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Abstract. In many problems from science and engineering, the mea-
surements are reasonably accurate, so we can use linearization (= sensi-
tivity analysis) to describe the effect of measurement errors on the result
of data processing.
In many practical cases, the measurement accuracy is not so good, so, to
get a good estimate of the resulting error, we need to take quadratic terms
into consideration – i.e., in effect, approximate the original algorithm by
a quadratic function. The problem of estimating the range of a quadratic
function is NP-hard, so, in the general case, we can only hope for a good
heuristic.
Traditional heuristic is similar to straightforward interval computations:
we replace each operation with numbers with the corresponding opera-
tion of interval arithmetic (or of the arithmetic that takes partial proba-
bilistic information into consideration). Alternatively, we can first diag-
onalize the quadratic matrix – and then apply the same approach to the
result of diagonalization.
Which heuristic is better? We show that sometimes, the traditional
heuristic is better; sometimes, the new approach is better; asymptot-
ically, which heuristic is better depends on how fast, when sorted in
decreasing order, the eigenvalues decrease.

1 Formulation of the Problem

Need for data processing and indirect measurements in scientific computing. In
many areas of science and engineering, we are interested in the value of a physical
quantity y that is difficult (or even impossible) to measure directly. Examples
may include the amount of a pollutant in a given lake, the distance to a faraway
star, etc.

To measure such quantities, we find auxiliary easier-to-measure quantities
x1, . . . , xn that are related to y by a known algorithm y = f(x1, . . . , xn). In



2 M. Ceberio, V. Kreinovich, and L. Ginzburg

some cases, the relation between xi and y is known exactly. In such cases, to
estimate y, we measure xi, and apply the algorithm f to the results x̃1, . . . , x̃n

of measuring xi. As a result, we get an estimate ỹ = f(x̃1, . . . , x̃n) for y.
In many other practical situations, we only know an approximate relation y ≈

f̃(x1, . . . , xn), with an upper bound εf on the accuracy of this approximation:

|f̃(x1, . . . , xn)− f(x1, . . . , xn)| ≤ εf .

In such cases, to estimate y, we measure xi, and apply the algorithm f̃ to the re-
sults x̃1, . . . , x̃n of measuring xi. As a result, we get an estimate ỹ = f̃(x̃1, . . . , x̃n)
for y.

This indirect measurement (data processing) is one of the main reasons why
computers were invented in the first place, and one of the main uses of computers
is scientific computing.

Need for error estimation for indirect measurements in scientific computing.
Measurements are never 100% accurate. The results x̃i of direct measurements
are, in general, different from the actual values xi. Therefore, the estimate
ỹ = f(x̃1, . . . , x̃n) is, in general, different from the actual (unknown) value
y = f(x1, . . . , xn). What do we know about the error ∆y

def= ỹ−y of the indirect
measurement?

Estimating errors of indirect measurements: formulation of the problem. In many
cases, we know the upper bounds ∆i on the measurement errors ∆xi

def= x̃i − xi

of direct measurements. Once we know such an upper bound, we can guarantee
that the actual value xi lies in the interval xi

def= [x̃i−∆i, x̃i +∆i]. In this case, if
we know the relation y = f(x1, . . . , xn) exactly, then the only information that
we have about y is that y belongs to the range [r, r] def= f(x1, . . . ,xn).

In situations when, instead of knowing the exact relation y = f(x1, . . . , xn),
we only know:

– the approximate relation y ≈ f̃(x1, . . . , xn) between xi and y and
– we know the upper bound εf on the accuracy of approximating f by f̃ ,

then we can guarantee that y belongs to the interval [r − εf , r + εf ], where

[r, r] def= f̃(x1, . . . ,xn) is the range of a known algorithmic function f̃(x1, . . . , xn)
on the “box” x1 × . . .× xn.

In both cases, to find the range of possible values of y, we must find the range
[r, r] of a known algorithmic function f (or f̃) on the known box.

Comment. In some engineering situations, instead of knowing the guaranteed
upper bounds ∆i on the measurement errors, we only have estimates ∆i of the
upper bounds. In such situations, it is still desirable to compute the correspond-
ing range for y – but we can no longer absolutely guarantee that the actual value
y belong to the resulting range; we can only guarantee it under the condition
that the estimates are correct.
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Interval computations: a way to estimate errors of indirect measurements. In-
terval computations enable us to either compute the range a given algorithmic
function f (or f̃) on the given box exactly, or at least to provide an enclosure
for this range. For the case when n = 2 and the function f(x1, x2) is one of
the standard arithmetic operations (+, −, multiplication, etc.), there are known
explicit formulas for the range of f . For example,

[x1, x1] + [x2, x2] = [x1 + x2, x1 + x2].

These formulas form interval arithmetic; see, e.g., [3, 4, 7].
One way to compute the range for more complex functions f is to use straight-

forward (“naive”) interval computations, i.e., replace each operation forming the
algorithm f with the corresponding operation from interval arithmetic. This
technique leads to an interval that is guaranteed to be an enclosure, i.e., to con-
tain the desired range, but it is known that this interval contains excess width,
i.e., is wider than the desired range [3, 4, 7]. How can we reduce this excess width?

When measurement errors are small, linearization works well. When the mea-
surement errors ∆xi are relatively small, we can expand f into Taylor series
in terms of ∆xi and ignore quadratic and higher terms – i.e., keep only linear
terms. In a linear expression f = a0 + a1 ·∆x1 + . . . + an ·∆xn, each variable
∆xi ∈ [−∆i,∆i] occurs only once. It is known that for such single-use expres-
sions (SUE), straightforward interval computations leads to the exact range; see,
e.g., [2, 3].

Quadratic approximation is more difficult to analyze. In many real-life situations,
measurement errors ∆xi are not so small, so we must also take into consideration
terms that are quadratic in ∆xi. So, we must be able to estimate the range of a
quadratic function

f = a0 +
n∑

i=1

ai ·∆xi +
n∑

i=1

n∑

j=1

aij ·∆xi ·∆xj ,

or, equivalently,

f = a0 +
n∑

i=1

ai ·∆xi +
n∑

i=1

aii · (∆xi)2 +
n∑

i=1

∑

j 6=i

aij ·∆xi ·∆xj . (1)

There exist methods for computing the exact range of such a function (see, e.g.,
[4]), but all such methods require 2n steps – the number of steps which, even for a
realistically large number of inputs n ≈ 102−103, can be impossibly large. Since
the problem of estimating range of a given quadratic function is, in general, NP-
hard (see, e.g., [6, 9]), we cannot hope to get an algorithm that is always faster.
So, for large n, we can only compute enclosures.



4 M. Ceberio, V. Kreinovich, and L. Ginzburg

Two natural approaches to compute enclosure: which is better? One approach
to computing the enclosure of a quadratic approximation function (1) is to use
naive (straightforward) interval computations. As we have mentioned, in this
approach, we often get excess width.

There is a particular case when we do not have any excess width – when the
matrix A = (aij)i,j is diagonal. In this case, f can be represented as a sum of the
terms ai ·∆xi + aii ·∆x2

i corresponding to different variables, and each of these
terms can be reformulated as a SUE expression aii · (∆xi + ai/(2aii))2 + const
– thus making the whole expression SUE.

Every quadratic function can be represented in a similar diagonal form –
as a linear combination of squares of eigenvectors. It therefore seems reason-
able to first represent a quadratic function in this form, and only then apply
straightforward interval computations.

A natural question is: which approach is better? If none of them is always
better, then when is the first approach better and when is the second one better?

Beyond interval computations: towards joint use of probabilities and intervals in
scientific computing. In many cases, in addition to the upper bounds on ∆xi,
we have partial information on the probabilities of different values of ∆x

def=
(∆x1, . . . , ∆xn).

In particular, in some applications, we know that the input variables xi are
not truly independent and are in fact correlated. This knowledge about correla-
tion is also usually represented in the probabilistic terms, as partial information
about the probability distribution of ∆x.

In all such cases, in addition to the interval range, we would like to compute
the information about the probabilities of different values of y. There exist ways
of extending interval arithmetic to such cases; see, e.g., [1]. We can therefore use
both approaches in these cases as well.

What we are planning to do. In this paper, we show that which method is better
depends on the eigenvalues of the matrix B = (aij · ∆i · ∆j)i,j : on average,
the eigenvector method is better if and only if the eigenvalues (when sorted in
decreasing order) decrease fast enough.

2 Formalizing the Problem in Precise Terms

Simplifying the problem. Let us start by simplifying the above problem.
In the original formulation of the problem, we have parameters a0, ai, and aij

that describe the function f and the parameters ∆i that describe the accuracy
of measuring each of n variables. We can reduce the number of parameters if we
re-scale each of n variables in which a way that ∆i becomes 1. Indeed, instead
of the variables ∆xi, let us introduce the new variables yi

def= ∆xi/∆i. For each
of yi, the interval of possible values is [−1, 1]. Substituting ∆xi = ∆i · yi into
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the expression (1), we get the expression for f in terms of yi:

f = b0 +
n∑

i=1

bi · yi +
n∑

i=1

bii · y2
i +

n∑

i=1

∑

j 6=i

bij · yi · yj , (2)

where b0
def= a0, bi

def= ai ·∆i, and bij
def= aij ·∆i ·∆j .

In the following text, we will therefore assume that ∆i = 1 and that the
quadratic form has the form (2).

Explicit expressions for the results of the two compared methods. Let us explicitly
describe the results of applying the two methods to the quadratic form (2).

If we directly apply straightforward interval computations to the original
expression (2), then, since yi ∈ [−1, 1], we get the enclosure f (0) + f (1) + f (2)

orig,

where f (0) = b0, f (1) = [−
n∑

i=1

|bi|,
n∑

i=1

|bi|], and

f (2)
orig =

n∑

i=1

(bii · [0, 1]) +
n∑

i=1

∑

j 6=i

|bij | · [−1, 1]. (3)

Alternatively, we can represent the matrix B = (bij)i,j in terms of its eigenvalues
λk and the corresponding unit eigenvectors ek = (ek1, . . . , ekn), as

bij =
n∑

k=1

λk · eki · ekj . (4)

In this case, the original expression (2) takes the form

b0 +
n∑

i=1

bi · yi +
n∑

k=1

λk ·
(

n∑

i=1

eki · yi

)2

. (5)

Since yi ∈ [−1, 1], we conclude that
n∑

i=1

eki ·yi ∈ [−Bk, Bk], where Bk
def=

n∑
i=1

|eki|.

Therefore,
(

n∑
i=1

eki · yi

)2

∈ [0, B2
k], and so, when applied to the expression (5),

straightforward interval computations lead to the expression f (0) + f (1) + f (2)
new,

in which linear terms f (0) and f (1) are the same, while

f (2)
new =

n∑

k=1

λk ·

0,

(
n∑

i=1

|eki|
)2


 . (6)

So, to decide which method is better, it is sufficient to consider only quadratic
terms.
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Example when the eigenvalue-related expression is better. If the matrix B has
only one non-zero eigenvector λ1 6= 0, then the formula (5) takes a simplified

form: λ1 · (
n∑

i=1

e1i · yi)2. This is a SUE expression, so straightforward interval

computations lead to the exact range.
For such matrices, the original expression (1) is not necessarily SUE, and

may lead to excess width. For example, for a 2× 2 matrix with bij = 1 for all i
and j, the only non-zero eigenvalue is λ1 = 2 (with eigenvector (1, 1)). So, the
new expression leads to the exact range [0, 4]. On the other hand, if we apply
straightforward interval computations to the original expression (2), then the
resulting expression (3) leads to [−2, 4], i.e., to excess width.

Example when the original expression is better. For the identity matrix B, the
original quadratic expression (2) leads to a SUE expression

∑
bii · (∆xi)2 for

which straightforward interval computations lead to the exact range. For exam-
ple, for n = 1, we get the range [0, 2].

On the other hand, if we select eigenvectors that are different from (1, 0) and
(0, 1), we may get excess width. For example, if we choose e1 = (

√
2/2,

√
2/2)

and e2 = (
√

2/2,−√2/2), then, for straightforward interval computations, the

range of
√

2
2

∆x1 +
√

2
2

∆x2 is [−√2,
√

2], hence the range of its square is [0, 2],

and the range of the resulting quadratic expression is estimated as [0, 4].

How do we compare different approaches: randomization needed. The main dif-
ference between the two cases is in the eigenvalues of the matrix B: In the first
example, we had only one non-zero eigenvalue, and the eigenvalue-related expres-
sion leads to better estimates. In the second example, we have equal eigenvalues,
and the original expression is better. It is therefore natural to assume that which
method is better depends on the eigenvalues λk of the matrix B.

We should not expect a result of the type “if we have certain λk, then the
first method is always better” – which method is better depends also on the
eigenvectors. For example, in the second case, if we select (1, 0) and (0, 1) as
eigenvectors, then the eigenvalue-related expression also leads to the same opti-
mal range estimate. In other words, for a given set of eigenvalues λk, we should
not expect a result saying that one of the methods is better for all possible eigen-
vectors: for some eigenvectors the first methods will be better, for some others
the second method will be better. In such a situation, it is reasonable to analyze
which method is better on average, if we consider random eigenvectors.

Natural probability measure on the set of all eigenvectors. What is the natural
probability measure on the set of all possible eigenvectors e1, . . . , en? In general,
we have n mutually orthogonal unit vectors, i.e., an orthonormal base in the
n-dimensional space. It is reasonable to assume that the probability distribu-
tion on the set of all such bases is rotation-invariant. This assumption uniquely
determines the probability distribution; see, e.g., [5, 8].



What is the Best Transition from Linear to Quadratic Approximation? 7

Indeed, the first unit vector e1 can be uniquely represented by its endpoint on
a unit sphere. The only possible rotation-invariant distribution on a unit sphere
is a uniform distribution. Once e1 is fixed, e2 can be any vector from a sphere in
an (n − 1)-dimensional space of all vectors orthogonal to e1; the only rotation-
invariant distribution on this sphere is also uniform, etc. So, in the resulting
distribution, e1 is selected from the uniform distribution on the unit sphere, e2

from the uniform distribution on the unit sphere in the subspace of all vectors
⊥ e1, etc.

3 Main Result

Theorem 1. When n →∞, then asymptotically, the expected values are:

E[f (2)
orig] ∼


−

√
2
π
· n ·

√√√√
n∑

k=1

λ2
k,

√
2
π
· n ·

√√√√
n∑

k=1

λ2
k


 ; (7)

E[f (2)
new] ∼

[
2
π
· n ·

∑

k:λk<0

λk,
2
π
· n ·

∑

k:λk>0

λk

]
. (8)

Conclusions. If
∑ |λk| <

√
π/2·

√∑
λ2

k, then asymptotically, E[f (2)
new] ⊂ E[f (2)

orig],
so the eigenvector-based method is definitely better.

If
∑ |λk| <

√
2π ·

√∑
λ2

k, then the interval E[f (2)
new] is narrower than E[f (2)

orig],
so in this sense, the new method is also better.

Example. The spectrum λk often decreases according to the power law λk ∼ k−α.

In this case,
∑ |λk| ≈

∞∫
1

x−α dx = 1/(α−1) and
∑

λ2
k ≈

∞∫
1

x−2α dx = 1/(2α−1),

so the above inequality turns into (α−1)2 ≥ (2/π) · (2α−1), which is equivalent
to

α ≥ 1 +
2
π

+

√(
1 +

2
π

)
· 2
π
≈ 2.7. (9)

Hence, if the eigenvalues decrease fast (α ≥ 2.7), the new method is definitely
better. For α ≥ 1.6, the new method leads to narrower intervals; otherwise, the
traditional method leads, on average, to better estimates.

Proof of the Theorem. Before we start the proof, let us derive some auxiliary
formulas. Since each vector ek is a unit vector, we have

∑
i

e2
ki = 1. Due to

rotation invariance, the expected value E[e2
ki] should not depend on i, hence

E[e2
ki] = 1/n. Similarly, from

∑
i

eki ·eli = 0 and rotation invariance, we conclude

that E[eki · eli] = 0.
For given k, l, and i 6= j, the value E[eki · elj ] should not change under the

transformation xi → xi and xj → −xj , so E[eki · elj ] = 0.
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To compute E[f (2)
orig], we must find E[bii] and E[|bij |]. By definition (4), for

each i, E[bii] =
∑
k

λk · E[e2
ki] = (1/n) · ∑ λk, so the sum of n such terms is

proportional to
∑

λk.
For i 6= j, due to the central limit theorem, the distribution for bij (formula

(4)) is asymptotically Gaussian, so asymptotically, E[|bij |] ∼
√

2/π ·
√

E[b2
ij ].

Here, E[b2
ij ] =

∑
k

∑
l

λk ·λl ·E[eki ·ekj ·eli ·elj ]. Due to symmetry, each k 6= l term

is 0, so E[b2
ij ] =

∑
k

λ2
k ·E[e2

ki · e2
kj ]. Asymptotically, eki and ekj are independent,

so E[e2
ki · e2

kj ] ∼ E[e2
ki] · E[e2

kj ] = (1/n)2. Therefore, E[b2
ij ] ∼ (1/n)2 · ∑λ2

k,
hence E[|bij |] ∼

√
2/n · (1/n) ·

√∑
λ2

k. The sum of n(n − 1) such terms is
∼

√
2/π · n ·

√
λ2

k. The sum of the terms E[bii] is asymptotically smaller, so
when n →∞, we get the expression (7).

For the new expression, we must compute, for every k, the expected value of

E

[(∑
i

|eki|
)2

]
=

∑
i,j

E[|eki|·|ekj |]. Asymptotically, eki and ekj are independent,

and E[|eki|] ∼
√

2/π ·
√

E[e2
ki] =

√
2/π · (1/

√
n). Thus, the sum of all the terms

i 6= j is ∼ n2 · (2/π) · (1/n) = (2/π) · n. The terms with i = j are asymptotically
smaller, so we get the desired expression (8). ut
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