
New Algorithms for Statistical Analysis of
Interval Data

Gang Xiang, Scott A. Starks, Vladik Kreinovich, and Luc Longpré

NASA Pan-American Center for Earth and
Environmental Studies (PACES)

University of Texas, El Paso, TX 79968, USA
vladik@cs.utep.edu

Abstract. It is known that in general, statistical analysis of interval
data is an NP-hard problem: even computing the variance of interval data
is, in general, NP-hard. Until now, only one case was known for which
a feasible algorithm can compute the variance of interval data: the case
when all the measurements are accurate enough – so that even after the
measurement, we can distinguish between different measured values x̃i.
In this paper, we describe several new cases in which feasible algorithms
are possible – e.g., the case when all the measurements are done by using
the same (not necessarily very accurate) measurement instrument – or
at least a limited number of different measuring instruments.

1 Introduction

Once we have several results x̃1, . . . , x̃n of measuring some physical quantity –
e.g., the amount of pollution in a lake – traditional statistical data processing
starts with computing the sample average E = E(x̃1, . . . , x̃n), the sample median
M = M(x̃1, . . . , x̃n), and the sample variance V = V (x̃1, . . . , x̃n) of these results.

For example, E(x̃1, . . . , xn) =
1
n

n∑

i=1

x̃i.

The values x̃i come from measurements, and measurements are never 100%
accurate. In many real-life situations, the only information about the corre-
sponding measurement errors is the upper bound ∆i on the absolute value of
the measurement error. As a result, the only information we have about the
actual value xi of each measured quantity is that xi belongs to the interval
xi

def= [x̃i −∆i, x̃i + ∆i].
For interval data, instead of the exact values of E, M , and V , it is desirable

to get the intervals E, M, and V of possible values, intervals formed by all
possible values of E (correspondingly, M or V ) when each xi takes values from
the interval xi.

Computing E = [E, E] and M = [M,M ] is straightforward: indeed, both
the sample average E and the sample median M are (non-strictly) increasing
functions of the variables x1, . . . , xn. So, the smallest possible value E (corre-
spondingly, M) is attained when we take the smallest possible values x1, . . . , xn



2 Gang Xiang et al.

from the corresponding intervals; similarly, the largest possible value E (corre-
spondingly, M) is attained when we take the largest possible values x1, . . . , xn

from the corresponding intervals. Thus, E = E(x1, . . . , xn), E = E(x1, . . . , xn),
M = M(x1, . . . , xn), and M = M(x1, . . . , xn).

On the other hand, computing the exact range V = [V , V ] of V turns out
to be an NP-hard problem; specifically, computing the upper endpoint V is NP-
hard (see, e.g., [2]).

It is worth mentioning that computing the lower endpoint V is feasible; in
[3], we show that it can done in time O(n · log(n)).

In the same paper [2] in which we prove that computing V is, in general,
NP-hard, we also show that in the case when the measuring instruments are
accurate enough – so that even after the measurements, we can distinguish be-
tween different measured values x̃i (e.g, if the corresponding intervals xi do not
intersect) – we can compute V (hence, V) in feasible time (actually, quadratic
time).

In some practical examples, the measurement instruments are indeed very
accurate, but in many other practical cases, their accuracy may be much lower
– so the algorithm from [2] is not applicable.

In this paper, we describe new practically useful cases when we can compute
V by a feasible (polynomial-time) algorithm.

The first case is when all the measurements are made by the same measuring
instrument or by similar measurement instruments. In this case, none of two
input intervals xi is a proper subset of one another, and as a result, we can find
the exact range V in time O(n · log(n)).

The second case is when instead of a single type of measuring instruments,
we use a limited number (m > 1) of different types of measuring instruments. It
turns out that in this case, we can compute V in polynomial time O(nm+1).

The third case is related to privacy in statistical databases; see details below.

2 First Case: Measurements by Same Measuring
Instrument

In the proof that computing variance is NP-hard (given in [2]), we used interval
data in which some intervals are proper subintervals of others: xi ⊂ xj (and
xi 6= xj).

From the practical viewpoint, this situation makes perfect sense: the interval
data may contain values measurement by more accurate measuring instruments
– that produce narrower intervals xi – and by less accurate measurement in-
struments – that produce wider intervals xj . When we measure the same value
xi = xj , once with an accurate measurement instrument, and then with a less
accurate instrument, then it is quite possible that the wider interval correspond-
ing to the less accurate measurement properly contains the narrower interval
corresponding to the more accurate instrument.



New Algorithms for Statistical Analysis of Interval Data 3

Similarly, if we measure close values xi ≈ xj , it is quite possible that the
wider interval coming from the less accurate instrument contains the narrower
interval coming from the more accurate instrument.

In view of the above analysis, a natural way to avoid such difficult-to-compute
situations is to restrict ourselves to situations when all the measurement are done
with the same measuring instrument.

For a single measuring instrument, it is not very probable that in two different
measurements, we get two intervals in which one is a proper subinterval of the
other.

Let us show that in this case, we have a feasible algorithm for computing V .
For each interval x = [x, x], we will denote its half-width (x − x)/2 by ∆, and
its midpoint (x + x)/2 by x̃.

Definition 1. By an interval data, we mean a finite set of intervals x1, . . . ,xn.

Definition 2. For n real numbers x1, . . . , xn, their variance V (x1, . . . , xn) is

defined in the standard way – as V
def=

1
n
·

n∑

i=1

x2
i − E2, where E

def=
1
n
·

n∑

i=1

xi.

Definition 3. By the interval variance V of the interval data, we mean the
interval V def= {V (x1, . . . , xn) |xi ∈ xi} filled by the values V (x1, . . . , xn) corre-
sponding to different xi ∈ xi.

Theorem 1. There exists an algorithm that computes the variance V of the
interval data in time O(n · log(n)) for all the cases in which no element of the
interval data is a subset of another element.

Proof. In order to compute the interval V, we must compute both endpoints V
and V of this interval.

The proof of the theorem consists of three parts:

– in Part A, we will mention that the algorithm for computing V in time
O(n · log(n)) is already known;

– in Part B, we describe a new algorithm for computing v;
– in Part C, we prove that the new algorithm is correct and has the desired

complexity.

A. Algorithm for computing V with desired time complexity is already known.
The algorithm for computing V in time O(n · log(n)) is described in [4].

B. New algorithm for computing V : description. The proposed algorithm for
computing V is as follows:

– First, we sort n intervals xi in lexicographic order:

x1 ≤lex x2 ≤lex . . . ≤lex xn,

where [a, a] ≤lex [b, b] if and only if either a < b, or a = b and a ≤ b.



4 Gang Xiang et al.

– Second, we use bisection to find the value k (1 ≤ k ≤ n) for which the
following two inequalities hold:

x̃k +
1
n
·

k−1∑

i=1

∆i ≤ 1
n
·

n∑

i=k+1

∆i +
1
n
·

n∑

i=1

x̃i; (1)

x̃k+1 +
1
n
·

k∑

i=1

∆i ≥ 1
n
·

n∑

i=k+2

∆i +
1
n
·

n∑

i=1

x̃i. (2)

At each iteration of this bisection, we have an interval [k−, k+] that is guar-
anteed to contain k. In the beginning, k− = 1 and k+ = n. At each stage,
we compute the midpoint kmid = b(k−+k+)/2c, and check both inequalities
(1) and (2) for k = kmid. Then:
• If both inequalities (1) and (2) hold for his k, this means that we have

found the desired k.
• If (1) holds but (2) does not hold, this means that the desired value k is

larger than kmid, so we keep k+ and replace k− with kmid + 1.
• If (2) holds but (1) does not hold, this means that the desired value k is

smaller than kmid, so we keep k− and replace k+ with kmid − 1.
– Once k is found, we compute

Vk
def=

1
n
·

k∑

i=1

x2
i +

1
n
·

n∑

i=k+1

x2
i −

(
1
n

k∑

i=1

xi +
1
n
·

n∑

i=k+1

xi

)2

. (3)

This is the desired value V .

C. Proof of correctness and complexity. Let us prove that this algorithm indeed
produces the correct result and indeed requires time O(n · log(n)).

1◦. Let us first prove that if no element of the interval data is a subset of another
element, then, after we sort these elements in lexicographic order, both the lower
endpoints xi and the upper endpoints xi are sorted in non-decreasing order:
xi ≤ xi+1 and xi ≤ xi+1.

Indeed, by definition of a lexicographic order, we always have xi ≤ xi+1. If
xi = xi+1, then, by definition of the lexicographic order, we have xi ≤ xi+1. If
xi < xi+1, then we cannot have xi ≥ xi+1 – otherwise, we would have xi+1 ⊂ xi

– hence xi < xi+1. The statement is proven.

It is known that sorting requires time O(n · log(n)); see, e.g., [1].

In the following text, we will assume that the sequence of intervals has been
sorted in this manner.

2◦. Let us now prove that the desired maximum of the variance V is attained
when each variable xi is at one of the endpoints of the corresponding interval xi.



New Algorithms for Statistical Analysis of Interval Data 5

Indeed, if the maximum is attained in the interior point of this interval, this
would means that in this point, ∂V/∂xi = 0 and ∂2V/∂x2

i ≤ 0. For variance,
∂V/∂xi = (2/n) · (xi−E), so ∂2V/∂x2

i = (2/n) · (1−1/n) > 0 – hence maximum
cannot be inside.

3◦. Let us show the maximum is attained at a vector

x = (x1, . . . , xk, xk+1, . . . , xn) (4)

in which we first have lower endpoints and then upper endpoints.

What we need to prove is that there exists a maximizing vector in which,
once we have an upper endpoint, what follows will also be an upper endpoint,
i.e., in which we cannot have xk = xk > xk and xk+1 = xk+1 < xk+1.

For that, let us start with a maximizing vector in which this property does not
hold, i.e., in which xk = xk > xk and xk+1 = xk+1 < xk+1 for some k. Based on
this vector, we will now construct a different maximizing vector with the desired
property. For that, let us consider two cases: ∆k < ∆k+1 and ∆k ≥ ∆k+1, where
∆i

def= (xi − xi)/2 is the half-width of the interval xi.
In the first case, let us replace xk = xk + 2∆k with xk, and xk+1 with

xk+1 + 2∆k (since ∆k < ∆k+1, this new value is < xk+1). Here, the average
E remains the same, so the only difference between the new value V ′ of the
variance and its old value V comes from the change in terms x2

k and x2
k+1. In

other words,

V ′ − V =
1
n
· ((xk+1 + 2∆k)2 − x2

k+1)−
1
n
· ((xk + 2∆k)2 − x2

k).

Opening parentheses and simplifying the resulting expression, we conclude that
V ′−V = (4∆k/n)·(xk+1−xk). Since V is the maximum, we must have V ′−V ≤
0, hence xk+1 ≤ xk. Due to our ordering, we thus have xk+1 = xk. Since we
assumed that ∆k < ∆k+1, we have xk = xk + 2∆k < xk+1 = xk+1 + 2∆k+1,
hence the interval xk is a proper subset of xk+1 – which is impossible.

In the second case, when ∆k ≥ ∆k+1, let us replace xk with xk − 2∆k+1

(which is still ≥ xk), and xk+1 = xk+1 − 2∆k+1 with xk+1. Here, the average
E remains the same, and the only difference between the new value V ′ of the
variance and its old value V comes from the change in terms x2

k and x2
k+1, hence

V ′ − V =
1
n
· (x2

k+1 − (xk+1 − 2∆k+1)2)− 1
n
· (x2

k − (xk − 2∆k+1)2),

i.e., V ′ − V = (4∆k+1/n) · (xk+1 − xk). Since V is the maximum, we must have
V ′−V ≤ 0, hence xk+1 ≤ xk. Due to our ordering, we thus have xk+1 = xk. Since
we assumed that ∆k ≥ ∆k+1, we have xk = xk − 2∆k ≥ xk+1 = xk+1 − 2∆k+1,
i.e., xk ⊆ xk+1. Since intervals cannot be proper subsets of each other, we thus
have xk = xk+1. In this case, we can simply swap the values xk and xk+1,
variance will not change.

If necessary, we can perform this swap for all needed k; as a result, we get
the maximizing vector with the desired property.



6 Gang Xiang et al.

4◦. Due to Part 3 of this proof, the desired value V = max V is the largest of
n + 1 values (3) corresponding to k = 0, 1, . . . , n.

In principle, to compute V , we can therefore compute each of these values and
find the largest of them. Computing each value takes O(n) times, so computing
n + 1 such values would require time O(n2). Let us show that we can compute
V faster.

We must find the index k for which Vk is the largest. For the desired k, we
have Vk ≥ Vk−1 and Vk ≥ Vk+1. Due to (3), we conclude that

Vk − Vk−1 =
1
n
· (x2

k − x2
k

)

−
(

1
n
·

k∑

i=1

xi +
1
n
·

n∑

i=k+1

xi

)2

+

(
1
n
·

k−1∑

i=1

xi +
1
n
·

n∑

i=k

xi

)2

. (5)

Each pair of terms in the right-hand side of (5) can be simplified if we use the
fact that a2−b2 = (a−b)·(a+b) and use the notations ∆k and x̃k

def= (xk+xk)/2.
First, we get x2

k − x2
k = (xk − xk) · (xk + xk) = −4∆k · x̃k. Second, we get

(
1
n
·

k−1∑

i=1

xi +
1
n
·

n∑

i=k

xi

)2

−
(

1
n
·

k∑

i=1

xi +
1
n
·

n∑

i=k+1

xi

)2

=

2
n
· (xk − xk) ·

(
1
n
·

k−1∑

i=1

xi +
1
n
· x̃k +

1
n
·

n∑

i=k+1

xi

)
.

Here, xk − xk = 2∆k, hence the formula (5) takes the following form:

Vk − Vk−1 =
4
n
·∆k ·

(
−x̃k +

1
n
·

k−1∑

i=1

xi +
1
n
· x̃k +

1
n
·

n∑

i=k+1

xi

)
.

Since Vk ≥ Vk−1 and ∆k > 0, we conclude that

−x̃k +
1
n
·

k−1∑

i=1

xi +
1
n
· x̃k +

1
n
·

n∑

i=k+1

xi ≥ 0. (6)

Substituting the expressions xi = x̃i −∆i and xi = x̃i + ∆i into the formula (6)
and moving all the negative terms to the other side of the inequality, we get the
inequality (1). Similarly, the inequality Vk+1 ≤ Vk leads to (2).

When k increases, the left-hand side of the inequality (1) increases – because
x̃k increases as the average of the two increasing values xk and xk, and the sum
is increasing. Similarly, the right-hand side of this inequality decreases with k.
Thus, if this inequality holds for k, it should also hold for all smaller values, i.e.,
for k − 1, k − 2, etc.

Similarly, in the second desired inequality (2), when k increases, the left-hand
side of this inequality increases, while the right-hand side decreases. Thus, if this
inequality is true for k, it is also true for k + 1, k + 2, . . .



New Algorithms for Statistical Analysis of Interval Data 7

If both inequalities (1) and (2) are true for two different values k < k′, then
they should both be true for all the values intermediate between k and k′, i.e.,
for k + 1, k + 2, . . . , k′ − 1. If (1) and and (2) are both true for k and k + 1,
this means that in both cases, we have equality, thus Vk = Vk+1, so it does not
matter which of these values k we take.

Thus, modulo this equality case, there is, in effect, only one k for which
both inequalities are true, and this k can be found by the bisection method as
described in the above algorithm.

How long does this algorithm take? In the beginning, we only know that k
belongs to the interval [1, n] of width O(n). At each stage of the bisection step,
we divide the interval (containing k) in half. After I iterations, we decrease the
width of this interval by a factor of 2I . Thus, to find the exact value of k, we
must have I for which O(n)/2I = 1, i.e., we need I = O(log(n)) iterations. On
each iteration, we need O(n) steps, so we need a total of O(n · log(n)) steps.
With O(n · log(n)) steps for sorting, and O(n) for computing the variance, we
get a O(n · log(n)) algorithm. ut

3 Second Case: Using a Limited Number of Different
Types of Measuring Instruments

In this case, the interval data consists of m families of intervals such that within
each family, no two intervals are proper subsets of each other.

Similarly to the proof of Theorem 1, we can conclude that if we sort each
family in lexicographic order, then, within each family, the maximum of V is
attained on one of the sequences (4). Thus, to find the desired maximum V ,
it is sufficient to know the value kα ≤ n corresponding to each of m families.
Overall, there are ≤ nm combinations of such values, and for each combination,
computing the corresponding value of the variance requires O(n) steps. Thus,
overall, we need time O(nm+1).

4 Third Case: Privacy in Statistical Databases

When the measurements x̃i correspond to data that we want to keep private, e.g.,
health parameters of different patients, we do not want statistical programs to
have full access to the data – because otherwise, by computing sufficiently many
different statistics, we would be able to uniquely reconstruct the actual values
x̃i. One way to prevent this from happening is to supply the statistical data
processing programs not with the exact data, but only with intervals of possible
values of this data, intervals corresponding to a fixed partition; see, e.g., [4]. For
example, instead of the exact age, we tell the program that a person’s age is
between 30 and 40.

To implement the above idea, we need to fix a partition, i.e., to fix the values
t1 < t2 < . . . < tn. In this case, instead of the actual value of the quantity, we
return the partition-related interval [ti, ti+1] that contains this value.



8 Gang Xiang et al.

Privacy-related intervals [ti, ti+1] satisfy the same property as intervals from
the first case: none of them is a proper subset of the other. Thus, we can apply the
algorithm described in Section 2 and compute the exact range V in polynomial
time – namely, in time O(n · log(n)).

Acknowledgments. This work was supported in part by NASA grant NCC5-
209, by the AFOSR grant F49620-00-1-0365, by NSF grants EAR-0112968, EAR-
0225670, and EIA-0321328, by the Army Research Laboratories grant DATM-
05-02-C-0046, and by NIH grant 3T34GM008048-20S1.

The authors are thankful to the anonymous referees for the valuable sugges-
tions.

References

1. Cormen Th. H., Leiserson C. E., Rivest R. L., and Stein C.: Introduction to Algo-
rithms, MIT Press, Cambridge, MA, 2001.

2. Ferson, S., Ginzburg, L., Kreinovich, V., Longpré, L., Aviles, M.: Computing Vari-
ance for Interval Data is NP-Hard, ACM SIGACT News 33(2) (2002) 108–118

3. Granvilliers, L., Kreinovich, V., Müller, L.: Novel Approaches to Numerical Soft-
ware with Result Verification”, In: Alt, R., Frommer, A., Kearfott, R. B., Luther,
W. (eds.), Numerical software with result verification, Springer Lectures Notes in
Computer Science, 2004, Vol. 2991, pp. 274–305.

4. Kreinovich, V., Longpré, L.: Computational complexity and feasibility of data
processing and interval computations, with extension to cases when we have par-
tial information about probabilities, In: Brattka, V., Schroeder, M., Weihrauch, K.,
Zhong, N.: Proc. Conf. on Computability and Complexity in Analysis CCA’2003,
Cincinnati, Ohio, USA, August 28–30, 2003, pp. 19–54.


