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Abstract. This paper presents the Interval Categorizer Tessellation-
based Model (ICTM) for the simultaneous categorization of geographic
regions considering several characteristics (e.g., relief, vegetation, land
use etc.). Interval techniques are used for the modelling of uncertain data
and the control of discretization errors. HPC-ICTM is an implementation
of the model for clusters. We analyze the performance of the HPC-ICTM
and present results concerning its application to the relief/land-use cat-
egorization of the region surrounding the lagoon Lagoa Pequena (RS,
Brazil), which is extremely important from an ecological point of view.

1 Introduction

The ICTM (Interval Categorizer Tessellation Model) is a multi-layered and multi-
dimensional tessellation model for the simultaneous categorization of geographic
regions considering several different characteristics (relief, vegetation, climate,
land use etc.) of such regions, which uses interval techniques [4, 9] for the mod-
elling of uncertain data and the control of discretization errors.

To perform a simultaneous categorization, the ICTM proceeds (in parallel) to
individual categorizations considering one characteristic per layer, thus generat-
ing different subdivisions of the analyzed region. An appropriate projection pro-
cedure of the categorizations performed in each layer into a basis layer provides
the final categorization that allows the combined analysis of all characteristics
that are taken into consideration by the specialists in the considered application,
allowing interesting analyzes about their mutual dependency.
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An implementation of the ICTM for the relief categorization of geographic
regions, called TOPO-ICTM (Interval Categorizer Tessellation Model for Reliable
Topographic Segmentation), performs a bi-dimensional analysis of the declivity
of the relief function in just one layer of the model [1]. The data input are
extracted from satellite images, where the heights are given in certain points
referenced by their latitude and longitude coordinates. The geographic region is
represented by a regular tessellation that is determined by subdividing the total
area into sufficiently small rectangular subareas, each one represented by one cell
of the tessellation. This subdivision is done according to a cell size established by
the geophysics or ecology analyst and it is directly associated to the refinement
degree of the tessellation. Applications in Geophysics and Ecology were found,
where an adequate subdivision of geographic areas into segments presenting
similar topographic characteristics is often convenient (see, e.g: 2, 5]).

The aim of this paper is to present the ICTM model and describe a particu-
lar implementation of the model for clusters, called HPC-ICTM. We discuss the
performance of the HPC-ICTM and present some results concerning the applica-
tion of a 2-layered bi-dimensional model to the relief/land use categorization of
the region surrounding the lagoon Lagoa Pequena (Rio Grande do Sul, Brazil),
which is extremely important from an ecological point of view.

The paper is organized as follows. Section 2 presents the ICTM model and the
categorization process. Some results on categorizations are shown in Sect. 3. The
performance of the HPC-ICTM is discussed in Sect. 4. Section 5 is the Conclusion.

2 The ICTM Model

This section introduces the multi-layered interval categorizer tessellation-based
model ICTM, formalized in terms of matrix operations, extending the results
presented in a previous paper [1]°, for the single-layered model TOPO-ICTM.

A tessellation® is a matrix M, whose each entry” at the z-th row and the
y-th column is denoted by m,,. For L € N and tessellations M?,... ML, an
L-layered tessellation is a structure M* = (M*,..., M*), where each entry at
the [-th layer, z-th row and y-th column is denoted by m;y.

2.1 Using Interval Matrices

In many applications considered by the Geophysics and Ecologists, usually there
are too much data to be analyzed, most of which is irrelevant. We take, for
each subdivision of the geographic region, the average of the values attached
to the points of each layer, which are the entries mll,y of the L matrices of the
tessellation M%. To simplify the data, we normalize them by dividing each mfvy

5 The proofs are omitted since they are similar to those presented in [1].

% To simplify the notation, we consider bi-dimensional tessellations only.

7 For the application considered in this paper, the entries of the tesselation matrices
are all non-negative. However, negative values may also be considered (e.g., when
the data coming from the relief are determined with respect to the sea level).
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by the largest m! . of these values, obtaining a relative value rméy = \JZ:LI'
l
The relative matriz of a layer [ is given by RM! = M
[0

‘max

Sometimes we have problems in representing the uncertain data provided by
the sources of the considered application. Even if the values associated to the
points are pretty accurate (like, for instance, the heights provided by satellite
images), we have to deal with the errors that came from the discretization of the
area in terms of the discrete set of the tessellation cells. We apply techniques from
Interval Mathematics [4, 9] to control the errors associated to the cell values. See
examples of using intervals in solving similar problems in [2,4,9].

Observe that, considering a layer [, for each v that is different from zy, it
is reasonable to estimate a value hlv, attached to the point £v in the layer [, as
the value rmfry at the point xy which is closest to £v, meaning that &v belongs
to the same segment of area as xy. For each cell xy in the layer I, let Al be
the largest possible error of the corresponding approximation considering the
west-east direction. Then the approximation error ¢/, is bounded by €/, < Al =
0.5 - min(|rmk, — 7“ml(3071)y|7 |rml(w+1)y — rmb,|). Now, for each cell zy in the
layer [, let A; be the largest possible error of the corresponding approximation

considering the north-south direction. Therefore, the approzimation error €, is

y
1 1 _ : ! ! ! 1
bounded by €, < A, = 0.5 min(|rm,, — rmw(y_1)|, P (1) = Ty )
Thus, considering a given y in the layer [, the intervals zm;yl = [mfc,y7 m, +y],
where mé,,y = rml, — Al and m!, ty = rmk, 4 AL, contain all the possible values

of héy, for z — % <¢&<zx+ % Similarly, for a fixed x in the layer [, for each y

such that y — % <v<y+ %, it follows that hl, € img;j = [méy_ , m;y+,m;y_ =
rmfry — Aé, with m;w = rméy + AZ. For each layer [, the interval matrices

associated to the relative matrix RM' are denoted by IM®! and IMY:!.

2.2 The Categorization Process

To obtain a declivity categorization® in each layer, we assume that the approx-
imation functions introduced by the model are piecewise linear functions®. The
model determines a piecewise linear approximation function (and corresponding
set of limit points between the resulting sub-regions) that fits the constraints im-
posed by the interval matrices. To narrow the solution space to a minimum, we
take a qualitative approach to the approximation functions, clustering them in
equivalence classes according to the signal of their declivity (positive, negative,

8 This declivity categorization was inspired by [2]. By declivity we mean the tangent
of the angle o between the approximation function and the positive direction of the
horizontal axis. The declivity happens to be continuous, since the approximation
functions of the model are total and have no steps. The declivity is positive, negative
ornull if 0 < < 5, § < a <7 or a =0, respectively.

9 Piecewise linear functions were considered for simplicity. A more general approach
may consider other kinds of piecewise monotonic functions.
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null). For each layer [, the model obtains the class of approximation functions
compatible with the constraints of the interval matrices TM®*! and IMY-.

Proposition 1. For a given zy in a layer [, it holds that:

l
(z+1)~y’
non-increasing relief approzimation function between xy and (x + 1)y.

(i) Considering the direction west-east, ifml(w_l)_ <ml | then there exists a
y zty

(i) Considering the direction west-east, if miﬁy >m then there exists a

non-decreasing relief approzimation function between (x — 1)y and xy.

(iii) Considering the direction north-south, if mi?ﬁ > m;(yﬂ)_ , then there exists

a non-increasing relief approrimation function between xy and x(y + 1).

(iv) Considering the direction north-south, ifmi(y_l), < mlxw, then there exists

a non-decreasing relief approximation function between x(y — 1) and zy.

Definition 1. A declivity register of an xy-cell in a layer | is a tuple dm!, =

zy
| 1 1 ! : i
(Cys Warys Sipyys Ny ), Where ey, Wy s 8., and ny, , called directed declivity reg-

isters for east, west, south and north directions, respectively, are evaluated ac-
cording to the conditions considered in Prop. 1:

(a) For non border cells: ek, =0, if (i) holds; wéy =0, if (ii) holds; s, =0, if

(iii) holds; nk,, =0, if (iv) holds; €., = wh, = s, =nl, =1, otherwise.
(b) For east, west, south and north border cells: elwy = wiy = slly = nlw =

0, respectively. The other directed declivity registers of border cells are also
determined according to item (a).

The declivity register matriz of the layer | is the matriz dM' = [dméy].

Corollary 1. Considering a layer I and the west-east direction, any relief ap-
prozimation function is either (i) strictly increasing between xy and (x + 1)y
if efﬂy =1 (and, in this case, wémH)y = 0); or (i) strictly decreasing between
éy = 0); or (i) constant

= 0. Similar results hold for the

xy and (z + 1)y if w€m+1)y =1 (and, in this case, e
between zy and (z+ 1)y if eéy =0 and wé
north-south direction.

z+1)y

Associating convenient weights to the directed declivity registers of a cell xy
in a layer [, it is possible to obtain a binary encoding that represents the state
sml,, of such cell, given by sml, =1 xel, +2x sl +4xwl, +8xnl, . The
state matriz of layer [ is given by SM! = [sméy] Thus, any cell can assume one
and only one state represented by the value sm;y =0..15.

A limiting cell is the one where the relief function changes its declivity, pre-
senting critical points (maximum, minimum or inflection points). According to
this criteria, any non-limiting cell should satisfy one of the conditions listed in
Table 1. The border cells are assumed to be limiting. To identify the limiting
cells, we use a limiting register Am'  associated to each xy-cell of a layer I,

Ty
defined as:

Al — {0 if one of the conditions listed in Table 1 holds;
Ty —

(1)

1 otherwise.
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The limiting matriz of the layer [ is AM' = [Am;y]. Analyzing this matrix, we
proceed to the subdivision of the whole area into constant declivity categories.

Table 1. Conditions of non limiting cells

Conditions Conditions
€a1)y = €y = 1 My = Mi(ye1) = L
l Way = Wipt1)yy = 1 Sp(y—1) = Sy :zl
Ela—1)y = Cay = Way = Wiy = 0[Suy—1) = Suy = Ny =Ny =0

l
Y’
iting cell xy in a layer 1, is inductively defined: (i) xy € SR;y; (i) If o'y’ €

SR!

Ty’

Definition 2. The constant declivity sub-region SR.,,, associated to a non lim-

then all its neighbor cells that are not limiting cells also belong to SRéy.

Definition 2 leads to a recursive algorithm similar to the ones commonly used
to fulfill polygons.

2.3 The Projection Procedure

The basis layer AM™ is used to receive the projection of the limiting cells of all
layers. This projection is useful for the identification of interesting information,
such as: (i) the cells which are limiting in all layers; (ii) the projection of all
sub-areas; (iii) the certainty degree of a cell to be limiting etc.

Two projection algorithms were proposed. In the first algorithm (T'ype I,
Fig. 1), if a certain cell is a limiting cell just in one layer then it will be projected
on the basis layer also as a limiting cell. A weight 0 < w; < 1,forl=1,...,Lis
associated to each layer, so that w; = 1 (w; = 0) indicates that the layer [ is (is
not) selected for the projection. Then, the projection of limiting cells on the basis

L
layer is given by AM™ = \/ AM' x w;. In the second algorithm (T'ype II, Fig. 2),
=1
each layer may present dlifferent degrees of participation in the determination of
the projection!®. In this case, the projection of limiting cells on the basis layer

L
is given by AM™ = \/ AM' x @, where T = ——

L
=1 Z w;
=1

i

are the normalized weights.

3 Some Results on Categorizations

This section presents the relief and land use categorizations obtained for the
region surrounded the lagoon Lagoa Pequena (Rio Grande do Sul, Brazil). These

10 Moreover, the sum of the weights may not be equal to 1 in the case that the analyst
does not have a clear perception of the importance of each layer in the whole process.
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Fig. 1. T'ype I projection procedure Fig. 2. T'ype 11 projection procedure

analyzes are to be used for the environment characterization of that region,
aiming to give subsidies for its integrated preservation/management.

Figure 3 shows the location of the lagoon and a land use categorization of the
region surrounded it, which shall be combined with relief categorizations. For
the portion of the LANDSAT image!! shown in Fig. 4(a), the ICTM produced
the relief categorization presented in Fig. 4(b), for the Digital Elevation Model
(DEM), and in Fig. 4(c), for a 3D visualization of this categorization. Figure 4(c)
shows the ICTM relief characterization given in terms of the state and limiting
matrices, where a pleistocene marine barrier can be distinguished.

4 Performance Analysis

The parallel implementation of the ICTM model for clusters was done using the
library MPI (Message Passing Interface) [7]. Each process of the parallel pro-
gram is responsible for a categorization performed in one of the layers of the
model, in a modified master-slave schema, where the slave processes receive the
information sent by the master process and, after executing their jobs, they gen-
erate their own outputs. The master process is responsible for loading the input
files and parameters (the data and the radius), sending the radius value for the
L slave processes to start the categorization process in each layer. The file sys-
tem is shared, that is the directory with the input files is accessible by all the
cluster’s nodes.

For the analysis of the performance, we consider three tessellation matri-
ces: My (241 x 241), Mo (577 x 817) and M3 (1309 x 1765). The results were
processed by the CPAD (Research Center of High Performance Computing of
PUCRS/HP, Brasil), with the following environment: (i) heterogenous cluster
with 24 machines: (¢800) 8 machines with two processors Pentium IIT 1Ghz and

"1 The coordinates are Datum SAD69 (South American Datum 1969) and UTM (Uni-
versal Transverse Mercator), Zone 22 South Hemisphere.
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RS,

Fig. 3. Land use Map of the region surrounded the Lagoa Pequena (light blue: wetland,
dark blue: water, yellow: crops and past, purple: transitional, light green: riparia forest,
dark green: restinga forest, red: lagoon beaches, white: without classification)

256MB of memory, (¢60) 16 machines with two processors Pentium IIT 550Mhz
and 256MB of memory; (ii) Ethernet and Myrinet networks; (iii) MPICH ver-
sion of MPI Library; (iv) 1 front-end machine with two processors Pentium III
1Ghz and 512MB of memory. Table 2 presents the results of sequential imple-
mentation processed in the cluster front-end, and also the results of the parallel
implementation of ICTM. As expected, the machine e800 is faster then the ma-
chine e60. However, in some cases, the ethernet network was faster than myrinet
network, due to the low volume of inter-processor communication. In general,
the difference between the performance of the two networks is observed when
the processors require a lot of message exchanges. Notice that, even when the
number of layers increased, a significant time variation was not observed.

One interesting feature of the parallel implementation is the partition of input
data, which reduces the amount of memory to be stored in a single processor.
We observe that, in the sequential implementation, the data of all layers has
to be stored in a unique processor. Table 3 presents the speedups for the tests
realized. Observe that a parallel implementation may be considered when the
ICTM presents more than one layer. However, it becomes really necessary in
the case that it has a great amount of layers, since, in this case, a sequential
implementation is practically not feasible.
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(a) - (b)

(d)

Fig. 4. Relief categorizations of a portion of the region surrounding the Lagoa Pequena:
(a) LANDSAT image, coordinates: Upper-Left Corner (X: 390735, Y:6512015), Lower-
Right Corner (X: 402075, Y:6505685), Pixel Size (X: 30m, Y: 30m); (b) ICTM DEM
categorization; (c) ICTM 3D categorization; (d) ICTM status-limits categorization

5 Discussion and Conclusion

In the categorizations produced by the ICTM, the state of a cell in relation to
its neighbors, concerning the declivity, is shown directly by arrows (see Fig. 5),
which has been considered a very intuitive representation, by the ecologists,
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Table 2. Analysis of ICTM results (75 is the time of sequential implementation and
T5607Eth7 Te8007Eth7 T6607My1"7 T88007My7" are the times of parallel implementations)

Matrix|# of Layers T # of Proc.|Tes0— Eth|Tesoo—Eth |Te60— Myr|Tesoo— Myr
M, 3 1.947s 4 2.015s 1.340s 1.998s 1.209s
My 5 3.298s 6 2.228s 1.510s 2.263s 1.254s
Mo 3 16.041s 4 11.180s | 6.038s 12.003s 6.248s
Mo 5 27.015s 6 11.383s | 6.194s 12.011s 6.331s
M3 3 15mb50.871s 4 50.277s | 27.635s | 54.742s | 28.982s
M3 5 35m14.322s 6 50.551s | 27.665s | 55.657s | 29.068s

Table 3. Speedups for the tests realized

Matrix|# of layers|e60-Eth|e800-Eth|e60-Myr|e800-Myr
M,y 3 0.97 1.45 0.97 1.61
M, 5 1.48 2.18 1.46 2.63
Mo 3 1.43 2.66 1.34 2.57
My 5 2.37 4.36 2.25 4.27
Ms 3 18.91 34.41 17.37 32.81
Ms 5 41.83 | 76.43 | 37.99 72.74

since most geographic information systems present this kind of result by the
usual color encoding of declivity, with no indication of direction.

The ICTM is regulated by two aspects, namely, the spacial resolution of the
DEM and the neighborhood radius of the cell. Thus, regions with an agglom-
eration of limiting cells can be studied with more details by just increasing the
resolution of altimetry data, or reducing the neighborhood radius. In plain areas
(see Fig. 5 (region A)), a large neighborhood radius indicated reasonable ap-
proximations for the declivity degree. However, regions with too much declivity
variation (see Fig. 5 (region B)) obtained good approximations only with small
radius. The number of categories obtained is always inversely proportional to
the neighborhood radius and to the area of a tessellation cell.

The analysis of some related works concerning image segmentation [3, 6, 8,
10] turns out that those methods are, in general, heuristic, and, therefore, the
ICTM model presented here is more reliable (for other works, see, e.g.: [2,11]).

Future work is concerned with the aggregation of a dynamic structure, based
on cellular automata [12], for the modelling of the dynamic of populations in a
ecological context.
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Fig. 5. Relief categorization of a portion of LANDSAT image with coordinates: Upper-
left corner (X:427559m, Y:6637852m), Lower-right corner (X;480339m, Y:6614507m).

References

1.

9.

10.

11.

12.

M.S. Aguiar, G.P. Dimuro, and A.C.R. Costa. TOPO-ICTM: an interval tessellation-
based model for reliable topographic segmentation. Numerical Algorithms 37(1):
3-11, 2004.

D. Coblentz, V. Kreinovich, B. Penn, and S. Starks. Towards reliable sub-division
of geological areas: interval approach. In L. Reznik and V. Kreinovich, editors,
Soft Computing in Measurements and Information Acquisition, pages 223-233, 2003.
Springer-Verlag.

M. C. Cooper. The Tractability of Segmentation and Scene Analysis. International
Journal on Computer Vision, 30(1): 27-42, 1998.

. R.B. Kearfort and V. Kreinovich (eds.). Aplications of Interval Computations.

Kluwer, Dordrecht, 1996.

R.T.T. Forman. Land Mosaics: the ecology of landscapes and regions. Cambridge
University Press, Cambridge, 1995.

K.S. Fu and J.K. Mui. A Survey on Image Segmentation. Pattern Recognition, 13(1):
3-16, 1981.

W. Gropp, E. Lusk e A. Skjellum. Using MPI: portable Parallel Programming with
the Message-Passing Interface, MIT Press, 2nd ed., 1999.

J.L. Lisani, L. Moisan, P. Monasse, and J.M. Morel. On The Theory of Planar
Shape. Multiscale Modeling and Simulation, 1(1): 1-24, 2003.

R.E. Moore. Methods and Applications of Interval Analysis. STAM, Philadelphia,
1979.

S.E. Umbaugh. Computer Vision and Image Processing. Prentice Hall, New Jersey,
1998.

K. Villaverde and V. Kreinovich. A Linear-Time Algorithm that Locates Local Ex-
trenma of a Function of One Variable from Interval Measurements Results. Interval
Computations, 4: 176-194, 1993.

S. Wolfram. Cellular Automata and Complexity: selected papers. Addison-Wesley,
Readings, 1994.



