L-definable sequence of sets An for which
An ⊇ An+1 for all n and

⋂
n

An = ∅, there

exists an integer N for which AN ∩ T = ∅.

Once a set T of typical elements is fixed,
then:

• If u ∈ T , we will say that u is typical,
or not abnormal.

• For every property P , we say that
“normally, for all u, P (u)” if P (u) is
true for all u ∈ T .

Example. In the above coin example, U =
{H, T}IN, and An is the set of all the sequences
that start with n heads and have at least one tail.
The sequence {An} is decreasing and L-definable,
and its intersection is empty. Therefore, for every
set T of typical elements of U , there exists an in-
teger N for which AN ∩T = ∅. This means that if
a sequence s ∈ T is not abnormal and starts with
N heads, it must consist of heads only. In phys-
ical terms, it means a random sequence (i.e., a
sequence that contains both heads and tails) can-
not start with N heads – which is exactly what
we wanted to formalize.

Physical comment. To formalize the physicist in-
tuition, we must assume that in addition to the
universal set and to the physical equation, we also
have a set T of typical elements.

For each universal set U , there are several differ-
ent sets T with the above property. For example,
if the set T has this property, then, as one can
check, for every u 6∈ T , the union T ∪{u} also has
the same property. Therefore, there cannot be a
“maximal” set of typical elements.

So, a proper mathematical description of a physi-
cal theory should consist not only of the corre-
sponding equations but of a pair consisting of
these equations and a set T .

8. Relation to Kolmogorov
Complexity

Kolmogorov complexity enables us to define the
notion of a random sequence, e.g., as a sequence
s for which there exists a constant c > 0 for
which, for every n, the (appropriate version of)
Kolmogorov complexity K(s|n) of its n-element
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subsequence s|n exceeds n− c. Crudely speaking,
c is the amount of information that a random se-
quence has.

Random sequences in this sense do not satisfy
the above definition, and are not in perfect ac-
cordance with common sense – because, e.g., a
sequence that starts with 106 zeros and then ends
in a truly random sequence is still random (in the
above sense). Intuitively, for “truly random” se-
quences, c should be small, while for the above
counter-example, c ≈ 106. If we restrict ourselves
to random sequences with fixed c, we satisfy the
Definition 4.

Another natural approach is to formalize Kol-
mogorov’s idea that we described earlier: namely,
to claim that an event E is impossible if its prob-
ability p(E) is smaller than the threshold t(E)
depending on the complexity of E’s description:
t(E) = f(K(E)), where K(E) is the complexity
(e.g., a version of Kolmogorov complexity) of the
description of the event E, and f(x) is an appro-
priate function.

There are many ways to define Kolmogorov com-
plexity and random sequences [12]; it is therefore
desirable to aim for results that are true in as gen-
eral case as possible. In view of this desire, in the
following text, we will not use any specific version
of these definitions; instead, we will assume that
Definition 4 holds.

The general results that we will prove under this
definition can be also applied to different bounded
versions of Kolmogorov complexity-related ran-
domness – as long as these versions satisfy our
Definition 4.

It is possible to prove that abnormal elements do
exist [4, 6, 7]; moreover, we can select T for which
abnormal elements are as rare as we want: for ev-
ery probability distribution p on the set U and for
every ε, there exists a set T for which the prob-
ability p(x 6∈ T ) of an element to be abnormal is
≤ ε:

Proposition 2. Let U be a set, and let µ be a
probability measure on the set U in which all L-
definable sets are µ-measurable. Then, for every
ε > 0, there exists a set T of typical elements that
is µ-measurable and for which µ(T ) > 1− ε.

Comment. For example, all arithmetic subsets of
the interval [0, 1] are Lebesgue-measurable, so for
an arithmetic theory L and for the Lebesgue mea-
sure µ, every definable set is measurable. It is

worth mentioning that some other set theories
have non-measurable definable subsets of the set
[0, 1].

Proof. By definition of L-definability in M, if a
sequence of sets a = {An} is L-definable, then
there exists an integer n0 for which

y ∈ {〈m,Am〉}m ↔ def(n0, y).

Thus, there are at most countably many L-
definable decreasing sequences a = {An} for
which

⋂
n

An = ∅. Therefore, we can order all such

sequences into a sequence of sequences: a(1) =
{A(1)

n }, a(2) = {A(2)
n }, . . .

For each k, since the sequence {A(k)
n }n is L-

definable, every set from this sequence is also
L-definable. Thus, for every k and n, the corre-
sponding set A

(k)
n is L-definable. In the propo-

sition, we assumed that every L-definable set is
µ-measurable. Thus, for every k and n, the set
A

(k)
n is µ-measurable.

For each of the sequences a(k), since
⋂
n

A
(k)
n = ∅,

we have µ(A(k)
n ) → 0 as n → ∞. Hence, there

exists an Nk for which µ(A(k)
Nk

) < ε/2k.

Let us show that as T , we can take the comple-
ment U \ A to the union A of all the sets A

(k)
Nk

.
Indeed, by our choice of T , for every L-definable
decreasing sequence a(k) = {A(k)

n }, there ex-
ists an integer N , namely N = Nk, for which
T ∩A

(k)
N = ∅.

To complete the proof, we must show that the set
T is µ-measurable and µ(T ) > 1− ε.

Let us first prove that the set T is µ-measurable.
Indeed, for each k, the set A

(k)
Nk

is µ-measurable.
Therefore, by the properties of measurable sets,
the union A =

⋃
k

A
(k)
Nk

is also µ-measurable.

Hence, the complement T to this union is also
µ-measurable.

Let is now prove that µ(T ) > 1 − ε. Indeed,
from µ(A(k)

Nk
) < ε/2k, we conclude that µ(A) =

µ

(⋃
k

A
(k)
Nk

)
≤ ∑

k

µ(A(k)
Nk

) <
∑
k

ε/2k = ε, and

therefore, µ(T ) = µ(U \ A) = 1 − µ(A) > 1 − ε.
The proposition is proven.
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9. Application: Restriction
to “Not Abnormal” Solu-
tions Leads to Regulariza-
tion of Ill-Posed Problems

As the first potential application of the notion of
“typical” to physics, we will show that restriction
to “typical” (“not abnormal”) solutions leads to
regularization of ill-posed problems. In order to
describe this idea, let us first briefly describe what
are ill-posted problems. Readers who are already
familiar with this notion can skip this description.

In many applied problems (geophysics, medicine,
astronomy, etc.), we cannot directly measure the
state s of the system in which we are interest-
ed; to determine this state, we therefore measure
some related characteristics y, and then use the
measurement results ỹ to reconstruct the desired
state s. The problem of reconstructing the state
s from the measurement results ỹ is called the
inverse problem. Let us give two examples:

We are often interested in the dynamics of
a system, e.g., in measuring the value x(t)
of the desired physical quantity x in dif-
ferent moments of time. If we cannot mea-
sure x(t) directly, we measure some relat-
ed quantity y(t), and then try to recon-
struct the desired values x(t). For exam-
ple, in case the dependency between x(t)
and y(t) is linear, we arrive at a problem
of reconstructing x(t) from the equation
y(t) =

∫
k(t, s)x(s) ds + n(t), where k(t, s)

is a (known) function, and n(t) denote the
(unknown) errors of measuring y(t).

Another example of inverse problems is im-
age reconstruction from a noisy image.

Usually, we know how the actual value y of the
measured quantities depends on the state s of the
system, i.e., we know a mapping f : S → Y from
the set S of all possible states to the set Y of
all possible values of y. Since a measurement is
never 100 % accurate, the actual measurement re-
sults ỹ are (slightly) different from the actual val-
ue y = f(s) of the measured quantity y.

Of course, to be able to reconstruct s from y, we
must make sure that we are making sufficiently
many measurements, so that from f(s), we will
be able to reconstruct s uniquely. In mathemati-
cal terms, we need the function f to be reversible

(1-1). If this function is reversible, then in the
ideal case, when the measurements are absolute-
ly accurate (i.e., when ỹ = y), we will be able to
reconstruct the state s uniquely, as s = f−1(y).

Due to the inevitable measurement inaccuracy,
the measured value ỹ is, in general, different from
y = f(s). Therefore, if we simply apply the in-
verse function f−1 to the measurement result ỹ,
we get s̃ = f−1(ỹ) 6= s = f−1(y). If the mea-
surement error is large, i.e., if ỹ is very distant
from y, then, of course, the reconstructed state s̃
may also be very different from the actual state
s. However, it seems natural to expect that as the
measurements become more and more accurate,
i.e., as ỹ → y, the reconstructed state s̃ should al-
so get closer and closer to the actual one: s̃ → s.

To describe this expectation in precise terms, we
need to find the metrics dS and dY on the sets
S and Y which characterize the closeness of the
states or, correspondingly, of the measurement
results; in terms of these metrics, the fact that
ỹ gets “closer and closer to y” can be written
as dY (ỹ, y) → 0, and the condition that s̃ → s
means dS(s̃, s) → 0. For example, to describe
how close the two signals x(t) and x′(t) are,
we may say that they are ε-close (for some re-
al number ε > 0), if for every moment of time t,
the difference between the two signals does not
exceed ε, i.e., |x(t) − x′(t)| ≤ ε. This descrip-
tion can be reformulated as dS(x, x′) ≤ ε, where
dS(x, x′) = sup

t
|x(t)− x′(t)|.

In metric terms, we would like ỹ → y to imply
f−1(ỹ) → f−1(y), i.e., in other words, we would
like the inverse function f−1 to be continuous.
Alas, in many applied problems, the inverse map-
ping f−1 is not continuous. As a result, arbitrar-
ily small measurement errors can cause arbitrari-
ly large differences between the actual and recon-
structed states. Such problems are called ill-posed
(see, e.g., [14]).

For example, since all the measurement devices
are inertial and thus suppress high frequencies,
the functions x(t) and x(t)+ sin(ω · t), where ω is
sufficiently big, lead to almost similar measured
values ỹ(t). Thus, one and the same measurement
result ỹ(t) can correspond to two different states:
x(t) and x(t) + sin(ω · t).

The fact that a problem is ill-posed means the
following: if the only information about the de-
sired state s comes from the measurements, then
we cannot reconstruct the state with any accu-
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racy. Hence, to be able to reconstruct the state
accurately, we need to have an additional (prior)
knowledge about the state.

In some cases, this knowledge consists of knowing
which states from the set S are actually possible,
and which are not. For example, we may know
that not all signals x(t) (0 ≤ t ≤ T ) are possible
but only smooth signals for which the signal itself
is bounded by some value M (i.e., |x(t)| ≤ M for
all t ∈ [0, T ]) and the rate with which the sig-
nal changes is bounded by some bound ∆ (i.e.,
|ẋ(t)| ≤ ∆ for all t ∈ [0, T ]). For this type of
knowledge, we, in effect, restrict possible states to
a proper subset K ⊆ S of the original set S. Then,
instead of the original function f : S → Y , we on-
ly have to consider its restriction f|K : K → Y to
the set. If this restriction has a continuous inverse,
then the problem is solved – in the sense that the
more accurate the measurements, the closer the
reconstructed state to the original one.

It is known that if the set K if compact, then for
any 1-1 continuous function g : K → Y its inverse
is also continuous. (It is also known that if a set
K is not compact, then for some 1-1 continuous
function g : K → Y , its inverse is not contin-
uous.) So, one way to guarantee the continuity
of the inverse function f−1

|K is to require that the
set K is compact. For example, the above prior
knowledge about the bounds M and ∆ character-
izes a set K that is compact in the above metric
dS(x, x′) = sup |x(t)− x′(t)|.

We will show that if we restrict ourselves to states
S that are typical (= not abnormal), then the re-
striction of f−1 will be continuous, and the prob-
lem will become well-posed.

Definition 5. An L-definable metric space (X, d)
is called L-definably separable if there exists an
everywhere dense sequence {xn} ⊆ X that is L-
definable.

Comment. As an example, we can consider the
Euclidean space IRn in which points with rational
coordinates form an L-definable everywhere se-
quence. Other examples are standard spaces from
functional analysis, such as the space C[a, b] of all
continuous functions f : [a, b] → IR with the met-
ric d(f, g) = sup

x∈[a,b]

|f(x) − g(x)|; in this set, we

can consider all finite sets of rational-valued pairs
(xi, yi) for which a = x1 < x2 < . . . < xn = b,
and build continuous functions by linear interpo-
lation. The resulting sequence of piecewise-linear
function is an L-definable everywhere dense se-

quence in C([a, b]).

Proposition 3. Let S and Y be L-definably sep-
arable L-definable metric spaces, let T be a set of
typical elements of S, and let f : S → Y be a con-
tinuous 1-1 function. Then, the inverse mapping
f−1 : Y → S is continuous for every y ∈ f(T ).

In other words, if we know that we have ob-
served a typical (not abnormal) state s (i.e., that
y = f(s) for some s ∈ T ), then the reconstruction
problem becomes well-posed. So, if the observa-
tions are accurate enough, we get as small guar-
anteed intervals for the reconstructed state s as
we want.

Proof. It is known that if a set K is compact,
then for any 1-1 continuous function K → Y , its
inverse is also continuous. Thus, to prove our re-
sult, we will show that the closure T of the set T
is compact.

A set K in a metric space S is compact if and only
if it is closed, and for every positive real number
ε > 0, it has a finite ε-net, i.e., a finite set K(ε)
with the property that every s ∈ K, there exists
an element s(ε) ∈ K(ε) that is ε-close to s.

The closure K = T is clearly closed, so, to prove
that this closure is compact, it is sufficient to
prove that it has a finite ε-net for all ε > 0. For
that, it is sufficient to prove that for every ε > 0,
there exists a finite ε-net for the set T .

If a set T has a ε-net T (ε), and ε′ > ε, then, as
one can easily see, this same set T (ε) is also a ε′-
net for T . Therefore, it is sufficient to show that
finite ε-nets for T exist for ε = 2−k, k = 0, 1, 2, . . .

Let us fix ε = 2−k. Since the set S is L-definably
separable, there exists an L-definable sequence
x1, . . . , xi, . . . which is everywhere dense in S. As
An, we will now take the complement −Un to
the union Un of n closed balls Bε(x1), . . . , Bε(xn)
of radius ε with centers in x1, . . . , xn. Since the
sequences {xi} is L-definable, this description de-
fines the sequence {An} in L.

Indeed, by definition of L-definability, the fact
that a sequence {xi} is L-definable means
that there exists a formula P (n, x) for which
{xi} = {〈i, x〉 |P (i, x)}. Then, {An} =
{〈n,A〉 |Q(n, A)}, where Q(n,A) denotes the fol-
lowing formula:

∃{xi} ((∀i ∈ IN (P (i, xi)))&



Inteligencia Artificial Vol. XX, NoXX, 2008 11

A = −
n⋃

i=1

{y | d(y, xi) ≤ ε}).

Thus, the sequence {An} is L-definable.

Clearly, An ⊇ An+1. Since xi is an everywhere
dense sequence, for every s ∈ S, there exists an
integer n0 for which s ∈ Bε(xn0) and for which,
therefore, s ∈ Un0 and x 6∈ An0 = S \Un0 . Hence,
the intersection of all the sets An is empty.

Therefore, according to the definition of a set of
typical elements (Definition 4), there exists an in-
teger N for which T ∩ AN = ∅. This means that
T ⊆ UN . This, in its turn, means that the ele-
ments x1, . . . , xN form an ε-net for T . So, the set
T has a finite ε-net for ε = 2−k. The proposition
is proven.

Physical comment. To actually use this result, we
need an expert who will tell us what is abnormal,
and whose ideas of what is abnormal satisfy the
(natural) conditions described in Definition 4.

10. Application: Towards
Justification of Physical
Induction

Physicists often claim that if sufficiently many ex-
periments confirm a theory, then this theory is
correct. The ability to confirm a theory based on
finitely many observations is called physical in-
duction; see, e.g., [2].

Physical induction is difficult to formalize, be-
cause from the purely mathematical viewpoint,
the very fact that some event has occurred many
times does not mean that in the next moment of
time, this event should necessarily occur. In this
section, we will show that our assumption – that
all the objects are not abnormal – can lead to a
justification for physical induction.

In order to provide such a justification, we will
start with an informal explanation of what physi-
cists mean by a physical theory, and then show,
step by step, how this explanation can be trans-
formed into a formal definition of a physical the-
ory.

A physical theory can be described in different
terms: in terms of differential equations, in terms
of equalities (like energy conservation) or inequal-
ities (like the second law of thermodynamics, ac-

cording to which the overall entropy cannot de-
crease).

From the viewpoint of an experimenter, a physi-
cal theory can be viewed as a statement about the
results of physical experiments. Some of these ex-
periments are consistent with the physical theory,
some are not.

For example, a mechanical theory that described
how particles move can be tested by observing
the locations of different particles at different mo-
ments of time. For such a theory, the result ri

of i-th experiment is the coordinate of the corre-
sponding particle measured with the correspond-
ing accuracy (e.g., 1.2 or 2.35). In more precise
terms, the result ri of i-th experiment is a point
from a finite scale of the ruler or some other mea-
suring instrument (or, if the instrument is binary,
the sequence of bits that resulted from the corre-
sponding measurement).

Let R be the set of possible results of all physi-
cally used physical instruments. So, we arrive at
the following definition:

Definition 6. Let an L-definable set R be giv-
en. Its elements will be called possible results of
experiments.

Informal motivations (continued). Let us con-
tinue with the informal discussion of what is a
physical theory. Intuitively, some sequences r =
(r1, . . . , rn, . . .) of measurement results are con-
sistent with the theory, some are not.

For example, special relativity, via its require-
ment that velocities cannot exceed the speed of
light, imposes a condition that the positions ri

and ri+1 of the same particle measured at sequen-
tial moments of time ti and ti+1 cannot differ by
more than c · |ti+1 − ti|.

As we have mentioned, it is reasonable to identify
a physical theory with the set of all results {ri} of
experiments that are consistent with this theory.

So, we arrive at the following definition:

Definition 7. Let an L-definable set R of possi-
ble results of experiments be given. By S = RIN,
we will denote the set of all possible sequences
r1, rn, . . ., where ri ∈ R.

By a physical theory, we mean a subset P
of the set of all infinite sequences S.

If r ∈ P, we say that a sequence r satisfies
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the theory P, or, that for this sequence r,
the theory P is correct.

Informal motivations (continued). In real life, we
only have finitely many results r1, . . . , rn; so, we
can only tell whether the theory is consistent with
these results or not, i.e., whether there exists an
infinite sequence r1, r2, . . . that starts with the
given results that satisfies the theory:

Definition 8. We say that a finite sequence
(r1, . . . , rn) is consistent with the theory P if
there exists an infinite sequence r ∈ P that starts
with r1, . . . , rn and that satisfies the theory. In
this case, we will also say that the experiments
r1, . . . , rn confirm the theory.

Informal motivations (continued). It is natural to
require that the theory be physically meaningful
in the following sense: if all experiments confirm
the theory, then this theory should be correct.

An example of a theory that is not physically
meaningful in this sense is easy to give: assume
that a theory describes the results of tossing a
coin, and it predicts that at least once, there
should be a tail. In other words, this theory con-
sists of all sequences that contain at least one tail.
Let us assume that actually, the coin is so biased
that we always have heads. Then, the correspond-
ing infinite sequence of the results of tossing this
coin consists of all heads and therefore, does not
satisfy the given theory.

However, for every n, the sequence of the first n
results (i.e., the sequence of n heads) is perfectly
consistent with the theory, because P contains a
sequence H. . .HT. . . , in which the first n results
are H.

Let us describe this idea in formal terms.

Definition 9. We say that a theory P is physi-
cally meaningful if the following is true for every
sequence r ∈ S:

If for every n, the results of first n exper-
iments from r confirm the theory P, then,
the theory P is correct for r.

Informal motivations (continued). A physical the-
ory is usually described in a “constructive” way.
Namely, for a theory to be effective, we must
be able to effectively test whether the theory is
consistent with the given observations. In other
words, we must have a physically implementable

algorithm that, given the results of n observa-
tions, checks whether these results are consistent
with the given theory.

In other words, for every r1, . . . , rn, we can
effectively check the property that the results
r1, . . . , rn are consistent with this theory. This
means, in particular, that this property is defin-
able in the corresponding theory L. Thus, it is
reasonable to require that the set P should also
be L-definable.

Definition 10. We say that a theory P is L-
definable if the set P is L-definable.

Now, we are ready for the main result of this
section. In this case, the universal set consists of
all possible infinite sequences of experimental re-
sults, i.e., U = S. Let T ⊆ S be the set of typical
(not abnormal) sequences.

Proposition 4. Let R be a set of possible re-
sults of experiments, let S be the corresponding
set of infinite sequences, let T ⊆ S be a set
of typical elements of S, and let P ⊆ S be a
physically meaningful L-definable theory. Then,
there exists an integer N such that if a sequence
r = {ri} ∈ T is not abnormal and its first N ex-
periments r1, . . . , rN confirm the theory P, then
this theory P is correct on r.

Proof. For every natural number n, let us de-
fine An as the set of all the sequences r =
(r1, r2, . . . , rn, . . .) ∈ S for which the first n ex-
periments r1, . . . , rn confirm P (in the sense of
Definition 8) but P is not correct for r (in the
sense of Definition 7).

Since the theory P is L-definable, the above de-
scription of An is a definition within L; thus, the
above sequence {An} is also L-definable.

It is easy to check that An ⊇ An+1. Let us show
that the intersection of all the sets An is emp-
ty. We will prove this emptiness by reduction to
a contradiction. Let r be a common element of
all the sets An. By definition of the set An, this
means that for every n, the first n experiments
r1, . . . , rn confirm P, and P is not correct for r.

We assumed that the theory P is physically mean-
ingful. By Definition 9 of physical meaningfulness,
from the fact that for every n, the first n experi-
ments confirm the theory P, we conclude that the
theory P is correct for r – a contradiction to the
fact that P is not correct for r. This contradiction
shows that the intersection of all the sets An is



Inteligencia Artificial Vol. XX, NoXX, 2008 13

indeed empty.

We can now use the definition of a set T of typ-
ical elements (Definition 4), and conclude that
there exists an integer N for which AN ∩ T = ∅
– i.e., for which every element r ∈ T does not
belong to AN . By definition of the set AN , this
means that once for r = (r1, . . . , rN , . . .) ∈ T , the
results r1, . . . , rN of the first N experiments are
consistent with the theory P, it is not possible
that P is not correct on r. Thus, P is correct on
r. So, if a sequence r = {ri} ∈ T is not abnormal
and its first N experiments r1, . . . , rN confirm the
theory P, then this theory P is correct on r. The
proposition is proven.

This result shows that we can confirm the theory
based on finitely many observations.

Of course, this “finitely many” may be so large
a number that from the viewpoint of working
physics, this result will be useless. Another rea-
son why this result is not yet physically useful is
that the set T is not L-definable and therefore,
we do not know a constructive method of finding
this constant N .

However, the very fact that, at least on a philo-
sophical level, we have succeeded in making phys-
ical induction into a provable theorem, makes us
hope that further work in this direction may lead
to physically useful results.
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