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Abstract. In many real-life situations, we are interested gy example, to find the resistan& we measure
in the value of a physical quantity that is difficult or im- o\, rents and voltagel’, and then use the known rela-
pos§|ble to measure dlrgc_:tly. To estlm@tewe find some tion R = V/I to estimate resistance &=V /1.
easier-to-measure quantities, . . ., z, which are related to Computing an estimate fay based on the results

y by a known relationy = f(z1,...,z,). Measurements are : . .
never 100% accurate; hence, the measured valuage dif- of direct measurements is callddta processingdata

ferent fromz;, and the resulting estimafe= f(7.,...,7,) Processingis the main reason why computers were in-
is different from the desired valug = f(z1,...,z,). How Vvented in the first place, and data processing is still one

different? of the main uses of computers as number crunching de-
Traditional engineering to error estimation in data prowvices.

cessing assumes that we know the probabilities of different ] ] o ]
def ~ Commentln this paper, for simplicity, we consider

measurement errdkx; = x; — x;. th hen th lation bet du is k
In many practical situations, we only know the upper € case when the relation betwegnandy IS Known

bound A, for this error: hence, after the measurement, thgxactly_; in some PraCtical situations, we only known an
only information that we have about; is that it belongs a@Pproximate relation between andy.
. def [~ ~ .

to the intervalx; = [z — Aj,z; + Al In this case, 1.2. Why interval computations? From computing
it is important to find the rangg of all possible values of to probabilities to intervals
y=S(@1,...,2n) whenz; € x;. . Measurement are never 100% accurate, so in real-

We start with a brief overview of the correspondinger- itv. th tual valuer. of i-th d tit
val computatiorproblems. We then discuss what to do When,I Y, the aclual valuer; of :-th measured quantity can

in addition to the upper bounds;, we have some partial in- differ from the measurement resulj. Because of

. s . def ~
formation about the probabilities of different valuesdi;.  thesemeasurement errordz; = 7; — x;, the result

y = f(zi1,...,7,) of data processing is, in general,
different from the actual valug = f(z1,...,z,) of
the desired quantity [11].

It is desirable to describe the errdyy def y—y
of the result of data processing. To do that, we must
have some information about the errors of direct mea-
surements.

1.1. Why indirect measurements? What do we know about the errorsz; of direct

In many real-life situations, we are interested in theneasurements? First, the manufacturer of the measur-
value of a physical quantity that is difficult or impOS- |ng instrument must Supp|y us with an upper bOlm,d
sible to measure directly. Examples of such quantitiesn the measurement error. If no such upper bound is
are the distance to a star and the amount of oil in a g|V%pp||ed' th|s means that no accuracy is guaranteed,
We" Since we cannot measlge”rectly, a natura.l idea and the Corresponding “measuring instrument” is prac_
is to measurey indirectly. Specifically, we find some tjcally useless. In this case, once we performed a mea-
easier-to-measure quantities, ..., z, which are re- syrement and got a measurement resyjtwe know

lated toy by a known relationy = f(z1,...,2n); that the actual (unknown) value; of the measured
this relation may be a simple functional transformationgyantity belongs to the interval; = [z;,7;], where

or complex algorithm (e.g., for the amount of oil, NU-z. = 7, — A; andz; = 7; + A,.

merical solution to an inverse problem). Then, to es-  |n many practical situations, we not only know the
timatey, we first measure the values of the quantitieghteryal [—A;, A;] of possible values of the measure-
r1,...,%,, and then we use the results,..., 2, of ment error; we also know the probability of different
these measurements to to compute an estié®e y  valuesAz; within this interval. This knowledge under-
asy = f(21,...,Zy). lies the traditional engineering approach to estimating
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1. FORMULATION OF THE PROBLEM



the error of indirect measurement, in which we assumarithmetic For example,
that we know the probability distributions for measure- - - - -
ment errorene, ty (0, @416, 5] = [a+b,a+3]: [a,3]—[b, ] = [a—b,a—b]
L |?r§pf;tice, we ?an detﬂermitr:e the des_ired Erobabil— [a,a] - [b,b] =
ities of different values ofAz; by comparing the re- . - = T LT
sults of measuring with this inst?/umentpwithgthe resultg™in(@ &,a-b,a-b,a-b),max(a-b,a-b,a-b,a-b)].
of measuring the same quantity by a standard (mudh straightforward interval computations, we repeat the
more accurate) measuring instrument. Since the stafemputations forming the prograistep-by-step, re-
dard measuring instrument is much more accurate thgacing each operation with real numbers by the corre-
the one use, the difference between these two measuggonding operation of interval arithmetic. It is known
ment results is practically equal to the measurement eihat, as a result, we get an enclosife2 y for the
ror; thus, the empirical distribution of this differencedesired range.
is close to the desired probability distribution for mea- In some cases, this enclosure is exact. In more com-
surement error. There are two cases, however, wh@tex cases (see examples below), the enclosure has ex-
this determination is not done: cess width.
There exist more sophisticated techniques for pro-
e First is the case of cutting-edge measurementgucing a narrower enclosure, e.g., a centered form
e.g., measurements in fundamental science. Wheflethod. However, for each of these techniques, there
a Hubble telescope detects the light from a distanire cases when we get an excess width. Reason: as
galaxy, there is no “standard” (much more accushown in [8], the problem of computing the exact range
rate) telescope floating nearby that we can use tg known to be NP-hard even for polynomial func-

calibrate the Hubble: the Hubble telescope is théions f(z4,...,,) (actually, even for quadratic func-
best we have. tions f).

e The second case is the case of measurements on 1-4- Practical problem -
the shop floor. In this case, in principle, every sen- In some practical situations, in addition to the lower

sor can be thoroughly calibrated, but sensor ca@nd upper bounds on each random variableve know
ibration is so costly — usually costing ten timesthe® bounds; = [E;, E;] on its meanF;.

more than the sensor itself — that manufacturers 'Ndeed, in measurement practice (see, e.g., [11]),
rarely do it. the overall measurement errdxz is usually repre-

sented as a sum of two components:
In both cases, we have no information about the prob-
abilities of Ax;; the only information we have is the
upper bound on the measurement error.
In this case, after we performed a measurement e arandomerror componeni\,.z which is defined

e a systematicerror componentA,z which is de-
fined as the expected valdgAz], and

and got a measurement resulf, the only informa- as the difference between the overall measurement
tion that we have about the actual valugeof the mea- error and the systematic error component:

sured quantity is that it belongs to the intervgl = def

[Z; — As, T; + Ay]. In such situations, the only infor- Arz = Az — Ay,

mation that we have about the (unknown) actual value .
of y = f(a1,...,x,) is thaty belongs to the range In addition to the bound\ on the overall measurement

y = [y, 7] of the functionf over the boxx; x ... x x,,:  €IToF, the 'manufacturers of the measuring insFrument

- often provide an upper bountl, on the systematic er-
y=u7={f(z1,...,zn) |71 €X1,..., 2, €x,}. TOF componentjA z| < A,.

- This additional information is provided because,
The process of computing this interval range based o#ith this additional information, we not only get a
the input intervalsx; is calledinterval computations bound on the accuracy of a single measurement, but
see, e.g., [3,4]. we also get an idea of what accuracy we can attain

) ) ) if we use repeated measurements to increase the mea-

1.3. Interval computations techniques: brief re-g,rement accuracy. Indeed, the very idea that repeated

minder . _ measurements can improve the measurement accuracy
Historically the first method for computing the en-is hatural: we measure the same quantity by using the

closure for the range is the method which is sometimes; e measurement instrument seveid) {imes, and
called “straightforward” interval computations. ThiSihen take, e.g., an arithmetic average

method is based on the fact that inside the computer, ev-

ery algorithm consists of elementary operations (arith- . T 4 470

metic operationsmin, max, etc.). For each elemen- N

tary operationf (a, b), if we know the intervalsa and  f the corresponding measurement results
b for a andb, we can compute the exact ranfig, b).

The corresponding formulas form the so-caliegrval W =24+ Az, T =z 4 Az




e If systematic error is the only error component,operation on real numbers with the corresponding op-
then all the measurements lead to exactly the sanegation on quadruples;, E, E, T).

valuez® = ... = V), and averaging does not  To implement this idea, we must therefore know
change the value — hence does not improve the ahew to, solve the above problem for elementary opera-
curacy. tions.

_ _ For addition, the answer is simple. Sindg[z; +
e On the other hand, if we know that the systematiG,,| — E[z,] + E[x,), if y = 21 + a2, there is only one
error componentis 0, i.e5[Ax] = 0 andE[Z] = possible value folz = Ely]: the valueE = E; + Es.
x, then, asV — oo, the arithmetic average tends This value does not depend on whether we have cor-
to the actual valuer. In this case, by repeating rejation or nor, and whether we have any information
the measurements sufficiently many times, we cagpout the correlation. Thu = E; + Es.
determine the actual value efwith an arbitrary Similarly, the answer is simple faubtraction: if

given accuracy. y = x1 — xo, there is only one possible value far =

. .. Ely|: the valueE = E; — E5. Thus,E = E; — E,.
In general, by repeating measurements sufficiently L . :

. L For multiplication, if the variablesc; andz, are in-
many times, we can arbitrarily decrease the random eé-e endent, ther| | = B[] - Elzs]. Hence
ror component and thus attain accuracy as clos&to 2cP : T1 L2 1 2l :
as we want if y = x1 - xo andz; andz, are independent, there

When this additional information is given, then, af-IS only one possible value ol Ely]: the value

F =F- FEs; henceE = E; - Es.

ter we performed a measurement and got a measure- . . . L
The first non-trivial case is the case of multiplication

ment resulf?, then not only we get the information that in the presence of possible correlation. When we know
the actual value: of the measured quantity belongs to P P '

the intervalx — [ — A, 7 + AJ, but we can also con- the exact values df’; andE, the solution to the above

clude that the expected value:ot= 7 — Az (which is problem is as follows:
equal toE[z] = 7 — E[Ax] = T — Ayz) belongs to the  Theorem 1. For multiplicationy = z; - x2, when we
intervalE = [z — A, 7 + Al have no information about the correlation,

If we have this information for every;,, then, in ad-
dition to the intervajly of possible value of;, we would
also like to know the interval of possible valuesify].

E =max(p1 +p2 —1,0) - T1 - To+

: " X X X ) min(p1, 1 —p2) - T1 - 2o+
This additional interval will hopefully provide us with . B
the information on how repeated measurements can im- min(l —pi,p2) - 2, - Tot
prove the accuracy of this indirect measurement. Thus, max(1l —p; — p2,0) - 21 - Zy;
we arrive at the following problem:
and o
1.5. New problem in precise terms E = min(py, p2) - Ty - To+
Given an algorithm computing a furlcnon max(p; — p2,0) - Ty - Tyt
fze, .. x) from R" to R, and valuesz,, 7, B
Ty, Ty, By, By, .., B, Ey, we want to find max(pz —p1,0) - z; - To+

min(l —p1,1 —pa) - 21 - Zo,

def

def . . . .
E = min{E|[f(x1,...,2,)]]| all distributions of wherep; < (E: — 2.)/(@: — z.).

(z1,...,xy) for which Proof. Let us show that a general distribution with
E[z;] = E; can be simplified without changing the val-

21 € [21,T1), -, T € [2n, T, uesE[z;] and E[z; - 25]. Thus, to describe possible

E[z1] € |Ey,E1),... Elz,] € |E,, Eal}; vralues.ofbf[xl.- z2], we do not need to consider all pos-

- sible distributions, it is sufficient to consider only the
and E which is the maximum ofZ(f(z1, ..., 2,)] for  simplified ones.

all such distributions. We will describe the simplification for discrete

In addition to considering all possible distributions gjstributions that concentrate on finitely many points
we can also consider the case when all the variables 20) — (x?),x;”), 1 < j < N. An arbitrary prob-

are independent. ability distribution can be approximated by such distri-

butions, so we do not lose anything by this restriction.
2. HOW WE SOLVE THIS PROBLEM So, we have a probability distribution in which the

The main idea behind straightforward interval com-pomtw(l) appears with the probability("), the point

) : g : 2(2) appears with the probability®), etc. Let us mod-
putations can be applied here as well. Namely, first, W this distribution as follows: ic’;k a point) —
find out how to solve this problem for the case when” ;)" ;) - P P B

n = 2 and f(x1,z5) is one of the standard arithmetic (zy '3 ) that oceurs with probabi(li_t)y)(ﬂ)., and re-
operations. Then, once we have an arbitrary algorithilace it with two pointsz'/) = (z;,2’) with proba-
f(x1,...,2,), we parse it and replace each elementargility p(@ - p) andz@ = (z,, ") with probability



p@ - p), wherep) @Y~ 2))/@ — z,) and When we only know the intervalg; of possible val-

) def | _ ) ues of ;, instead of the values;, we have the corre-
= ’ sponding intervalp; = (E; —z,)/(E; —z;). Interms
of these intervals, we get the following results:
Theorem 2. For multiplication under no information
about dependence, to fidd, it is sufficient to consider
the following combinations qgf; andps:
20) 2() ()

% e pr=p andpy = p,;p1 =p, andpy = p;
p1 =Py andps = p,; p1 =P, andps = p,;

e p1 =max(p,1—py)andps =1 —p;
(if 1 € p1 + p2); and

e p; = min(p,, 1 —]32) andps; =1 —pq

Here, the valueg?) andp¥) = 1 —5() are chosen (if 1 € py + pa).

in such a way thap(?) - 7, + pU) - 2, = 2{). Due to . .
this choicep - 50) . 2, + G () . (). )  Thesmallestvalue df for all these cases is the desired
proDe LD =P T Jower boundE.

hence for the new distribution, the mathematical expec-
tation E[z4] is the same as for the old one. Similarly, Theorem 3. For multiplication under no information
we can prove that the valuds{z,] and E[z, - #5] do  about dependence, to fidd, it is sufficient to consider
not change. the following combinations gf; andps:

We started with a general discrete distribution with _ o
N points for each of which:'”) could be inside the ~ * 71 = 2 andp, = Py P1 = Py and p» = P
interval x;, and we have a new distribution for which p1 =Py andpy = p,; p1 =P, andpz = p,;
< N — 1 points hav_e t_he value; inside this inte_rval. o p1 = p> = max(p,,p,) (if p1 N p2 # 0); and
We can perform a similar replacement for Allpoints
and get a distribution with the same valuesHit], e p; = po = min(py,Dy) (if p1 Np2 #0).
E[z5], andE[x; - 2] as the original one but for which,
for every pointz; is equal either ta;, or toz; .

For the new distribution, we can perform a simi-

lar transformation relative t@; and end up — without proof. We will prove Theorem 3; the proof of Theo-
changing the values, —with the distribution for which  rem 2 is similar. The formula foE given in Theorem
always eithemws = x; or zp = 7a! 1 can be simplified if we consider two cases: < p»
andp; > po. To find the largest possible valuge of

E, it is sufficient to consider the largest possible values
for each of these cases, and then take the largest of the
resulting two numbers.

In each case, for a fixegk, the formula is linear
in p;. To find the maximum of a linear function on an
20X interval, it is sufficient to consider this interval’s end-
points. Thus, the maximum ip, is attained when ei-

‘ ther p; attains its smallest possible valpe, or when
z0) p1 attains the largest possible value within this case; de-
pending orps, this value is eithep; = p; orp; = ps.
. S . . Thus, to find the maximum for each cases, it is suf-

Thus, instead of considering all possible distribus. . . . .
tions, it is sufficient to consider only distributions forﬁcIent to consider only the following casesi — by

.. ~ y, p1 = Py, andp; = po. Similarly, it is sufficient to con-
whichzy € {z,, 71} andwy € {2y, To}. In OhEr Gyo oo ihe following cases fgh: ps — =P
words, it is sufficient to consider only distributionsandp _);9 9 Ph: P2 = Py P2 = P2y

. . . 1 = P2.

WhICb ar(ilocated in Ehejour corner points,, z,), Whenp, = ps, the probabilityp, = ps can take
(21,T2), (T1,25), and(Z, To) of the boxx; x xo. ; ) .
sl . all possible values from the intersectiph N p,. the

Such distribution can be characterized by the proh- = , S ;

. . ... tormula for E is linear inpy, so to find its maximum,
abilities of these four points. These four probabilities, . - : . .

) o . . it is sufficient to consider the endpoints of the interval
must satisfy 3 conditions: that their sum is 1, that ] N i.e., the values, — ps — max( ) and
is F1, and that[z,] = Es. Thus, we only have one pa- P* " pQ’—'n;in(* 7) %e_thzér;m is r%lv’gﬁ
rameter left; optimizing with respect to this parameter{g1 —P2= P1:P2)- P '
we get the desired formulas fé and E. The theorem For theinversey = 1/, the finite range is possible
is proven. only when0 ¢ x;. Without losing generality, we can

The largest value aF for all these cases is the desired
upper boundt.

z(@)




consider the case wheén< z,. In this case, methods Proof. We will prove Theorem 5; the proof of The-

presented in [12] lead to the following bound:

Theorem 4. For the inversey = 1/x4, the range of
possible values of is

E=[1/E,p1/Z1 + (1 —p1)/z4].

(Herep; denotes the same value as in Theorem 1).

Proof. For z; > 0, the functionf(x;) def 1/z is
convex: for everyry, =, anda € [0, 1], we have

flarzi+ (1 —a)-2)) <o flz) +(1-a) f(z)).

Hence, if we are looking for a minimum df[1/x],

orem 6 is similar. Sincemin(zi,z2) < x1, we
have E[min(z1,2z2)] < El[z;] = FE;. Similarly,
E[min(z1,z2)] < Es, hence, Emin(zy,z2)] <
min(E1, F). The valuemin(E,, E9) is possible when
x, = FE4 with probability 1 ande, = E> with prob-
ability 1. Thus,min(E1, F») is the exact upper bound
for E[min(z, z2)].

For eachz,, the functionz; — min(zq,z2) IS
concave; therefore, if we replace each paifit =

(xgj),xgﬁ) by the corresponding probabilistic com-
bination of the points(z;,z5’) and (z1,25") (as
in the proof of Theorem 4), we presenfg[z,] and
E[z;] and decrease the valu8min(xq,z2)]. Thus,

when we are looking for the smallest possible value of

we can replace every two points from the probabilityp[min(x,, 2,)], it is sufficient to consider only the dis-
distribution with their average, and the resulting valueriputions for whichz; is located at one of the endpoints

of E[1/x4] will only decrease:

1 x}

X - X X

x, orz;. Similarly to the proof of Theorem 1, the prob-
ability of Z; is equal top;.

Similarly, we can conclude that to find the largest
possible value oF[min(x1, x2)], itis sufficient to con-

So, the minimum is attained when the probability dissider only distributions in which:, can take only two
tribution is concentrated on a single value — which hagalues: z, andz,. To get the desired value df,, we

to be . Thus, the smallest possible valuelofl /4]
is 1/E1

Due to the same convexity, if we want maximum of

E[1/x1], we should replace every valug € [z, 1]
by a probabilistic combination of the valugs, z;:

xq T

S X

X

must havez, with probabilityp; andz, with probabil-
|W 1-— p2-

Since we consider the case whenandz, are in-
dependent, and each of them takes two possible values,
we can conclude that = (x1,x2) can take four pos-
sible values(z,, z,), (z1,%2), (ZT1,z,), and(T1,Z2),
and the probability of each of these values is equal to
the product of the probabilities corresponding:tcand

So, the maximum is attained when the probability disz,. For this distribution,E[min(z1, z)] is exactly the

tribution is concentrated on these two endpointsind
T;. Since the average af; should be equal t&;, we

expression from the formulation of the theorem. Theo-
rem 5 is proven.

can, similarly to the proof of Theorem 1, conclude that

in this distribution,z; occurs with probabilityp;, and
x, occurs with probabilityl — p;. For this distribution,

Theorem 7. For minimumy = min(z1, 22), when we
have no information about the correlation betwegn

the valueE[1/z;] is exactly the upper bound from the &ndz2, we havel) = min(E}, Ey),

formulation of the theorem. The theorem is proven.

Theorem 5. For minimumy = mig(xl,xz), whenz;
and x» are independent, we hav8 = min(F1, E»)
and

E =pi-py-min(Ty,T2) +p1 - (1 —p2) -min(Ty, z,)+

(1 —p1) - p2 - min(z,, T2)+
(1=p1)- (1 —p2)-min(zy,z,).

Theorem 6. For maximumy = min(z1, z2), whenz;
and z, are independent, we havé = max(F1, E»)
and

E = p1-pe-max(Ty,T2)+p1- (1 —p2) -max(Ty, )+

(1 —p1) - p2 - max(zy,To)+
(1 =p1) - (1 = p2) - max(zy,z,).

E = max(p; +p2 — 1,0) - min(T1,T2)+

min(py, 1 — p2) - min(T1, z,)+
mln(l - plap2) . min(£17j2)+

max(1l — p; — p2,0) - min(z,, z,).

Theorem 8. For maximumy = max(z1, z2), when we
have no information about the correlation betwegn
andz., we haveEl = max(F1, Es) and

E = min(p1, p2) - max(T1, Ta)+
max(p; — p2,0) - max(Ty, zy)+

max(py — p1,0) - max(z,,ZTz)+

min(l — p1,1 — po) - max(z, x,).



Proof. We will prove Theorem 7; the proof of Theorem [2a] L. Jaulin, M. Keiffer, O. Didrit, E. WalterApplied Inter-

8 is similar. Similarly to the proof of Theorem 5, we val Analysis, with Examples in Parameter and State Es-
can conclude thamnin(E1, F») is the attainable upper timation, Robust Control and RobotjSpringer-Verlag,
bound for E[min(z1, 22)]. Due to convexity, to find London, 2001.

the lower bound forE[min(x1,x2)], it is sufficient to  [4] R.B. Kearfott, V. Kreinovich (eds.)Applications of In-
consider distributions located at the four corners of the  terval ComputationsKluwer, Dordrecht, 1996.

box x; x x,. Similar to the proof of Theorem 1, we [5] V. Kreinovich, “Probabilities, Intervals, What Next?
conclude that such distribution can be characterized by  Optimization Problems Related to Extension of Inter-
a single parameter. Optimizing with respect to this pa-  val Computations to Situations with Partial Information
rameter, we get the desired formula 6r The theorem about Probabilities"Journal of Global Optimizatioito

is proven. appear).

imilar f | b q qf h [6] V. Kreinovich, S.A. Ferson, “A New Cauchy-Based
Similar formulas can be produced for the cases Black-Box Technique for Uncertainty in Risk Analy-

when there is a strong correlation betwegnnamely, sis”, Reliable Engineering and Systems Saf¢tyap-
whenz; is (non-strictly) increasing or decreasinguig pear).

[7] V. Kreinovich, S.A. Ferson, and L. Ginzburg, “Exact
Upper Bound on the Mean of the Product of Many

h hni h | K Random Variables With Known Expectation&eliable
The above techniques assume that we already know Computing 9(6), 441463, 2003.

the moments etc., but how can we compute them base
on the measurement results? For example, when wi
have only interval range$e;, ;] of sample values
x1,...,2,, What is the interva]V, V] of possible val-
ues for the varianc# of these values?

3. ADDITIONAL RESULTS

] V. Kreinovich, A. Lakeyeyv, J. Rohn, P. KaltGomputa-
tional complexity and feasibility of data processing and
interval computationsKluwer, Dordrecht, 1997.

] V. Kreinovich and L. Longpg, “Computational com-

plexity and feasibility of data processing and interval
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