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Summary. Due to measurement uncertainty, often, instead of the actual values
xi of the measured quantities, we only know the intervals xi = [x̃i − ∆i, x̃i + ∆i],
where x̃i is the measured value and ∆i is the upper bound on the measurement
error (provided, e.g., by the manufacturer of the measuring instrument). In such
situations, instead of the exact value of the sample statistics such as covariance
Cx,y, we can only have an interval Cx,y of possible values of this statistic. It is
known that in general, computing such an interval Cx,y for Cx,y is an NP-hard
problem. In this paper, we describe an algorithm that computes this range Cx,y

for the case when the measurements are accurate enough – so that the intervals
corresponding to different measurements do not intersect much.

1 Introduction: Data Processing – From Computing to
Probabilities to Intervals

Why data processing? In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or impossible to measure directly.
Examples of such quantities are the distance to a star and the amount of oil in
a given well. Since we cannot measure y directly, a natural idea is to measure
y indirectly. Specifically, we find some easier-to-measure quantities x1, . . . , xn

which are related to y by a known relation y = f(x1, . . . , xn). This relation
may be a simple functional transformation, or complex algorithm (e.g., for
the amount of oil, numerical solution to an inverse problem).

It is worth mentioning that in the vast majority of these cases, the function
f(x1, . . . , xn) that describes the dependence between physical quantities is
continuous.

Then, to estimate y, we first measure the values of the quantities x1, . . . , xn,
and then we use the results x̃1, . . . , x̃n of these measurements to to compute
an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n).

For example, to find the resistance R, we measure current I and voltage V ,
and then use the known relation R = V/I to estimate resistance as R̃ = Ṽ /Ĩ.



2 Jan B. Beck, Vladik Kreinovich, and Berlin Wu

Computing an estimate for y based on the results of direct measurements
is called data processing; data processing is the main reason why computers
were invented in the first place, and data processing is still one of the main
uses of computers as number crunching devices.
Comment. In this paper, for simplicity, we consider the case when the relation
between xi and y is known exactly; in some practical situations, we only known
an approximate relation between xi and y.
Why interval computations? From computing to probabilities to intervals.
Measurement are never 100% accurate, so in reality, the actual value xi of
i-th measured quantity can differ from the measurement result x̃i. Because of
these measurement errors ∆xi

def= x̃i−xi, the result ỹ = f(x̃1, . . . , x̃n) of data
processing is, in general, different from the actual value y = f(x1, . . . , xn) of
the desired quantity y [20].

It is desirable to describe the error ∆y
def= ỹ − y of the result of data

processing. To do that, we must have some information about the errors of
direct measurements.

What do we know about the errors ∆xi of direct measurements? First,
the manufacturer of the measuring instrument must supply us with an up-
per bound ∆i on the measurement error. If no such upper bound is supplied,
this means that no accuracy is guaranteed, and the corresponding “measuring
instrument” is practically useless. In this case, once we performed a measure-
ment and got a measurement result x̃i, we know that the actual (unknown)
value xi of the measured quantity belongs to the interval xi = [xi, xi], where
xi = x̃i −∆i and xi = x̃i + ∆i.

In many practical situations, we not only know the interval [−∆i,∆i] of
possible values of the measurement error; we also know the probability of
different values ∆xi within this interval. This knowledge underlies the tradi-
tional engineering approach to estimating the error of indirect measurement,
in which we assume that we know the probability distributions for measure-
ment errors ∆xi.

In practice, we can determine the desired probabilities of different val-
ues of ∆xi by comparing the results of measuring with this instrument with
the results of measuring the same quantity by a standard (much more accu-
rate) measuring instrument. Since the standard measuring instrument is much
more accurate than the one use, the difference between these two measure-
ment results is practically equal to the measurement error; thus, the empirical
distribution of this difference is close to the desired probability distribution
for measurement error. There are two cases, however, when this determination
is not done:

• First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When a Hubble telescope detects the light from a distant
galaxy, there is no “standard” (much more accurate) telescope floating
nearby that we can use to calibrate the Hubble: the Hubble telescope is
the best we have.
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• The second case is the case of measurements on the shop floor. In this
case, in principle, every sensor can be thoroughly calibrated, but sensor
calibration is so costly – usually costing ten times more than the sensor
itself – that manufacturers rarely do it.

In both cases, we have no information about the probabilities of ∆xi; the only
information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement
result x̃i, the only information that we have about the actual value xi of the
measured quantity is that it belongs to the interval xi = [x̃i − ∆i, x̃i + ∆i].
In such situations, the only information that we have about the (unknown)
actual value of y = f(x1, . . . , xn) is that y belongs to the range y = [y, y] of
the function f over the box x1 × . . .× xn:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

For continuous functions f(x1, . . . , xn), this range is an interval. The process
of computing this interval range based on the input intervals xi is called
interval computations; see, e.g., [4, 5, 6, 13].

Interval computations techniques: brief reminder. Historically the first method
for computing the enclosure for the range is the method which is sometimes
called “straightforward” interval computations. This method is based on the
fact that inside the computer, every algorithm consists of elementary opera-
tions (arithmetic operations, min, max, etc.). For each elementary operation
f(a, b), if we know the intervals a and b for a and b, we can compute the
exact range f(a,b). The corresponding formulas form the so-called interval
arithmetic. For example,

[a, a] + [b, b] = [a + b, a + b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b), max(a · b, a · b, a · b, a · b)].
In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result,
we get an enclosure Y ⊇ y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples
below), the enclosure has excess width.

There exist more sophisticated techniques for producing a narrower en-
closure, e.g., a centered form method. However, for each of these techniques,
there are cases when we get an excess width. Reason: as shown in [9, 21],
the problem of computing the exact range is known to be NP-hard even for
polynomial functions f(x1, . . . , xn) (actually, even for quadratic functions f).

Comment. NP-hard means, crudely speaking, that no feasible algorithm
can compute the exact range of f(x1, . . . , xn) for all possible polynomials
f(x1, . . . , xn) and for all possible intervals x1, . . . ,xn.
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What we are planning to do? In this paper, we analyze a specific interval
computations problem – when we use traditional statistical data processing
algorithms f(x1, . . . , xn) to process the results of direct measurements.

2 Error Estimation for Traditional Statistical Data
Processing Algorithms under Interval Uncertainty:
Known Results

Formulation of the problem. When we have n results x1, . . . , xn of repeated
measurement of the same quantity (at different points, or at different moments
of time), traditional statistical approach usually starts with computing their
sample average Ex = (x1 + . . . + xn)/n and their (sample) variance

Vx =
(x1 − Ex)2 + . . . + (xn − Ex)2

n
(1)

(or, equivalently, the sample standard deviation σ =
√

V ). If, during each
measurement i, we measure the values xi and yi of two different quantities x
and y, then we also compute their (sample) covariance

Cx,y =
(x1 − Ex) · (yi − Ey) + . . . + (xn − Ex) · (yn − Ey)

n
; (2)

see, e.g., [20].
As we have mentioned, in real life, we often do not know the exact values

of the quantities xi and yi, we only know the intervals xi of possible values of
xi and the intervals yi of possible values of yi. In such situations, for different
possible values xi ∈ xi and yi ∈ yi, we get different values of Ex, Ey, Vx, and
Cx,y. The question is: what are the intervals Ex, Vx, and Cx,y of possible
values of Ex, Vx, and Cx,y?

The practical importance of this question was emphasized, e.g., in [17, 18]
on the example of processing geophysical data.
Comment: the problem reformulated in terms of set-valued random variables.
Traditional statistical data processing means that we assume that the mea-
sured values xi and yi are samples of the random variable, and based on this
sample, we are estimating the actual average, variance, and covariance.

Similarly, in case of interval uncertainty, we can say that the intervals xi

and yi coming from measurements are samples of the interval-valued random
variable, and we are interested in estimating the actual (properly defined)
average, variance, and covariance of this interval-valued random variable. For
more information on interval-valued (and, more generally, set-valued) random
variables see, e.g., [3, 12] and references therein.
Bounds on E. For Ex, the straightforward interval computations leads to the
exact range:

Ex =
x1 + . . . + xn

n
, i.e., Ex =

x1 + . . . + xn

n
, and Ex =

x1 + . . . + xn

n
.
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For variance, the problem is difficult. For Vx, all known algorithms lead to
an excess width. Specifically, there exist feasible algorithms for computing V x

(see, e.g., [2, 22]), but in general, the problem of computing V x is NP-hard
[2].

It is also known that in some practically important cases, feasible algo-
rithms for computing V x are possible. One such practically useful case is
when the measurement accuracy is good enough so that we can tell that the
different measured values x̃i are indeed different – e.g., the corresponding in-
tervals xi do not intersect. In this case, there exists a quadratic-time algorithm
for computing V x; see, e.g., [2, 8, 10, 11].

What about covariance? The only thing that we know is that in general, com-
puting covariance Cx,y is NP-hard. A natural question is: can we find rea-
sonable cases for which it is possible to compute the interval covariance in
feasible time?

What we are planning to do. In this paper, we show that (similarly to the
case of variance), it is possible to compute the interval covariance when the
measurement are accurate enough to enable us to distinguish between different
measurement results (x̃i, ỹi).

3 Main Result

Theorem 1. There exists a polynomial-time algorithm that, given a list of n
pairwise disjoint boxes xi × yi (1 ≤ i ≤ n) (i.e., in which every two boxes
have an empty intersection), produces the exact range Cx,y for the covariance
Cx,y.

Theorem 2. For every integer K > 1, there exists a polynomial-time algo-
rithm that, given a list of n boxes xi × yi (1 ≤ i ≤ n) in which > K boxes
always have an empty intersection, produces the exact range Cx,y for the co-
variance Cx,y.

Proof. Since Cx,y is linear in xi, we have C−x,y = −Cx,y hence C−x,y =
−Cx,y, so C−x,y = −Cx,y. Because of this relation, it is sufficient to provide
an algorithm for computing Cx,y: we will then compute Cx,y as −C−x,y.

The function Cx,y is linear in each of its variables xi and yi. In general,
a linear function f(x) attains its minimum on an interval [x, x] at one of its
endpoints: at x if f is non-decreasing (∂f/∂x ≥ 0) and at x if f is non-
increasing (∂f/∂x ≤ 0). For Cx,y, we have ∂Cx,y/∂xi = (1/n) ·yi− (1/n) ·Ey,
so ∂Cx,y/∂xi ≥ 0 if and only if yi ≥ Ey. Thus, for each i, the values xm

i and
ym

i at which Cx,y attains its minimum satisfy the following four properties:

1. if xm
i = xi, then ym

i ≥ Ey; 2. if xm
i = xi, then ym

i ≤ Ey;

3. if ym
i = y

i
, then xm

i ≥ Ex; 4. if ym
i = yi, then xm

i ≤ Ex.



6 Jan B. Beck, Vladik Kreinovich, and Berlin Wu

Let us show that if we know the vector E
def= (Ex, Ey), and this vector is

outside the i-th box bi
def= xi×yi, then we can uniquely determine the values

xm
i and ym

i .
Indeed, the fact that E 6∈ bi means that either Ex 6∈ xi or Ey 6∈ yi.

Without losing generality, let us assume that Ex 6∈ xi, i.e., that either Ex < xi

or Ex > xi.
If Ex < xi, then, since xi ≤ xm

i , we have Ex < xm
i . Hence, according to

Property 4, we cannot have ym
i = yi. Since the minimum is always attained

at one of the endpoints, we thus have ym
i = y

i
. Now that we know the value

of ym
i , we can use Properties 1 and 2:

if y
i
≥ Ey, then xm

i = xi; if y
i
≤ Ey, then xm

i = xi.

Similarly, if Ex > xi, then ym
i = yi, and:

if yi ≥ Ey, then xm
i = xi; if yi ≤ Ey, then xm

i = xi.

So, to compute Cx,y, we sort all 2n values xi, xi into a sequence
x(1) ≤ x(2) ≤ . . . ≤ x(2n), and we sort the 2n values y

i
, yi into a sequence

y(1) ≤ y(2) ≤ . . . ≤ y(2n). We thus get 2n× 2n “zones”

zk,l
def= [x(k), x(k+1)]× [y(l), x(l+1)].

We know that the average E of the actual minimum values is attained
in one of these zones. If we assume that E ∈ zk,l, i.e., in particular, that
Ex ∈ [x(k), x(k+1)], then the condition xi ≥ Ex is guaranteed to be satisfied
if xi ≥ x(k+1). Thus, following the above arguments, we can find the values
(xm

i , ym
i ) for all the boxes bi that do not contain this zone:

yi ≤ y(l) y
i
≤ y(l) ≤ y(l+1) ≤ yi y(l+1) ≤ y

i

xi ≤ x(k) (xi, yi) (xi, yi) (xi, yi)
xi ≤ x(k) ≤ x(k+1) ≤ xi (xi, yi

) ? (xi, yi)
x(k+1) ≤ xi (xi, yi

) (xi, yi
) (xi, yi

)

As we can see, for each of O(n2) zones zk,l, the only case when we do not
know the corresponding values (xm

i , ym
i ) is when bi contains this zone. All

boxes bi with this property have a common intersection zk,l, thus, there can
be no more than K of them. For each of these ≤ K boxes bi, we try all 4
possible combinations of endpoints as the corresponding (xm

i , ym
i ).

Thus, for each of O(n2) zones, we must try ≤ 4K possible sequences of
pairs (xm

i , ym
i ). We compute each of these n-element sequences element-by-

element, so computing each sequence requires O(n) computational steps.
For each of these sequences, we check whether the averages Ex and Ey

are indeed within this zone, and if they are, we compute the correlation. The
smallest of the resulting correlations is the desired value Cx,y.

For each of O(n2) zones, we need O(n) steps, to the total of O(n2)×O(n) =
O(n3); computing the smallest of O(n2) values requires O(n2) more steps.
Thus, our algorithm computes Cx,y in O(n3) steps. ut
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4 From Interval-Valued to Fuzzy-Valued Random
Variables

Often, in addition (or instead) the guaranteed bounds, an expert can pro-
vide bounds that contain xi with a certain degree of confidence. Often, we
know several such bounding intervals corresponding to different degrees of
confidence. Such a nested family of intervals is also called a fuzzy set, be-
cause it turns out to be equivalent to a more traditional definition of fuzzy set
[1, 7, 14, 15, 16] (if a traditional fuzzy set is given, then different intervals from
the nested family can be viewed as α-cuts corresponding to different levels of
uncertainty α).

To provide statistical values of fuzzy-valued random variables, we can
therefore, for each level α, apply the above interval-valued techniques to the
corresponding α-cuts.
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