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Abstract. In many real-life situations, we are interested
in the value of a physical quantityy that is difficult or im-
possible to measure directly. To estimatey, we find some
easier-to-measure quantitiesx1, . . . , xn which are related to
y by a known relationy = f(x1, . . . , xn). Measurements are
never 100% accurate; hence, the measured valuesx̃i are dif-
ferent fromxi, and the resulting estimatẽy = f(x̃1, . . . , x̃n)
is different from the desired valuey = f(x1, . . . , xn). How
different?

Traditional engineering to error estimation in data pro-
cessing assumes that we know the probabilities of different

measurement error∆xi
def
= x̃i − xi.

In many practical situations, we only know the upper
bound∆i for this error; hence, after the measurement, the
only information that we have aboutxi is that it belongs

to the intervalxi
def
= [x̃i − ∆i, x̃i + ∆i]. In this case,

it is important to find the rangey of all possible values of
y = f(x1, . . . , xn) whenxi ∈ xi.

We start with a brief overview of the correspondinginter-
val computationproblems. We then discuss what to do when,
in addition to the upper bounds∆i, we have some partial in-
formation about the probabilities of different values of∆xi.

Keywords: indirect measurements, total error, interval
computations

1. FORMULATION OF THE PROBLEM

1.1. Why indirect measurements?
In many real-life situations, we are interested in the

value of a physical quantityy that is difficult or impos-
sible to measure directly. Examples of such quantities
are the distance to a star and the amount of oil in a given
well. Since we cannot measurey directly, a natural idea
is to measurey indirectly. Specifically, we find some
easier-to-measure quantitiesx1, . . . , xn which are re-
lated to y by a known relationy = f(x1, . . . , xn);
this relation may be a simple functional transformation,
or complex algorithm (e.g., for the amount of oil, nu-
merical solution to an inverse problem). Then, to es-
timatey, we first measure the values of the quantities
x1, . . . , xn, and then we use the resultsx̃1, . . . , x̃n of
these measurements to to compute an estimateỹ for y
asỹ = f(x̃1, . . . , x̃n).

For example, to find the resistanceR, we measure
currentI and voltageV , and then use the known rela-
tion R = V/I to estimate resistance as̃R = Ṽ /Ĩ.

Computing an estimate fory based on the results
of direct measurements is calleddata processing; data
processing is the main reason why computers were in-
vented in the first place, and data processing is still one
of the main uses of computers as number crunching de-
vices.

Comment.In this paper, for simplicity, we consider
the case when the relation betweenxi andy is known
exactly; in some practical situations, we only known an
approximate relation betweenxi andy.

1.2. Why interval computations? From computing
to probabilities to intervals

Measurement are never 100% accurate, so in real-
ity, the actual valuexi of i-th measured quantity can
differ from the measurement result̃xi. Because of

thesemeasurement errors∆xi
def= x̃i − xi, the result

ỹ = f(x̃1, . . . , x̃n) of data processing is, in general,
different from the actual valuey = f(x1, . . . , xn) of
the desired quantityy [11].

It is desirable to describe the error∆y
def= ỹ − y

of the result of data processing. To do that, we must
have some information about the errors of direct mea-
surements.

What do we know about the errors∆xi of direct
measurements? First, the manufacturer of the measur-
ing instrument must supply us with an upper bound∆i

on the measurement error. If no such upper bound is
supplied, this means that no accuracy is guaranteed,
and the corresponding “measuring instrument” is prac-
tically useless. In this case, once we performed a mea-
surement and got a measurement resultx̃i, we know
that the actual (unknown) valuexi of the measured
quantity belongs to the intervalxi = [xi, xi], where
xi = x̃i −∆i andxi = x̃i + ∆i.

In many practical situations, we not only know the
interval [−∆i, ∆i] of possible values of the measure-
ment error; we also know the probability of different
values∆xi within this interval. This knowledge under-
lies the traditional engineering approach to estimating



the error of indirect measurement, in which we assume
that we know the probability distributions for measure-
ment errors∆xi.

In practice, we can determine the desired probabil-
ities of different values of∆xi by comparing the re-
sults of measuring with this instrument with the results
of measuring the same quantity by a standard (much
more accurate) measuring instrument. Since the stan-
dard measuring instrument is much more accurate than
the one use, the difference between these two measure-
ment results is practically equal to the measurement er-
ror; thus, the empirical distribution of this difference
is close to the desired probability distribution for mea-
surement error. There are two cases, however, when
this determination is not done:

• First is the case of cutting-edge measurements,
e.g., measurements in fundamental science. When
a Hubble telescope detects the light from a distant
galaxy, there is no “standard” (much more accu-
rate) telescope floating nearby that we can use to
calibrate the Hubble: the Hubble telescope is the
best we have.

• The second case is the case of measurements on
the shop floor. In this case, in principle, every sen-
sor can be thoroughly calibrated, but sensor cal-
ibration is so costly – usually costing ten times
more than the sensor itself – that manufacturers
rarely do it.

In both cases, we have no information about the prob-
abilities of ∆xi; the only information we have is the
upper bound on the measurement error.

In this case, after we performed a measurement
and got a measurement resultx̃i, the only informa-
tion that we have about the actual valuexi of the mea-
sured quantity is that it belongs to the intervalxi =
[x̃i − ∆i, x̃i + ∆i]. In such situations, the only infor-
mation that we have about the (unknown) actual value
of y = f(x1, . . . , xn) is that y belongs to the range
y = [y, y] of the functionf over the boxx1× . . .×xn:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on
the input intervalsxi is called interval computations;
see, e.g., [3,4].

1.3. Interval computations techniques: brief re-
minder

Historically the first method for computing the en-
closure for the range is the method which is sometimes
called “straightforward” interval computations. This
method is based on the fact that inside the computer, ev-
ery algorithm consists of elementary operations (arith-
metic operations,min, max, etc.). For each elemen-
tary operationf(a, b), if we know the intervalsa and
b for a andb, we can compute the exact rangef(a,b).
The corresponding formulas form the so-calledinterval

arithmetic. For example,

[a, a]+[b, b] = [a+b, a+b]; [a, a]−[b, b] = [a−b, a−b];

[a, a] · [b, b] =

[min(a · b, a · b, a · b, a · b), max(a · b, a · b, a · b, a · b)].
In straightforward interval computations, we repeat the
computations forming the programf step-by-step, re-
placing each operation with real numbers by the corre-
sponding operation of interval arithmetic. It is known
that, as a result, we get an enclosureY ⊇ y for the
desired range.

In some cases, this enclosure is exact. In more com-
plex cases (see examples below), the enclosure has ex-
cess width.

There exist more sophisticated techniques for pro-
ducing a narrower enclosure, e.g., a centered form
method. However, for each of these techniques, there
are cases when we get an excess width. Reason: as
shown in [8], the problem of computing the exact range
is known to be NP-hard even for polynomial func-
tionsf(x1, . . . , xn) (actually, even for quadratic func-
tionsf ).

1.4. Practical problem
In some practical situations, in addition to the lower

and upper bounds on each random variablexi, we know
the boundsEi = [Ei, Ei] on its meanEi.

Indeed, in measurement practice (see, e.g., [11]),
the overall measurement error∆x is usually repre-
sented as a sum of two components:

• a systematicerror component∆sx which is de-
fined as the expected valueE[∆x], and

• a randomerror component∆rx which is defined
as the difference between the overall measurement
error and the systematic error component:

∆rx
def= ∆x−∆sx.

In addition to the bound∆ on the overall measurement
error, the manufacturers of the measuring instrument
often provide an upper bound∆s on the systematic er-
ror component:|∆sx| ≤ ∆s.

This additional information is provided because,
with this additional information, we not only get a
bound on the accuracy of a single measurement, but
we also get an idea of what accuracy we can attain
if we use repeated measurements to increase the mea-
surement accuracy. Indeed, the very idea that repeated
measurements can improve the measurement accuracy
is natural: we measure the same quantity by using the
same measurement instrument several (N ) times, and
then take, e.g., an arithmetic average

x̄ =
x̃(1) + . . . + x̃(N)

N

of the corresponding measurement results

x̃(1) = x + ∆x(1), . . . , x̃(N) = x + ∆x(N).



• If systematic error is the only error component,
then all the measurements lead to exactly the same
valuex̃(1) = . . . = x̃(N), and averaging does not
change the value – hence does not improve the ac-
curacy.

• On the other hand, if we know that the systematic
error component is 0, i.e.,E[∆x] = 0 andE[x̃] =
x, then, asN → ∞, the arithmetic average tends
to the actual valuex. In this case, by repeating
the measurements sufficiently many times, we can
determine the actual value ofx with an arbitrary
given accuracy.

In general, by repeating measurements sufficiently
many times, we can arbitrarily decrease the random er-
ror component and thus attain accuracy as close to∆s

as we want.
When this additional information is given, then, af-

ter we performed a measurement and got a measure-
ment result̃x, then not only we get the information that
the actual valuex of the measured quantity belongs to
the intervalx = [x̃ −∆, x̃ + ∆], but we can also con-
clude that the expected value ofx = x̃−∆x (which is
equal toE[x] = x̃−E[∆x] = x̃−∆sx) belongs to the
intervalE = [x̃−∆s, x̃ + ∆s].

If we have this information for everyxi, then, in ad-
dition to the intervaly of possible value ofy, we would
also like to know the interval of possible values ofE[y].
This additional interval will hopefully provide us with
the information on how repeated measurements can im-
prove the accuracy of this indirect measurement. Thus,
we arrive at the following problem:

1.5. New problem in precise terms
Given an algorithm computing a function

f(x1, . . . , xn) from Rn to R, and valuesx1, x1,
. . . ,xn, xn, E1, E1, . . . ,En, En, we want to find

E
def= min{E[f(x1, . . . , xn)] | all distributions of

(x1, . . . , xn) for which

x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn],

E[x1] ∈ [E1, E1], . . . E[xn] ∈ [En, En]};
andE which is the maximum ofE[f(x1, . . . , xn)] for
all such distributions.

In addition to considering all possible distributions,
we can also consider the case when all the variablesxi

are independent.

2. HOW WE SOLVE THIS PROBLEM

The main idea behind straightforward interval com-
putations can be applied here as well. Namely, first, we
find out how to solve this problem for the case when
n = 2 andf(x1, x2) is one of the standard arithmetic
operations. Then, once we have an arbitrary algorithm
f(x1, . . . , xn), we parse it and replace each elementary

operation on real numbers with the corresponding op-
eration on quadruples(x,E, E, x).

To implement this idea, we must therefore know
how to, solve the above problem for elementary opera-
tions.

For addition, the answer is simple. SinceE[x1 +
x2] = E[x1] + E[x2], if y = x1 + x2, there is only one
possible value forE = E[y]: the valueE = E1 + E2.
This value does not depend on whether we have cor-
relation or nor, and whether we have any information
about the correlation. Thus,E = E1 + E2.

Similarly, the answer is simple forsubtraction: if
y = x1 − x2, there is only one possible value forE =
E[y]: the valueE = E1 − E2. Thus,E = E1 −E2.

Formultiplication, if the variablesx1 andx2 are in-
dependent, thenE[x1 · x2] = E[x1] · E[x2]. Hence,
if y = x1 · x2 andx1 andx2 are independent, there
is only one possible value forE = E[y]: the value
E = E1 · E2; henceE = E1 ·E2.

The first non-trivial case is the case of multiplication
in the presence of possible correlation. When we know
the exact values ofE1 andE2, the solution to the above
problem is as follows:

Theorem 1. For multiplicationy = x1 · x2, when we
have no information about the correlation,

E = max(p1 + p2 − 1, 0) · x1 · x2+

min(p1, 1− p2) · x1 · x2+

min(1− p1, p2) · x1 · x2+

max(1− p1 − p2, 0) · x1 · x2;

and
E = min(p1, p2) · x1 · x2+

max(p1 − p2, 0) · x1 · x2+

max(p2 − p1, 0) · x1 · x2+

min(1− p1, 1− p2) · x1 · x2,

wherepi
def= (Ei − xi)/(xi − xi).

Proof. Let us show that a general distribution with
E[xi] = Ei can be simplified without changing the val-
uesE[xi] andE[x1 · x2]. Thus, to describe possible
values ofE[x1 ·x2], we do not need to consider all pos-
sible distributions, it is sufficient to consider only the
simplified ones.

We will describe the simplification for discrete
distributions that concentrate on finitely many points
x(j) = (x(j)

1 , x
(j)
2 ), 1 ≤ j ≤ N . An arbitrary prob-

ability distribution can be approximated by such distri-
butions, so we do not lose anything by this restriction.

So, we have a probability distribution in which the
point x(1) appears with the probabilityp(1), the point
x(2) appears with the probabilityp(2), etc. Let us mod-
ify this distribution as follows: pick a pointx(j) =
(x(j)

1 , x
(j)
2 ) that occurs with probabilityp(j), and re-

place it with two points:x(j) = (x1, x
(j)
2 ) with proba-

bility p(j) · p(j) andx(j) = (x1, x
(j)
2 ) with probability



p(j) · p(j), wherep(j) def= (x(j)
1 − x1)/(x1 − x1) and

p(j) def= 1− p(j) :

@¡
x(j)

¾
x(j) x(j)

-

Here, the valuesp(j) andp(j) = 1− p(j) are chosen

in such a way thatp(j) · x1 + p(j) · x1 = x
(j)
1 . Due to

this choice,p(j) · p(j) · x1 + p(j) · p(j) · x1 = p(j) · x(j)
1 ,

hence for the new distribution, the mathematical expec-
tationE[x1] is the same as for the old one. Similarly,
we can prove that the valuesE[x2] andE[x1 · x2] do
not change.

We started with a general discrete distribution with
N points for each of whichx(j)

1 could be inside the
intervalx1, and we have a new distribution for which
≤ N − 1 points have the valuex1 inside this interval.
We can perform a similar replacement for allN points
and get a distribution with the same values ofE[x1],
E[x2], andE[x1 · x2] as the original one but for which,
for every point,x1 is equal either tox1, or tox1.

For the new distribution, we can perform a simi-
lar transformation relative tox1 and end up – without
changing the valuesx1 – with the distribution for which
always eitherx2 = x1 or x2 = x2:

@¡
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x(j)

x(j)

x(j)

Thus, instead of considering all possible distribu-
tions, it is sufficient to consider only distributions for
which x1 ∈ {x1, x1} and x2 ∈ {x2, x2}. In other
words, it is sufficient to consider only distributions
which are located in the four corner points(x1, x2),
(x1, x2), (x1, x2), and(x1, x2) of the boxx1 × x2.

Such distribution can be characterized by the prob-
abilities of these four points. These four probabilities
must satisfy 3 conditions: that their sum is 1, thatE[x1]
isE1, and thatE[x2] = E2. Thus, we only have one pa-
rameter left; optimizing with respect to this parameter,
we get the desired formulas forE andE. The theorem
is proven.

When we only know the intervalsEi of possible val-
ues ofEi, instead of the valuespi, we have the corre-
sponding intervalspi = (Ei− xi)/(Ei− xi). In terms
of these intervals, we get the following results:

Theorem 2. For multiplication under no information
about dependence, to findE, it is sufficient to consider
the following combinations ofp1 andp2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2;

p1 = p1 andp2 = p
2
; p1 = p1 andp2 = p2;

• p1 = max(p
1
, 1− p2) andp2 = 1− p1

(if 1 ∈ p1 + p2); and

• p1 = min(p1, 1− p
2
) andp2 = 1− p1

(if 1 ∈ p1 + p2).

The smallest value ofE for all these cases is the desired
lower boundE.

Theorem 3. For multiplication under no information
about dependence, to findE, it is sufficient to consider
the following combinations ofp1 andp2:

• p1 = p
1

and p2 = p
2
; p1 = p

1
and p2 = p2;

p1 = p1 andp2 = p
2
; p1 = p1 andp2 = p2;

• p1 = p2 = max(p
1
, p

2
) (if p1 ∩ p2 6= ∅); and

• p1 = p2 = min(p1, p2) (if p1 ∩ p2 6= ∅).
The largest value ofE for all these cases is the desired
upper boundE.

Proof. We will prove Theorem 3; the proof of Theo-
rem 2 is similar. The formula forE given in Theorem
1 can be simplified if we consider two cases:p1 ≤ p2

andp1 ≥ p2. To find the largest possible valueE of
E, it is sufficient to consider the largest possible values
for each of these cases, and then take the largest of the
resulting two numbers.

In each case, for a fixedp2, the formula is linear
in p1. To find the maximum of a linear function on an
interval, it is sufficient to consider this interval’s end-
points. Thus, the maximum inp1 is attained when ei-
ther p1 attains its smallest possible valuep

1
, or when

p1 attains the largest possible value within this case; de-
pending onp2, this value is eitherp1 = p1 or p1 = p2.

Thus, to find the maximum for each cases, it is suf-
ficient to consider only the following cases:p1 = p

1
,

p1 = p1, andp1 = p2. Similarly, it is sufficient to con-
sider only the following cases forp2: p2 = p

2
, p2 = p2,

andp1 = p2.
Whenp1 = p2, the probabilityp1 = p2 can take

all possible values from the intersectionp1 ∩ p2. the
formula forE is linear inp1, so to find its maximum,
it is sufficient to consider the endpoints of the interval
p1 ∩ p2, i.e., the valuesp1 = p2 = max(p

1
, p

2
) and

p1 = p2 = min(p1, p2). The theorem is proven.

For theinversey = 1/x1, the finite range is possible
only when0 6∈ x1. Without losing generality, we can



consider the case when0 < x1. In this case, methods
presented in [12] lead to the following bound:

Theorem 4. For the inversey = 1/x1, the range of
possible values ofE is

E = [1/E1, p1/x1 + (1− p1)/x1].

(Herep1 denotes the same value as in Theorem 1).

Proof. For x1 > 0, the functionf(x1)
def= 1/x1 is

convex: for everyx1, x′1, andα ∈ [0, 1], we have

f(α · x1 + (1−α) · x′1) ≤ α · f(x1) + (1−α) · f(x′1).

Hence, if we are looking for a minimum ofE[1/x1],
we can replace every two points from the probability
distribution with their average, and the resulting value
of E[1/x1] will only decrease:

- ¾@¡ @¡@¡

x1 x′1

So, the minimum is attained when the probability dis-
tribution is concentrated on a single value – which has
to beE1. Thus, the smallest possible value ofE[1/x1]
is 1/E1.

Due to the same convexity, if we want maximum of
E[1/x1], we should replace every valuex1 ∈ [x1, x1]
by a probabilistic combination of the valuesx1, x1:

¾ -@¡ @¡@¡

x1 x1 x1

So, the maximum is attained when the probability dis-
tribution is concentrated on these two endpointsx1 and
x1. Since the average ofx1 should be equal toE1, we
can, similarly to the proof of Theorem 1, conclude that
in this distribution,x1 occurs with probabilityp1, and
x1 occurs with probability1− p1. For this distribution,
the valueE[1/x1] is exactly the upper bound from the
formulation of the theorem. The theorem is proven.

Theorem 5. For minimumy = min(x1, x2), whenx1

and x2 are independent, we haveE = min(E1, E2)
and

E = p1 ·p2 ·min(x1, x2)+p1 · (1−p2) ·min(x1, x2)+

(1− p1) · p2 ·min(x1, x2)+

(1− p1) · (1− p2) ·min(x1, x2).

Theorem 6. For maximumy = min(x1, x2), whenx1

and x2 are independent, we haveE = max(E1, E2)
and

E = p1 ·p2 ·max(x1, x2)+p1 ·(1−p2) ·max(x1, x2)+

(1− p1) · p2 ·max(x1, x2)+

(1− p1) · (1− p2) ·max(x1, x2).

Proof. We will prove Theorem 5; the proof of The-
orem 6 is similar. Sincemin(x1, x2) ≤ x1, we
have E[min(x1, x2)] ≤ E[x1] = E1. Similarly,
E[min(x1, x2)] ≤ E2, hence, E[min(x1, x2)] ≤
min(E1, E2). The valuemin(E1, E2) is possible when
x1 = E1 with probability 1 andx2 = E2 with prob-
ability 1. Thus,min(E1, E2) is the exact upper bound
for E[min(x1, x2)].

For eachx2, the functionx1 → min(x1, x2) is
concave; therefore, if we replace each pointx(j) =
(x(j)

1 , x
(j)
2 ) by the corresponding probabilistic com-

bination of the points(x1, x
(j)
2 ) and (x1, x

(j)
2 ) (as

in the proof of Theorem 4), we preserveE[x1] and
E[x2] and decrease the valueE[min(x1, x2)]. Thus,
when we are looking for the smallest possible value of
E[min(x1, x2)], it is sufficient to consider only the dis-
tributions for whichx1 is located at one of the endpoints
x1 or x1. Similarly to the proof of Theorem 1, the prob-
ability of x1 is equal top1.

Similarly, we can conclude that to find the largest
possible value ofE[min(x1, x2)], it is sufficient to con-
sider only distributions in whichx2 can take only two
values:x2 andx2. To get the desired value ofE2, we
must havex2 with probabilityp1 andx2 with probabil-
ity 1− p2.

Since we consider the case whenx1 andx2 are in-
dependent, and each of them takes two possible values,
we can conclude thatx = (x1, x2) can take four pos-
sible values(x1, x2), (x1, x2), (x1, x2), and(x1, x2),
and the probability of each of these values is equal to
the product of the probabilities corresponding tox1 and
x2. For this distribution,E[min(x1, x2)] is exactly the
expression from the formulation of the theorem. Theo-
rem 5 is proven.

Theorem 7. For minimumy = min(x1, x2), when we
have no information about the correlation betweenx1

andx2, we haveE = min(E1, E2),

E = max(p1 + p2 − 1, 0) ·min(x1, x2)+

min(p1, 1− p2) ·min(x1, x2)+

min(1− p1, p2) ·min(x1, x2)+

max(1− p1 − p2, 0) ·min(x1, x2).

Theorem 8. For maximumy = max(x1, x2), when we
have no information about the correlation betweenx1

andx2, we haveE = max(E1, E2) and

E = min(p1, p2) ·max(x1, x2)+

max(p1 − p2, 0) ·max(x1, x2)+

max(p2 − p1, 0) ·max(x1, x2)+

min(1− p1, 1− p2) ·max(x1, x2).



Proof. We will prove Theorem 7; the proof of Theorem
8 is similar. Similarly to the proof of Theorem 5, we
can conclude thatmin(E1, E2) is the attainable upper
bound forE[min(x1, x2)]. Due to convexity, to find
the lower bound forE[min(x1, x2)], it is sufficient to
consider distributions located at the four corners of the
box x1 × x2. Similar to the proof of Theorem 1, we
conclude that such distribution can be characterized by
a single parameter. Optimizing with respect to this pa-
rameter, we get the desired formula forE. The theorem
is proven.

Similar formulas can be produced for the cases
when there is a strong correlation betweenxi: namely,
whenx1 is (non-strictly) increasing or decreasing inx2.

3. ADDITIONAL RESULTS

The above techniques assume that we already know
the moments etc., but how can we compute them based
on the measurement results? For example, when we
have only interval ranges[xi, xi] of sample values
x1, . . . , xn, what is the interval[V , V ] of possible val-
ues for the varianceV of these values?

It turns out that most such problems are computa-
tionally difficult (to be more precise, NP-hard), and we
provide feasible algorithms that compute these bounds
under reasonable easily verifiable conditions [1,5,9].
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