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Abstract

In many problems from science and engineering, the measurements are
reasonably accurate, so we can use linearization (= sensitivity analysis) to
describe the effect of measurement errors on the result of data processing.

In many practical cases, the measurement accuracy is not so good, so,
to get a good estimate of the resulting error, we need to take quadratic
terms into consideration – i.e., in effect, approximate the original algo-
rithm by a quadratic function. The problem of estimating the range of a
quadratic function is NP-hard, so, in the general case, we can only hope
for a good heuristic.

Traditional heuristic is similar to straightforward interval computa-
tions: we replace each operation with numbers with the corresponding
operation of interval arithmetic (or of the arithmetic that takes partial
probabilistic information into consideration). Alternatively, we can first
diagonalize the quadratic matrix – and then apply the same approach to
the result of diagonalization.

Which heuristic is better? We show that sometimes, the traditional
heuristic is better; sometimes, the new approach is better; asymptotically,
which heuristic is better depends on how fast, when sorted in decreasing
order, the eigenvalues decrease.
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1 Formulation of the Problem

Need for data processing and indirect measurements in scientific com-
puting. In many areas of science and engineering, we are interested in the
value of a physical quantity y that is difficult (or even impossible) to measure
directly. Examples may include the amount of a pollutant in a given lake, the
distance to a faraway star, etc.

To measure such quantities, we find auxiliary easier-to-measure quantities
x1, . . . , xn that are related to y by a known algorithm y = f(x1, . . . , xn). In
some cases, the relation between xi and y is known exactly. In such cases, to
estimate y, we measure xi, and apply the algorithm f to the results x̃1, . . . , x̃n

of measuring xi. As a result, we get an estimate ỹ = f(x̃1, . . . , x̃n) for y.
In many other practical situations, we only know an approximate relation

y ≈ f̃(x1, . . . , xn), with an upper bound εf on the accuracy of this approxima-
tion:

|f̃(x1, . . . , xn)− f(x1, . . . , xn)| ≤ εf .

In such cases, to estimate y, we measure xi, and apply the algorithm f̃ to
the results x̃1, . . . , x̃n of measuring xi. As a result, we get an estimate ỹ =
f̃(x̃1, . . . , x̃n) for y.

This indirect measurement (data processing) is one of the main reasons why
computers were invented in the first place, and one of the main uses of computers
is scientific computing.

Need for error estimation for indirect measurements in scientific com-
puting. Measurements are never 100% accurate. The results x̃i of direct mea-
surements are, in general, different from the actual values xi. Therefore, the
estimate ỹ = f(x̃1, . . . , x̃n) is, in general, different from the actual (unknown)
value y = f(x1, . . . , xn). What do we know about the error ∆y

def= ỹ − y of the
indirect measurement?

Estimating errors of indirect measurements: formulation of the prob-
lem. In many cases, we know the upper bounds ∆i on the measurement er-
rors ∆xi

def= x̃i − xi of direct measurements. Once we know such an upper
bound, we can guarantee that the actual value xi lies in the interval xi

def=
[x̃i−∆i, x̃i +∆i]. In this case, if we know the relation y = f(x1, . . . , xn) exactly,
then the only information that we have about y is that y belongs to the range
[r, r] def= f(x1, . . . ,xn).

In situations when, instead of knowing the exact relation y = f(x1, . . . , xn),
we only know:

• the approximate relation y ≈ f̃(x1, . . . , xn) between xi and y and

• we know the upper bound εf on the accuracy of approximating f by f̃ ,
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then we can guarantee that y belongs to the interval [r − εf , r + εf ], where

[r, r] def= f̃(x1, . . . ,xn) is the range of a known algorithmic function f̃(x1, . . . , xn)
on the “box” x1 × . . .× xn.

In both cases, to find the range of possible values of y, we must find the
range [r, r] of a known algorithmic function f (or f̃) on the known box.

Comment. In some engineering situations, instead of knowing the guaranteed
upper bounds ∆i on the measurement errors, we only have estimates ∆i of the
upper bounds. In such situations, it is still desirable to compute the correspond-
ing range for y – but we can no longer absolutely guarantee that the actual value
y belong to the resulting range; we can only guarantee it under the condition
that the estimates are correct.

Interval computations: a way to estimate errors of indirect measure-
ments. Interval computations enable us to either compute the range a given
algorithmic function f (or f̃) on the given box exactly, or at least to provide an
enclosure for this range. For the case when n = 2 and the function f(x1, x2) is
one of the standard arithmetic operations (+, −, multiplication, etc.), there are
known explicit formulas for the range of f . For example,

[x1, x1] + [x2, x2] = [x1 + x2, x1 + x2].

These formulas form interval arithmetic; see, e.g., [5, 6, 12].
One way to compute the range for more complex functions f is to use

straightforward (“naive”) interval computations, i.e., replace each operation
forming the algorithm f with the corresponding operation from interval arith-
metic. This technique leads to an interval that is guaranteed to be an enclosure,
i.e., to contain the desired range, but it is known that this interval contains ex-
cess width, i.e., is wider than the desired range [5, 6, 12]. How can we reduce
this excess width?

When measurement errors are small, linearization works well. When
the measurement errors ∆xi are relatively small, we can expand f into Taylor
series in terms of ∆xi and ignore quadratic and higher terms – i.e., keep only
linear terms. In a linear expression f = a0 + a1 · ∆x1 + . . . + an · ∆xn, each
variable ∆xi ∈ [−∆i, ∆i] occurs only once. It is known that for such single-
use expressions (SUE), straightforward interval computations leads to the exact
range; see, e.g., [3, 5].

Quadratic approximation is more difficult to analyze. In many real-life
situations, measurement errors ∆xi are not so small, so we must also take into
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consideration terms that are quadratic in ∆xi. So, we must be able to estimate
the range of a quadratic function

f = a0 +
n∑

i=1

ai ·∆xi +
n∑

i=1

n∑

j=1

aij ·∆xi ·∆xj ,

or, equivalently,

f = a0 +
n∑

i=1

ai ·∆xi +
n∑

i=1

aii · (∆xi)2 +
n∑

i=1

∑

j 6=i

aij ·∆xi ·∆xj . (1)

There exist methods for computing the exact range of such a function (see,
e.g., [6]), but all such methods require 2n steps – the number of steps which,
even for a realistically large number of inputs n ≈ 102 − 103, can be impossibly
large. Since the problem of estimating range of a given quadratic function is, in
general, NP-hard (see, e.g., [10, 15]), we cannot hope to get an algorithm that
is always faster. So, for large n, we can only compute enclosures.

Two natural approaches to compute enclosure: which is better? One
approach to computing the enclosure of a quadratic approximation function (1)
is to use naive (straightforward) interval computations. As we have mentioned,
in this approach, we often get excess width.

There is a particular case when we do not have any excess width – when the
matrix A = (aij)i,j is diagonal. In this case, f can be represented as a sum of the
terms ai ·∆xi + aii ·∆x2

i corresponding to different variables, and each of these
terms can be reformulated as a SUE expression aii · (∆xi + ai/(2aii))2 + const
– thus making the whole expression SUE.

Every quadratic function can be represented in a similar diagonal form –
as a linear combination of squares of eigenvectors. It therefore seems reason-
able to first represent a quadratic function in this form, and only then apply
straightforward interval computations.

A natural question is: which approach is better? If none of them is always
better, then when is the first approach better and when is the second one better?

Beyond interval computations: towards joint use of probabilities and
intervals in scientific computing. In many cases, in addition to the upper
bounds on ∆xi, we have partial information on the probabilities of different
values of ∆x

def= (∆x1, . . . , ∆xn).
In particular, in some applications, we know that the input variables xi are

not truly independent and are in fact correlated. This knowledge about correla-
tion is also usually represented in the probabilistic terms, as partial information
about the probability distribution of ∆x.

In all such cases, in addition to the interval range, we would like to compute
the information about the probabilities of different values of y. There exist ways
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of extending interval arithmetic to such cases; see, e.g., [1]. We can therefore
use both approaches in these cases as well.

What we are planning to do. In this paper, we show that which method
is better depends on the eigenvalues of the matrix B = (aij · ∆i · ∆j)i,j : on
average, the eigenvector method is better if and only if the eigenvalues (when
sorted in decreasing order) decrease fast enough.

2 Formalizing the Problem in Precise Terms

Simplifying the problem. Let us start by simplifying the above problem.
In the original formulation of the problem, we have parameters a0, ai, and aij

that describe the function f and the parameters ∆i that describe the accuracy
of measuring each of n variables. We can reduce the number of parameters if we
re-scale each of n variables in which a way that ∆i becomes 1. Indeed, instead
of the variables ∆xi, let us introduce the new variables yi

def= ∆xi/∆i. For each
of yi, the interval of possible values is [−1, 1]. Substituting ∆xi = ∆i · yi into
the expression (1), we get the expression for f in terms of yi:

f = b0 +
n∑

i=1

bi · yi +
n∑

i=1

bii · y2
i +

n∑

i=1

∑

j 6=i

bij · yi · yj , (2)

where b0
def= a0, bi

def= ai ·∆i, and bij
def= aij ·∆i ·∆j .

In the following text, we will therefore assume that ∆i = 1 and that the
quadratic form has the form (2).

Explicit expressions for the results of the two compared methods. Let
us explicitly describe the results of applying the two methods to the quadratic
form (2).

If we directly apply straightforward interval computations to the original
expression (2), then, since yi ∈ [−1, 1], we get the enclosure f (0) + f (1) + f (2)

orig,

where f (0) = b0, f (1) = [−
n∑

i=1

|bi|,
n∑

i=1

|bi|], and

f (2)
orig =

n∑

i=1

(bii · [0, 1]) +
n∑

i=1

∑

j 6=i

|bij | · [−1, 1]. (3)

Alternatively, we can represent the matrix B = (bij)i,j in terms of its eigenvalues
λk and the corresponding unit eigenvectors ek = (ek1, . . . , ekn), as

bij =
n∑

k=1

λk · eki · ekj . (4)
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In this case, the original expression (2) takes the form

b0 +
n∑

i=1

bi · yi +
n∑

k=1

λk ·
(

n∑

i=1

eki · yi

)2

. (5)

Since yi ∈ [−1, 1], we conclude that
n∑

i=1

eki ·yi ∈ [−Bk, Bk], where Bk
def=

n∑
i=1

|eki|.

Therefore,
(

n∑
i=1

eki · yi

)2

∈ [0, B2
k], and so, when applied to the expression (5),

straightforward interval computations lead to the expression f (0) + f (1) + f (2)
new,

in which linear terms f (0) and f (1) are the same, while

f (2)
new =

n∑

k=1

λk ·

0,

(
n∑

i=1

|eki|
)2


 . (6)

So, to decide which method is better, it is sufficient to consider only quadratic
terms.

Example when the eigenvalue-related expression is better. If the ma-
trix B has only one non-zero eigenvector λ1 6= 0, then the formula (5) takes a

simplified form: λ1 · (
n∑

i=1

e1i · yi)2. This is a SUE expression, so straightforward

interval computations lead to the exact range.
For such matrices, the original expression (1) is not necessarily SUE, and

may lead to excess width. For example, for a 2× 2 matrix with bij = 1 for all i
and j, the only non-zero eigenvalue is λ1 = 2 (with eigenvector (1, 1)). So, the
new expression leads to the exact range [0, 4]. On the other hand, if we apply
straightforward interval computations to the original expression (2), then the
resulting expression (3) leads to [−2, 4], i.e., to excess width.

Example when the original expression is better. For the identity matrix
B, the original quadratic expression (2) leads to a SUE expression

∑
bii ·(∆xi)2

for which straightforward interval computations lead to the exact range. For
example, for n = 1, we get the range [0, 2].

On the other hand, if we select eigenvectors that are different from (1, 0) and
(0, 1), we may get excess width. For example, if we choose e1 = (

√
2/2,

√
2/2)

and e2 = (
√

2/2,−√2/2), then, for straightforward interval computations, the

range of
√

2
2

∆x1 +
√

2
2

∆x2 is [−√2,
√

2], hence the range of its square is [0, 2],

and the range of the resulting quadratic expression is estimated as [0, 4].

6



How do we compare different approaches: randomization needed.
The main difference between the two cases is in the eigenvalues of the matrix
B: In the first example, we had only one non-zero eigenvalue, and the eigenvalue-
related expression leads to better estimates. In the second example, we have
equal eigenvalues, and the original expression is better. It is therefore natural
to assume that which method is better depends on the eigenvalues λk of the
matrix B.

We should not expect a result of the type “if we have certain λk, then the
first method is always better” – which method is better depends also on the
eigenvectors. For example, in the second case, if we select (1, 0) and (0, 1)
as eigenvectors, then the eigenvalue-related expression also leads to the same
optimal range estimate. In other words, for a given set of eigenvalues λk, we
should not expect a result saying that one of the methods is better for all possible
eigenvectors: for some eigenvectors the first methods will be better, for some
others the second method will be better. In such a situation, it is reasonable to
analyze which method is better on average, if we consider random eigenvectors.

Natural probability measure on the set of all eigenvectors. What is the
natural probability measure on the set of all possible eigenvectors e1, . . . , en?
In general, we have n mutually orthogonal unit vectors, i.e., an orthonormal
base in the n-dimensional space. It is reasonable to assume that the probability
distribution on the set of all such bases is rotation-invariant. This assumption
uniquely determines the probability distribution; see, e.g., [7, 14].

Indeed, the first unit vector e1 can be uniquely represented by its endpoint
on a unit sphere. The only possible rotation-invariant distribution on a unit
sphere is a uniform distribution. Once e1 is fixed, e2 can be any vector from a
sphere in an (n− 1)-dimensional space of all vectors orthogonal to e1; the only
rotation-invariant distribution on this sphere is also uniform, etc. So, in the
resulting distribution, e1 is selected from the uniform distribution on the unit
sphere, e2 from the uniform distribution on the unit sphere in the subspace of
all vectors ⊥ e1, etc.

3 Main Result

Theorem 1 When n →∞, then asymptotically, the expected values are:

E[f (2)
orig] ∼


−

√
2
π
· n ·

√√√√
n∑

k=1

λ2
k,

√
2
π
· n ·

√√√√
n∑

k=1

λ2
k


 ; (7)

E[f (2)
new] ∼

[
2
π
· n ·

∑

k:λk<0

λk,
2
π
· n ·

∑

k:λk>0

λk

]
. (8)
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Conclusions. If
∑ |λk| <

√
π/2 ·

√∑
λ2

k, then asymptotically, E[f (2)
new] ⊂

E[f (2)
orig], so the eigenvector-based method is definitely better.

If
∑ |λk| <

√
2π ·

√∑
λ2

k, then the interval E[f (2)
new] is narrower than E[f (2)

orig],
so in this sense, the new method is also better.

Example. The spectrum λk often decreases according to the power law λk ∼
k−α. In this case,

∑ |λk| ≈
∞∫
1

x−α dx = 1/(α − 1) and
∑

λ2
k ≈

∞∫
1

x−2α dx =

1/(2α− 1), so the above inequality turns into (α− 1)2 ≥ (2/π) · (2α− 1), which
is equivalent to

α ≥ 1 +
2
π

+

√(
1 +

2
π

)
· 2
π
≈ 2.7. (9)

Hence, if the eigenvalues decrease fast (α ≥ 2.7), the new method is definitely
better. For α ≥ 1.6, the new method leads to narrower intervals; otherwise, the
traditional method leads, on average, to better estimates.

Proof of Theorem 1. Before we start the proof, let us derive some auxiliary
formulas. Since each vector ek is a unit vector, we have

∑
i

e2
ki = 1. Due

to rotation invariance, the expected value E[e2
ki] should not depend on i, hence

E[e2
ki] = 1/n. Similarly, from

∑
i

eki ·eli = 0 and rotation invariance, we conclude

that E[eki · eli] = 0.
For given k, l, and i 6= j, the value E[eki · elj ] should not change under the

transformation xi → xi and xj → −xj , so E[eki · elj ] = 0.
To compute E[f (2)

orig], we must find E[bii] and E[|bij |]. By definition (4), for
each i, E[bii] =

∑
k

λk · E[e2
ki] = (1/n) · ∑λk, so the sum of n such terms is

proportional to
∑

λk.
For i 6= j, due to the central limit theorem, the distribution for bij (formula

(4)) is asymptotically Gaussian, so asymptotically, E[|bij |] ∼
√

2/π ·
√

E[b2
ij ].

Here, E[b2
ij ] =

∑
k

∑
l

λk ·λl ·E[eki ·ekj ·eli ·elj ]. Due to symmetry, each k 6= l term

is 0, so E[b2
ij ] =

∑
k

λ2
k ·E[e2

ki ·e2
kj ]. Asymptotically, eki and ekj are independent,

so E[e2
ki · e2

kj ] ∼ E[e2
ki] · E[e2

kj ] = (1/n)2. Therefore, E[b2
ij ] ∼ (1/n)2 · ∑ λ2

k,
hence E[|bij |] ∼

√
2/n · (1/n) ·

√∑
λ2

k. The sum of n(n − 1) such terms is
∼

√
2/π · n ·

√
λ2

k. The sum of the terms E[bii] is asymptotically smaller, so
when n →∞, we get the expression (7).

For the new expression, we must compute, for every k, the expected value

of E

[(∑
i

|eki|
)2

]
=

∑
i,j

E[|eki| · |ekj |]. Asymptotically, eki and ekj are inde-
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pendent, and E[|eki|] ∼
√

2/π ·
√

E[e2
ki] =

√
2/π · (1/

√
n). Thus, the sum of

all the terms i 6= j is ∼ n2 · (2/π) · (1/n) = (2/π) · n. The terms with i = j
are asymptotically smaller, so we get the desired expression (8). The theorem
is proven.

4 Auxiliary Result: Situations When We Also
Have Partial Information About Probabilities

Motivations. As we have mentioned, in many cases, in addition to the upper
bounds on the measurement errors ∆xi, we have partial information on the
probabilities of different values of ∆x

def= (∆x1, . . . , ∆xn).
For example, in addition to the interval range of each variable ∆xi, we

often know the mean ∆Ei of ∆xi. We get it, e.g., from the results of the
testing the measuring instrument, when the mean is estimated as the average
of measurement errors. The more tests we undertake, the more information
we get about the probability distribution, and the more characteristics of the
probability distribution we can determine. In the ideal situation, we can perform
as many tests as necessary to determine the probability distribution of ∆xi. In
many real-life situations, however, we can only afford to determine one (or two)
characteristics. In such situations, a natural choice is to determine the mean
(and, if possible, the standard deviation; see, e.g., [13]).

In measurement terms, the difference between the mean and the actual value
of the measured quantity is called the systematic error of the measurement pro-
cedure. In measurements, it is a common practice to calibrate the measuring
instrument so that the systematic error (bias) is eliminated. Calibration means
that, instead of the original measured value x̃i of the desired property, we re-
turn the value Ei

def= x̃i − ∆Ei for which the mean value of the re-calibrated
measurement error ∆x′i

def= Ei − xi is exactly 0.
The original measurement error ∆xi can attain any value from the interval

[−∆i,∆i]. As a result, the re-calibrated measurement error ∆′
i can take all

possible values from the interval [−∆−
i ,∆+

i ], where ∆−
i

def= ∆i +∆Ei and ∆+
i

def=
∆i −∆Ei.

For example, if we know that ∆xi ∈ [−0.1, 0.1], and its mean is ∆Ei = 0.05,
then for ∆x′i = ∆xi −∆Ei, the mean is 0, and the interval of possible values is
[−0.15, 0.05].

The mean is the only information that we have about each measurement
error. What do we know about the dependence between the corresponding ran-
dom variables? In many applications, we know that the same source of noise
contributes to the errors of different measurements, so these errors ∆xi are not
independent. Since we do not have enough statistics to get any information
about each distribution except for its mean, we also cannot determine the cor-
relation between ∆xi. So, if we are interested in guaranteed estimates, we must
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consider all possible n-dimensional distributions, with all possible correlations.

Formulation of the problem. In the case of interval uncertainty, we know
the intervals of possible values of the measurement errors ∆xi, and we want to
find the interval of possible values of the desired quantity y = f(x1, . . . , xn).

In the situations when, in addition to the interval of possible values of mea-
surement error, we also know the mean of the measurement errors, in addition
to knowing the interval of possible values for the result y of data processing, it is
desirable to also know the interval of possible values for the the mean E

def= E[y]
of the quantity y.

In this paper, we consider the case when the dependence f(x1, . . . , xn) be-
tween the desired quantity y and the directly measurable quantities x1, . . . , xn

can be safely described by a quadratic function (1). So, the problem is: we
know the intervals [−∆i,∆i] of possible values of ∆xi, we know the means
∆Ei = E[∆xi], we want to estimate the mean E[y] of the expression (1).

Alternatively, if we re-calibrate all the measuring instruments and take the
re-calibrated measured values Ei = x̃i − ∆Ei, then we can expand f around
these new values Ei:

f = a′0 +
n∑

i=1

a′i ·∆x′i +
n∑

i=1

a′ii · (∆x′i)
2 +

n∑

i=1

∑

j 6=i

a′ij ·∆x′i ·∆x′j . (10)

After this calibration, the problem takes the following form: we know the in-
tervals [−∆−

i , ∆+
i ] of possible values of ∆x′i, we know that E[∆x′i] = 0 for all i,

we want to find the interval of possible values of E[y].

What is currently known. The expression (1) (or (10)) is a linear combina-
tion of linear and quadratic terms ∆xi and ∆xi ·∆xj (corr., ∆x′i and ∆x′i ·∆x′j).
The expected value of a linear combination is equal to the linear combination
of the corresponding expected values. The expected values of ∆xi and ∆x′i are
known. So, to be able to estimate the expected value of y, it is sufficient to be
able to estimate the expected value of a product ∆xi ·∆xj .

It is known [8, 9] that if we have two random variables v1 and v2 with known
ranges [vi, vi] and known means Ei, then the interval [E, E] of possible values
of E

def= E[v1 · v2] can be computed as follows. First, we compute the auxiliary
values pi

def= (Ei − vi)/(vi − vi), and then compute

E = min(p1 + p2 − 1, 0) · v1 · v2 + min(p1, 1− p2) · v1 · v2+

min(1− p1, p2) · v1 · v2 + max(1− p1 − p2, 0) · v1 · v2; (11)

E = min(1− p1, 1− p2) · v1 · v2 + max(p1 − p2, 0) · v1 · v2+

max(p2 − p1, 0) · v1 · v2 + min(p1, p2) · v1 · v2. (12)
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In principle, we can use these formulas to estimate E[y].
We can also apply a similar approach to the alternative quadratic formula

(2). To use this approach, we need to know the means of the new variables yi,
but this is easy, since yi are linear combinations of ∆xi.

Remaining problem. In [8, 9], our objective was to come up with an ex-
pression for a single exact range of E[v1 · v2] for two variables v1 and v2. The
fact that we found an explicit analytical expression makes it easy to compute
the range.

In our new problem, however, we need to estimate many (∼ n2) such ranges
– because n may be large. Each range computation requires two divisions (to
compute p1 and p2) and several multiplications – and division is known to take
longer to compute. Since we need to repeat these computations ∼ n2 times, it
is desirable to look for simpler expressions for E and E, expressions that would
hopefully avoid division altogether and require fewer multiplications – and thus,
will lead to faster computations. Such expressions are indeed possible:

Theorem 2 If we have two random variables v1 and v2 with known means Ei

and known ranges [Ei−∆−
i , Ei +∆+

i ], then the interval [E, E] of possible values
of E = E[v1 · v2] is equal to

[E1 · E2 −min(∆−
1 ·∆−

2 ,∆+
1 ·∆+

2 ), E1 · E2 + min(∆−
1 ·∆+

2 , ∆+
1 ·∆−

2 )]. (13)

For the expression v2
i , the range can be computed by using the general tech-

niques from [11, 16]. For readers’ convenience, let us give an explicit derivation.

Theorem 3 If we have a random variable vi with a known mean Ei and a
known range [Ei −∆−

i , Ei + ∆+
i ], then the interval [M i, M i] of possible values

of Mi = E[v2
i ] is equal to [E2

i , E2
i + ∆−

i ·∆+
i ].

We want to apply these theorems to the variables vi = ∆x′i for which Ei =
E[∆x′i] = 0; as a result, we get the following enclosure Eorig for the range [E, E]
of E = E[y] takes the following form:

Eorig = a′0 −
∑

i

a′ii · [0,∆−
i ·∆+

i ]+

n∑

i=1

∑

j 6=i

a′ij · [−min(∆−
i ·∆+

j , ∆+
i ·∆−

j ), min(∆−
i ·∆−

j , ∆+
i ·∆+

j )]. (14)

Alternatively, we can represent the matrix a′ij in terms of its eigenvalues λ′k and
the corresponding unit eigenvectors e′k = (e′k1, . . . , e

′
kn), then

y = a′0 +
n∑

i=1

a′i ·∆x′i +
n∑

k=1

λ′k ·
(

n∑

i=1

e′ki ·∆x′i

)
. (15)
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Each variable ∆x′i has 0 mean and range [−∆−
i , ∆+

i ]. Thus, for the linear

combination
n∑

i=1

e′ki ·∆x′i, the mean is equal to 0, and the range is

n∑

i=1

e′ki · [−∆−
i , ∆+

i ].

In other words, the range is equal to [−δ−k , δ+
k ], where

δ−k =
∑

i:e′
ki

<0

|e′ki| ·∆+
i +

∑

i:e′
ki

>0

e′ki ·∆−
i ; (16)

δ+
k =

∑

i:e′
ki

<0

|e′ki| ·∆−
i +

∑

i:e′
ki

>0

e′ki ·∆+
i . (17)

As a result, we get a different enclosure Enew for the range [E, E] of E = E[f ]:

Enew = a′0 +
n∑

k=1

λk · [0, δ−k · δ+
k ]. (18)

It is worth mentioning that when ∆−
i = ∆+

i , both enclosures coincide with the
enclosures corresponding to interval computations. Therefore, the results from
the previous section not only describe which method is better for estimating
the range of possible value of the desired quantity y, they also describe which
method is better for estimating the mean of y.

Even faster computations are possible. According to Theorem 2, in gen-
eral, to compute the range for E, it is sufficient to perform 5 multiplications:
one to compute E1 · E2 and 4 to compute 4 products ∆±

1 ·∆±
2 . In particular,

for vi = ∆x′i, since we have Ei = 0, we only need 4 multiplications.
It is possible to follow the ideas behind the fast algorithm for interval mul-

tiplication [2, 4] and reduce the number of multiplications by one.
For this, first, we compare ∆−

1 with ∆+
1 and ∆−

2 with ∆+
2 . As a result, we

get 2× 2 = 4 different comparison results. In all 4 cases, we can avoid at least
one multiplication in the formula (13); indeed:

• if ∆−
1 ≤ ∆+

1 and ∆−
2 ≤ ∆+

2 , then min(∆−
1 ·∆−

2 ,∆+
1 ·∆+

2 ) = ∆−
1 ·∆−

2 ;

• if ∆−
1 ≤ ∆+

1 and ∆+
2 ≤ ∆−

2 , then min(∆−
1 ·∆+

2 ,∆+
1 ·∆−

2 ) = ∆−
1 ·∆+

2 ;

• if ∆+
1 ≤ ∆−

1 and ∆−
2 ≤ ∆+

2 , then min(∆−
1 ·∆+

2 ,∆+
1 ·∆−

2 ) = ∆+
1 ·∆−

2 ;

• if ∆+
1 ≤ ∆−

1 and ∆+
2 ≤ ∆−

2 , then min(∆−
1 ·∆−

2 ,∆+
1 ·∆+

2 ) = ∆+
1 ·∆+

2 .

12



Proof of Theorem 2. Let us start with the expression for E. When p1 ≥ p2,
the expression (12) takes the following simplified form:

E = p2 · v1 · v2 + (p1 − p2) · v1 · v2 + (1− p1) · v1 · v2. (19)

Grouping together terms proportional to p1 and p2, we conclude that

E = p2 · v1 · (v2 − v2) + p1 · (v1 − v1) · v2 + v1 · v2. (20)

Substituting the expression defining pi into this formula, we conclude that

E = v1 · (E2 − v2) + (E1 − v1) · v2 + v1 · v2. (21)

Grouping the last two terms, we get

E = v1 · (E2 − v2) + E1 · v2. (22)

Finally, substituting vi = Ei −∆−
i and vi = Ei + ∆+

i , we conclude that

E = (E1 + ∆+
1 ) ·∆−

2 + E1 · (E2−∆−
2 ) = E1 ·∆−

2 + ∆+
1 ·∆−

2 + E1 ·E2−E1 ·∆−
2 ,

i.e.,
E = E1 · E2 + ∆+

1 ·∆−
2 . (23)

Similarly, if p1 ≤ p2, we get

E = E1 · E2 + ∆−
1 ·∆+

2 . (24)

The condition p1 ≥ p2, i.e., (E1 − v1)/(v1 − v1) ≥ (E2 − v2)/(v2 − v2), can
be equivalently described as

(E1 − v1) · (v2 − v2) ≥ (E2 − v2) · (v1 − v1), (25)

i.e., in terms of Ei and ∆±
i , as

∆−
1 · (∆−

2 + ∆+
2 ) ≥ ∆−

2 · (∆−
1 + ∆+

1 ),

or, equivalently, as
∆−

1 ·∆+
2 ≥ ∆+

1 ·∆−
2 . (26)

Since this condition determines whether we have an expression (23) or (24), we
thus get the desired formula for E.

For E, we similarly consider two cases: p1 + p2 ≥ 1 and p1 + p2 < 1. In the
first case, we have

E = (p1 + p2 − 1) · v1 · v2 + (1− p2) · v1 · v2 + (1− p1) · v1 · v2, (27)

i.e.,
E = p1 · (v1 − v1) · v2 + p2 · v1 · (v2 − v2)+

13



v1 · v2 + v1 · v2 − v1 · v2. (28)

Substituting the expressions for pi, we conclude that

E = (E1 − v1) · v2 + v1 · (E2 − v2) + v1 · v2 + v1 · v2 − v1 · v2, (29)

i.e.,
E = E1 · v2 + v1 · E2 − v1 · v2. (30)

Finally, substituting the expressions vi = Ei − ∆−
i and vi = Ei + ∆+

i , we
conclude that

E = E1 · E2 −∆+
1 ·∆+

2 . (31)

Similarly, if p1 + p2 < 1, then

E = p1 · v1 · v2 + p2 · v1 · v2 + (1− p1 − p2) · v1 · v2, (32)

i.e.,
E = p1 · (v1 − v1) · v2 + p2 · v1 · (v2 − c2) + v1 · v2. (33)

Substituting the expressions for pi, we conclude that

E = (E1 − v1) · v2 + v1 · (E2 − v2) + v1 · v2, (34)

i.e., that
E = E1 · v2 + v1 · (E2 − v2). (35)

Finally, substituting the expressions vi = Ei − ∆−
i and vi = Ei + ∆+

i , we
conclude that

E = E1 · E2 −∆−
1 ·∆−

2 . (36)

The inequality p1 + p2 ≥ 1 can be reformulated as

(E1 − v1) · (v2 − v2) + (E2 − v2) · (v1 − v1) ≥ (v1 − v1) · (v2 − v2), (37)

i.e., subtracting the first product from both sides, as

(E2 − v2) · (v1 − v1) ≥ (v1 − E1) · (v2 − v2), (38)

or, in terms of ∆±
i , as

∆−
2 · (∆−

1 + ∆+
1 ) ≥ ∆+

1 · (∆−
2 + ∆+

2 ),

i.e., equivalently,
∆−

1 ·∆−
2 ≥ ∆+

1 ·∆+
2 . (39)

Since this condition determines whether we have an expression (31) or (36), we
thus get the desired formula for E.

The theorem is proven.
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Proof of Theorem 3. It is known that the second moment Mi is equal to
Vi+E2

i , where Vi is the variance, i.e., the second moment of the auxiliary variable
v

def= vi − Ei for which E[v] = 0 and for which the range of possible values is
equal to [−∆−

i , ∆+
i ]. Thus, to prove the theorem, it is sufficient to prove that if

we have a random variable v with a known mean E[v] = 0 and a known range
[−∆−, ∆+], then the interval [M, M ] of possible values of M = E[v2] is equal
to [0,∆− ·∆+].

The second moment is always non-negative, so M ≥ 0. It is possible that v
is identically 0, in which case M = 0; thus, M = 0.

Among all distributions with 0 mean located on the interval [−∆−,∆+], we
want to find a distribution for which the second moment is the largest. For dis-
crete distributions, that attains values x1, . . . , xn with probabilities p1, . . . , pn,
this means that we must maximize the expression

∑
pi ·x2

i under the constraints
pi ≥ 0,

∑
pi = 1, and

∑
pi · xi = 1.

Once the values xi are fixed, this constraint optimization problem becomes
a linear programming problem with 2 equality constraints; according to the
general properties of linear programming problems problems, the maximum is
attained when at most 2 of the variables pi are non-zero (see [8] for detailed
description). Thus, to find the value M , it is sufficient to consider distributions
located at only two points x1 and x2. Since the average is 0, one of these values
should be negative, and another positive. Let us denote the negative value by
−x− and the positive one by x+, and the corresponding probabilities by p− and
p+.

Since p− + p+ = 1, we get p+ = 1− p−. Thus, from the condition

p− · (−x−) + (1− p−) · x+ = 0,

i.e., equivalently, p−(x− + x+) = x+, we conclude that p− = x+/(x− + x+) –
and hence, that p+ = 1− p− = x−/(x− + x+). Therefore,

M = p− · (x−)2 + p+ · (x+)2 =

x+

x− + x+
· (x−)2 +

x−

x− + x+
· (x+)2 =

x− · x+ · (x− + x+)
x− + x+

= x− · x+.

This expression is a strictly increasing function of both its variables x−, x+ ≥ 0.
Thus, its maximum under the constraints x− ≤ ∆− and x+ ≤ ∆+ is attained
when x− = ∆− and x+ = ∆+, and the corresponding value is exactly the one
we described. The theorem is proven.

What if measurements are actually independent? In the above text, we
assumed that the measurement errors ∆xi can be correlated, and we have no
information about possible correlations. In some cases, however, we do know
that the variables ∆xi are independent. Under this additional assumption of
independence, what is the possible range of E[y]?
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This question is the easiest to answer under the formula (10). Indeed, in
this case, E[∆x′i] = 0, and for i 6= j, we have E[∆x′i ·∆x′j ] = E[∆x′i] ·E[∆x′j ] =
0 · 0 = 0; so, we conclude that

E = E[y] = a′0 +
n∑

i=1

a′ii · E[(∆x′i)
2]. (40)

From Theorem 3, we already know how to compute the range of possible values
of E[(∆x′i)

2] for i = 1, . . . , n. So, in the case of independence, the interval of
possible values of E is equal to

[E, E] = a′0 +
n∑

i=1

a′ii · [0, ∆−
i ·∆+

i ].

This is the exact range, so there is no need for using eigenvectors and eigenvalues.

Remaining open problem. In practice, in addition to the first moments
E[∆xi], we often know the second moments E[∆xi ·∆xj ] of the corresponding
distributions. If we know the second moments, then, of course, computing the
first moment of the quadratic expression y is easy, since y is a linear combination
of terms ∆xi and ∆xi · ∆xj . However, in this case, a natural next question
remains open: what can we say about the second moment of y?
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