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Abstract

It is known that in general, statistical analysis of interval data is an
NP-hard problem: even computing the variance of interval data is, in
general, NP-hard. Until now, only one case was known for which a feasible
algorithm can compute the variance of interval data: the case when all the
measurements are accurate enough — so that even after the measurement,
we can distinguish between different measured values z;. In this paper,
we describe several new cases in which feasible algorithms are possible —
e.g., the case when all the measurements are done by using the same (not
necessarily very accurate) measurement instrument — or at least a limited
number of different measuring instruments.

1 Introduction

Traditional statistical data processing. Once we have several results
Z1,...,T, of measuring some physical quantity — e.g., the amount of pollu-
tion in a lake — traditional statistical data processing starts with computing the
sample average £ = E(Z1,...,Z,), the sample median M = M(Z1,...,Ty),
and the sample variance V' = V(Z1,...,Z,) of these results. For example,

. . 1~ . . 1~ -
E(Zy,...,2y) = - th and V(Z1,...,Z,) = - Zl(atl - E)%

= i=
To check whether the distribution is symmetric, we also compute its sample
. . 1\~

skewness S(T1,...,Tn) = - Z(m, — E)3.

i=1



Interval data. The values Z; come from measurements, and measurements
are never 100% accurate. In many real-life situations, the only information
about the corresponding measurement errors is the upper bound A; on the
absolute value of the measurement error. As a result, the only information we

have about the actual value z; of each measured quantity is that x; belongs to

the interval X; déf [51 — Ai) 3,"2 + Az]

Statistical analysis of interval data: a problem. For interval data, in-
stead of the exact values of £, M, and V, it is desirable to get the intervals
E, M, and V of possible values, intervals formed by all possible values of F
(correspondingly, M or V) when each z; takes values from the interval x;.

Statistical analysis of interval data: what is known. Computing E =
[E,E] and M = [M, M| is straightforward: indeed, both the sample average F
and the sample median M are (non-strictly) increasing functions of the variables
Z1y...,&n. So, the smallest possible value E (correspondingly, M) is attained
when we take the smallest possible values 24, ..., z, from the corresponding in-
tervals; similarly, the largest possible value E (correspondingly, M) is attained
when we take the largest possible values 71, ..., T, from the corresponding in-
tervals. Thus, E = E(z,...,2,), E = E(Z1,...,Tyn), M = M(z,...,,), and
M= M(Zq,...,Tpn). B

On the other hand, computing the exact range V = [V, V] of V turns out
to be an NP-hard problem; specifically, computing the upper endpoint V is
NP-hard (see, e.g., [2]).

It is worth mentioning that computing the lower endpoint V is feasible; in
[3], we show that it can done in time O(n - log(n)).

In the same paper [2] in which we prove that computing V is, in general,
NP-hard, we also show that in the case when the measuring instruments are
accurate enough — so that even after the measurements, we can distinguish be-
tween different measured values 7; (e.g, if the corresponding intervals x; do not
intersect) — we can compute V (hence, V) in feasible time (actually, quadratic
time).

In some practical examples, the measurement instruments are indeed very
accurate, but in many other practical cases, their accuracy may be much lower
— so the algorithm from [2] is not applicable.

What we are planning to do. In this paper, we describe new practically
useful cases when we can compute the range V of the variance and the range S
of the skewness by a feasible (polynomial-time) algorithm.

The first case is when all the measurements are made by the same measuring
instrument or by similar measurement instruments. In this case, none of two
input intervals x; is a proper subset of one another, and as a result, we can find
the exact range V in time O(n - log(n)), and the exact range S in time O(n?).



The second case is when instead of a single type of measuring instruments,
we use a limited number (m > 1) of different types of measuring instruments.
It turns out that in this case, we can compute V in polynomial time O(n") and
S in polynomial time O(n?™).

The third case is related to privacy in statistical databases; see details below.

2 First Case: Measurements by Same Measur-
ing Instrument

When is it difficult to compute the variance of interval data? Mathe-
matical description. In the proof that computing variance is NP-hard (given
in [2]), we used interval data in which some intervals are proper subintervals of
others: [z;,7;] C (z;,T;).
When is it difficult to compute the variance of interval data? Practi-
cal interpretation. From the practical viewpoint, this situation makes per-
fect sense: the interval data may contain values measurement by more accurate
measuring instruments — that produce narrower intervals x; — and by less ac-
curate measurement instruments — that produce wider intervals x;. When we
measure the same value x; = x;, once with an accurate measurement instru-
ment, and then with a less accurate instrument, then it is quite possible that the
wider interval corresponding to the less accurate measurement properly contains
the narrower interval corresponding to the more accurate instrument.
Similarly, if we measure close values z; ~ z;, it is quite possible that the
wider interval coming from the less accurate instrument contains the narrower
interval coming from the more accurate instrument.

Idea: how to avoid such difficult-to-compute situations. In view of the
above analysis, a natural way to avoid such difficult-to-compute situations is
to restrict ourselves to situations when all the measurement are done with the
same measuring instrument.

Reformulating this idea is mathematical terms. For a single measuring
instrument, it is not very probable that in two different measurements, we get
two intervals in which one is a proper subinterval of the other: [z;,7;] C (z;,7;).

Let us show that if this subset property is satisfied, then we have a feasible

algorithm for computing V. For each interval x = [z,Z]|, we will denote its
half-width (Z — z)/2 by A, and its midpoint (z + ¥)/2 by 7.

Definition 1 By an interval data, we mean a finite set of intervals X1, ...,Xy,.

Definition 2 We say that the interval data x1, ... ,x,, satisfies the subset prop-
erty if [x;,%;] € (z;,T;) for everyi and j.



Definition 3 For n real numbers x1,...,x,, their variance V(x1,...,x,) is
n n

: def 1 def 1
defined in the standard way — as V= — Z;a:f — E?, where E = — ngz

Definition 4 By the interval variance V of the interval data, we mean the

interval V& {V(z1,...,2n) | @i € x;} filled by the values V(x1,...,xy,) corre-
sponding to different x; € x;.

Theorem 1 There exists an algorithm that computes the variance V of the
interval data in time O(n -log(n)) for all the cases in which the interval data
satisfies the subset property.

Let us now show that in the situation when no two intervals are subsets
of each other, we have a feasible algorithm for computing the range S of the
skewness S.

For n = 1, we have 1 = E, so the skewness is 0. For n = 2, we have
E— 1+ 2o

, hence

5:%.[((m1_E)3+(x2_E)3] :%_ [<$1;x2>3+ (xQ;:El)g] =0.

Thus, non-trivial skewness values are only possible for n > 2.

Definition 5 By the interval skewness V of the interval data, we mean the

interval S % {S(x1,...,2n) |z € x;} filled by the values S(x1,...,x,) corre-
sponding to different x; € x;.

Theorem 2 There exists an algorithm that computes the skewness S of the
interval data in time O(n?) for all the cases in which the interval data satisfies
the subset property.

Proof of Theorem 1. In order to compute the interval V, we must compute both
endpoints V and V of this interval.
The proof of the theorem consists of three parts:

e in Part A, we will mention that the algorithm for computing V in time
O(n -log(n)) is already known;

e in Part B, we describe a new algorithm for computing V;

e in Part C, we prove that the new algorithm is correct and has the desired
complexity.



A. Algorithm for computing V. with desired time complexity is already known.
The algorithm for computing V in time O(n - log(n)) is described in [4].

B. New algorithm for computing V: description. The proposed algorithm for
computing V is as follows:

e First, we sort n intervals x; in lexicographic order:
X1 Slex X2 Slex .o Slex Xns
where [a, @] <iex [b, 8] if and only if either @ < b, or @ = b and @ < b.

e Second, we use bisection to find the value k (1 < k < n) for which the
following two inequalities hold:

Bt Y A< > A Y E (1)

N 1 & 1 & 1
$k+1+ﬁ';AiZ£'ZAi+ﬁ'Zmi~ (2)

i=k+2 i=1

At each iteration of this bisection, we have an interval [k~,k™] that is
guaranteed to contain k. In the beginning, k= = 1 and k¥ = n. At each
stage, we compute the midpoint kpyiq = |(k~ + k7)/2], and check both
inequalities (1) and (2) for k = kmyig. Then:

— If both inequalities (1) and (2) hold for his k, this means that we
have found the desired k.

— If (1) holds but (2) does not hold, this means that the desired value
k is larger than kyiq, so we keep kT and replace k=~ with kyiq + 1.

— If (2) holds but (1) does not hold, this means that the desired value
k is smaller than kpyiq, so we keep k= and replace k™ with kpiq — 1.

e Once k is found, we compute

dfl k 1 n
| /= 2 *'E T2
k n L+n z;

=1 i=k+1

SRS

k 1 n 2
Zxﬂ'nzﬂﬁz) @)

i=k+1
This is the desired value V.

C. Proof of correctness and complezity. Let us prove that this algorithm indeed
produces the correct result and indeed requires time O(n - log(n)).

1°. Let us first prove that if the interval data satisfies the subset property, then,
after we sort these elements in lexicographic order, both the lower endpoints z;



and the upper endpoints T; are sorted in non-decreasing order: z; < z;,; and
T; S Tiy1-

Indeed, by definition of a lexicographic order, we always have z; < z; ;. If
; = z,;, 1, then, by definition of the lexicographic order, we have T; < T;;1.

If z; < z;,1, then we cannot have T; > T;;1 — otherwise, we would have
(2;,1,Tit1) C x; which would contradict the subset property. Hence, if z; <
Z;.1, we also have T; < T;;1. The statement is proven.

It is known that sorting requires time O(n - log(n)); see, e.g., [1].

In the following text, we will assume that the sequence of intervals has been
sorted in this manner.

2°. Let us now prove that the desired maximum of the variance V is attained
when each variable z; is at one of the endpoints of the corresponding interval x;.

Indeed, if the maximum is attained in the interior point of this interval, this
would means that in this point, V/dz; = 0 and 8?V/dx? < 0. For variance,
oV/0z; = (2/n)-(z; — E), so 9*°V/dz? = (2/n)-(1—1/n) > 0 — hence maximum
cannot be inside.

3°. Let us show the maximum is attained at a vector

x:(£17-~~7gkafk+17"’7§n) (4)
in which we first have lower endpoints and then upper endpoints.

What we need to prove is that there exists a maximizing vector in which,
once we have an upper endpoint, what follows will also be an upper endpoint,
i.e., in which we cannot have x, =Ty > 3, and Tp11 = Ty < Thy1.

For that, let us start with a maximizing vector in which this property does
not hold, i.e., in which z, = T > 2, and 241 = 2, | < Tpy1 for some k.
Based on this vector, we will now construct a different maximizing vector with
the desired property. For that, let us consider two cases: A < Agyq and

Aj > Agyq, where A; def (T; — x;)/2 is the half-width of the interval x;.

In the first case, let us replace T, = z, + 2A; with z,, and Ty wWith
Zp 1 + 20y (since Ap < A1, this new value is < Tpy1). Here, the average
E remains the same, so the only difference between the new value V' of the
variance and its old value V' comes from the change in terms z7 and x? 1. In
other words,

1 1
V-V = n (Zpyr + QAk)2 _§i+1) o ((zy + QAk)2 —zi)

Opening parentheses and simplifying the resulting expression, we conclude that
V'V = (4Ak/n)- (2} —x},). Since V is the maximum, we must have V' -V <



0, hence z;,; < x;. Due to our ordering, we thus have z; ,; = z,. Since we
assumed that Ay < Ay, we have Ty, = x5, + 24, < Ty = 25y + 28541,
hence the interval x, is a proper subset of x;1 — which is impossible.

In the second case, when Ay > Agiq, let us replace Ty with Ty — 2Ak 11
(which is still > z;,), and 2| = Tp41 — 2A41 with Tpyq. Here, the average
E remains the same, and the only difference between the new value V' of the
variance and its old value V' comes from the change in terms xi and x% 41, hence

1 1
V-V = . @ry1 — Tngr — 20511)%) — . @ — (Tr — 28k11)%),

ie, V' =V = (4A;11/n) - (Tk41 — Tk). Since V is the maximum, we must have
V' —V <0, hence Ty < Tg. Due to our ordering, we thus have Tyy1 = Tg.
Since we assumed that Ay > Agyq, we have 2, = T — 28 > 23 = Tpyp1 —
2Ak11, i.e., X € Xgy1. Since intervals cannot be proper subsets of each other,
we thus have x; = x;4+1. In this case, we can simply swap the values x; and
Tk+1, variance will not change.

If necessary, we can perform this swap for all needed k; as a result, we get
the maximizing vector with the desired property.

4°. Due to Part 3 of this proof, the desired value V = maxV is the largest of
n + 1 values (3) corresponding to kK =0,1,...,n.

In principle, to compute V, we can therefore compute each of these values
and find the largest of them. Computing each value takes O(n) times, so com-
puting n + 1 such values would require time O(n?). Let us show that we can
compute V faster.

We must find the index k for which Vj is the largest. For the desired k, we
have Vi, > Vj_1 and Vi, > V1. Due to (3), we conclude that

1
Ve Vi = & (g~ 70)

1 k 1 n 2 1 k—1 1 n 2
SEDIERIS SEIRNC B IFTE B 3e) B

=1 i=k+1 1=1 i=k
Each pair of terms in the right-hand side of (5) can be simplified if we use the
fact that a2—b2 = (a—b)-(a+b) and use the notations Ay, and 7, < (z,+7x)/2.

First, we get 27 — 72 = (z), — T1) - (24 + Tk) = —4Ay - Tp.. Second, we get
k—1 n 2 k n 2
1 1 _ 1 1 i
<nle+nzxz> _<n.zxi+n.,z xz) =
i=1 i=k i=1 i=k+1



Here, Ty, — x;, = 2Aj, hence the formula (5) takes the following form:

k b1 = Bk B i:1,1 I, i:kHz-
Since Vi, > Vi_1 and Ay > 0, we conclude that
JURS R S T S
*IkJFE';L'JFE'iEkJFﬁ'i;LIIiZO- (6)

Substituting the expressions z;, = Z; — A; and T; = Z; + A; into the formula (6)
and moving all the negative terms to the other side of the inequality, we get the
inequality (1). Similarly, the inequality Vi4+1 < Vi leads to (2).

When k increases, the left-hand side of the inequality (1) increases — because
I increases as the average of the two increasing values z; and Ty, and the sum
is increasing. Similarly, the right-hand side of this inequality decreases with k.
Thus, if this inequality holds for k, it should also hold for all smaller values, i.e.,
for k — 1, k — 2, etc.

Similarly, in the second desired inequality (2), when k increases, the left-hand
side of this inequality increases, while the right-hand side decreases. Thus, if
this inequality is true for k, it is also true for K+ 1, k+ 2, ...

If both inequalities (1) and (2) are true for two different values k < &/, then
they should both be true for all the values intermediate between k and &/, i.e.,
for k+1,k+2,...,k' — 1. If (1) and and (2) are both true for k and k + 1,
this means that in both cases, we have equality, thus Vi = Vi1, so it does not
matter which of these values k we take.

Thus, modulo this equality case, there is, in effect, only one k for which
both inequalities are true, and this k£ can be found by the bisection method as
described in the above algorithm.

How long does this algorithm take? In the beginning, we only know that &
belongs to the interval [1,n] of width O(n). At each stage of the bisection step,
we divide the interval (containing k) in half. After I iterations, we decrease the
width of this interval by a factor of 2. Thus, to find the exact value of k, we
must have I for which O(n)/2! =1, i.e., we need I = O(log(n)) iterations. On
each iteration, we need O(n) steps, so we need a total of O(n - log(n)) steps.
With O(n - log(n)) steps for sorting, and O(n) for computing the variance, we
get a O(n -log(n)) algorithm.

The theorem is proven.

Proof of Theorem 2.

1°. In order to compute the interval S, we must compute both endpoints S and
S of this interval.

Let us first show that if we can compute S, then we can easily compute S as
well. Indeed, skewness is an odd function: S(—z1,...,—x,) = —=S(x1,...,2,);



thus, for intervals —x; = —[z;,7;| = [~Ti, —x;], we have S(—xq,...,—X,) =
—S(x1,...,Xy). From this relation between the skewness intervals, we can con-
clude that S(—x1,...,—X,) = —S(X1,...,Xp)-

Thus, if we know how to compute S(xi,...,X,) for an arbitrary collection
of intervals x;, we can thus compute S(x1,...,%,) as —S(—x1,...,—X,)

In view of this comment, in the remaining part of the proof, we will only
consider an algorithm for computing S.

2°. As we have shown while proving Theorem 1, since the interval data satisfies
the subset property, after we sort these elements in lexicographic order, both
the lower endpoints x; and the upper endpoints 7; are sorted in non-decreasing
order: z; < z,,, and Z; < Tyyq.

3°. The maximum of a differentiable function S(z1,...,2,) on an interval
[x;,T;] can be attained either in an internal point of this interval, or at one
of the endpoints.
If the maximum is attained at an internal point, then the first derivative is
oS %S
0 < Erole 0) and the second derivative should be non-positive e < O) .
€Z; X3
If the maximum is attained at the left endpoint, the function S cannot be

oS
increasing at this point, so we must have — < 0. Similarly, if the maximum

x;
is attained at the right endpoint, the function S cannot be decreasing at this
point, so we must have > 0.
al‘i
For skewness,
oS 3 3 OE
=" (5, —FE)?*-=. —E)? . —.
ox; n (i ) n 4 (2 ) ox;
Jj=1
oFr 1 05 3
Since = —, we thus get == . ((x; — E)> = V). So, the first derivative

of S has the same sign as the expression (z; — F)? — V.
To compute the second derivative of S, we must take into account that

ov 2

=2 . (zi—E),h
9%, n (z; ), hence
s 3 1 2 2 1
2 2 2@ -EBE)—20@,~E)- —— % (zi—E)+ = _E). -
T = (2B 2 E) LD B) S B

Jj=1

Since > (z; — E) = 0, we conclude that
j=1

> =
Ox;

ERER A



We have already mentioned that the problem of computing skewness only makes

sense for n > 2, because for n < 2, the skewness is identically 0. For n > 2, the
2

second derivative 922 has the same sign as the expression z; — F.
=
K3

Thus, for skewness, we value x; at which the maximum is attained satisfies
one of the following three conditions:

e cither z;, < x; <7y, (v, — E)? -V =0, and 2; — E <0,
e or v; =x; and (v, — E)?> =V <0,
eorz; =7 and (v; — E)2 -V >0.

In the first case, (z; — E)? = V = 02, hence 7; — E = 0. Since x; — E < 0,
we cannot have x; — F = o, so in this case, z; = F — 0. In the second
case, (z; — E)2 <V = 02, hence E — o < x; < E+ 0. In the third case,
(v; — E)2 >V =02, so either v; < E— o or x; > E + 0. So:

o cither z, <x; = F — 0 <7,
eory; =z;,and F—0 <z, <FE+o,
e or v; =T; and either 7, < E—ocorx; > F+o0.
In all three cases, the desired maximum of the skewness S is attained when x; is

either at one of the endpoints of the corresponding interval x;, or has the value

,udéfE—o.

4°. Let us now deduce a more specific information about the values z; at which
the maximum is attained.

Based on the above description of possible cases, once we know how the
intervals are located in relation to F — o and F + o, we can sometimes uniquely
determine the value x; at which the maximum is attained. Namely,

e If 7; < E — 0, then the maximum cannot be attained at an internal point
and it cannot be attained at the value z;, so it is attained when z; = ;.

o Ifz, < E—-0 <7; <E+ o0, then the maximum can only be attained
when z; = F — 0.

o If E—0 <z, < E+ o, then the maximum is attained at z; = z,.
e Finally, if £+ o < z;, then the maximum is attained at x; = ;.

These conclusions can be described in the following graphical manner, in which
the arrows indicate the direction towards the corresponding maximum:

10



E—o E+o

The only case when we cannot exactly determine the optimal value z; is when
the interval x; contains the value E + o: it this case, we may have x; = T;, and
we may also have z; = max(E — o0,z;).

5°. Let us show that the maximum of skewness is always attained at a vector
x = (x1,...,%,) which can be divided into three consequent fragments (some
of which may be empty):

e first, we have values T; which are smaller than F — o;
e then, we have the values max(E — o,z;);

e finally, we have the values T; which are larger than F + o.

All the intervals x; that do not contain E + o inside naturally fall into
this scheme. The only intervals that we do need to consider to prove this
result are the intervals that do contain E + o. For each of these intervals, the
corresponding values x; are either max(E — o, z;) or Z;. What we claim is that
after we sort the intervals in lexicographic order, we will first have the values
equal to max(E — o0,z;,), and then the values equal to T;. In other words, once
we have a value z; = T;, all the following values will also be of the same type.

We will show that if there is an optimizing vector at which this condition is
not satisfied, then we can rearrange it into a new vector with the same optimal
value of S for which this condition holds.

Indeed, let us start with a vector for which, for some i, for two consequent
intervals x; and x;41, a value z; = 7T; > E + o is followed by a value z;1 =
max(E — 0,z;,,) < E + 0. If there are several such indices i, we take the
smallest ¢ with this property.

According to Part 2 of this proof, we have z;, <z,,, < E+oand E+o0 <
T; <Tjy1. Thus, z; =7; <T;j11 and v; =7; > F+0 > x3;,,; hence, z; € x;11.
Similarly, x;+1 € x;. Thus, we can “swap” the values z; and z;41: as a new value
of x;, we take the old value of x;;1, and vice versa. The swap does not change
the average E and does not change the sample skewness S, so the function S
attains the maximum at the new values as well.

As a result of this swap, if there is now a value i’ for which ;s is followed by
max(E — o,z; ), this value ¢’ has to be equal to at least 7 4+ 1. If there still is
such an index i/, we apply a new swap again and thus again increase the smallest
problematic value i. After < n such swaps, there will be no problematic cases
anymore, so we will get a sequence which has the desired property.

11



6°. To determine the optimal vector x, we must thus select a zone [z, T(p41)]
that contains p = F — o0, and an index k at which the optimal value x; switches
from max(u,z;) to ;.

Once p and k are fixed, we can uniquely determine each of the optimal values
x; — some as known numbers, some as equal to the (unknown) value pu:

e when 7; < (), we have z; = 7;;

e when z; < () < T(p41) < T; and ¢ < k, we have z; = y;
e when z(,,1) < z; and ¢ < k, we have z; = z;;

e finally, when i > k, we have z; = %;.

To find p, we must use the fact that u = E — 0. Specifically, the average E can
be determined as

1 n—n'
=y i+ (E—-0)=E,
n n
ieN’
where the sum is taken over the set N’ of all the indices for which z; is known,
and n’ is the total number of such indices. Similarly, the sample second moment
E? 4+ 52 can be determined as

1 _ /
~ Y (B =Bt o
n n

iEN’

From the first of these equations, we can determine ¢ as a linear function of
E. Substituting this expression into the second equation, we get a quadratic
equation with the only unknown o, from which we can determine o. Then, we
can use the first equation to find £ — and hence find y = E — 0.

If the resulting value of 4 is indeed within the zone [2(p), Z(p41)], then we
compute the sample skewness for the corresponding values x;. Specifically, the
skewness can be computed as

n

=1 =1

i=1 i=1

S|

-ixi’—%.zﬂ:m%zﬁ:
=1 =1

1 g . n—n 3 3-E 2 N2 3
- > * - > - * 2'E.
- E x5 + - 7 <E i+ m—n")-p |+

i€EN' iEN’

The largest of these skewnesses is the desired value S.

7°. How much times does this algorithm require? Sorting takes time O(n-log(n)).

12



For n interval data points, we have 2n possible zone and n possible indices
k — totally, O(n?) possible pairs (p, k). For the first pair, computing the corre-
sponding values n’, Z T, Z xf, and Z xf’ requires linear time. For each

ieN’  ieN’ iEN’

next pair, we, in general, change one value in comparison with the previous pair,
so each new computation requires a constant number of steps. Thus, for O(n?)
pairs, we need O(n?) time. (In some cases, we change more than one value, but
still, each value changes only once, so we still need O(n?) times.)

So, overall, we need time O(n -log(n)) + O(n) + O(n?) = O(n?).

The theorem is proven.

3 Second Case: Using a Limited Number of Dif-
ferent Types of Measuring Instruments

In this case, the interval data consists of m families of intervals such that within
each family, no two intervals are proper subsets of each other.

Similarly to the proof of Theorem 1, we can conclude that if we sort each
family in lexicographic order, then, within each family, the maximum of V is
attained on one of the sequences (4). Thus, to find the desired maximum V,
it is sufficient to know the value k, < n corresponding to each of m families.
Overall, there are < n" combinations of such values. For the first combination,
computing the corresponding value of the variance requires O(n) steps. Each
next combination differs from the previous one by a single term, so overall, we
need O(n™) steps to compute all the values of the variance — and thus, to find
the largest of them, which is V.

For S, we need to consider n? options for each of the m subsequences cor-
responding to a single MI; thus, overall, we must consider (O(n?))™ = O(n*™)
possible combinations — hence we need time O(n*™).

4 Third Case: Privacy in Statistical Databases

Why privacy leads to intervals. When the measurements x; correspond to
data that we want to keep private, e.g., health parameters of different patients,
we do not want statistical programs to have full access to the data — because
otherwise, by computing sufficiently many different statistics, we would be able
to uniquely reconstruct the actual values z;. One way to prevent this from
happening is to supply the statistical data processing programs not with the
exact data, but only with intervals of possible values of this data, intervals
corresponding to a fixed partition; see, e.g., [4]. For example, instead of the
exact age, we tell the program that a person’s age is between 30 and 40.
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Privacy-related intervals: formal description. To implement the above
idea, we need to fix a partition, i.e., to fix the values t; < t5 < ... < t,. In this
case, instead of the actual value of the quantity, we return the partition-related
interval [t;,t;11] that contains this value.

Relation with the first case. From the practical viewpoint, the first case —
when intervals come from measurement uncertainty — is very different from this
case, in which intervals are formed by us, to maintain privacy. However, from
the purely mathematical viewpoint, privacy-related intervals [t;, t;41] satisfy the
same property as intervals from the first case: none of them is a proper subset
of the other.

This relation leads to a feasible algorithm for privacy-related inter-
vals. Because of the above relation, apply the algorithm described in Section
2 to privacy-related case intervals as well. In other words, for privacy-related
interval data, it is also possible to and compute the exact range V and S in
polynomial time — namely, we can compute V in time O(n - log(n)) and S in
time O(n?).
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