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Abstract. When describing a system of interacting genes,
a useful approximation is provided by a Boolean network
model, in which each gene is either switched on or off – i.e.,
its state is described by a Boolean variable.

Recent papers by I. Shmulevich et al. show that although
in principle, arbitrarily complex Boolean functions are possi-
ble, in reality, the corresponding Boolean networks can be
well described by Boolean functions from one of the so-
calledPost classes– classes that are closed under composi-
tion. These classes were originally described by E. Post.

It is known that the Boolean model is only an approxi-
mate description of the real-life gene interaction. In reality,
the interaction may be more complex. How can we extend
these results to more realistic continuous models of gene in-
teraction?

In this paper, we show that the Post class approach can
be viewed as a particular case of a general group-theoretic
framework that has already led to a successful justification of
empirical formulas from such areas of signal processing as
sensor analysis, neural networks, fuzzy techniques, etc. Be-
cause of this relation, we suggest group-theoretic approach as
a framework for describing gene interaction in a more realistic
way.

Keywords: group-theoretic approach, general measure-
ment methodology, fuzzy techniques

1. MOTIVATIONS FOR THE MAIN IDEA: WHY
NORMAL DISTRIBUTION

Before we start explaining cases covered by the gen-
eral group-theoretic approach, let us recall a similar
case – the use of normal (Gaussian) distribution in sig-
nal processing.

How can we describe the probability distribution of
a measurement error? From the purely mathematical
viewpoint, there are many possible probability distri-
butions, but in reality, for many sensors and for many
more sophisticated measuring instruments, normal dis-
tribution works just fine. Normal distribution is the
usual tool that engineers and scientists use when pro-
cessing data; see, e.g., [9].

A thorough empirical analysis of actual sensors and
measuring instruments have shown that for about half
of them, the measurement error is indeed normally dis-
tributed, and for many others, the actual distribution is
reasonably close to a normal one; see, e.g., [6,7]. Why?

A usual answer to this “Why?” question is that there
exists a Central Limit Theorem, according to which,
crudely speaking, if we have many error sources, and
errors corresponding to each source and small and in-
dependent of each other, then the resulting distribution
is close to Gaussian. How can we generalize this result
to more general signal processing situations?

The usual proofs of the Central Limit Theorem use
specific properties of the normal distribution. There-
fore, if we want to generalize this result, we must first
reformulate the problem in more general terms.

Suppose that we already know that the probability
distribution of measurement errors∆x are usually de-
scribed by distributions from a certain classP. How
can we then describe this classP? First, the actual dis-
tribution depends on the selection of a measuring unit:
if we change a unit from, say, a meter to a centimeter,
the error remains the same but its numerical value in-
crease 100 times, from∆x to 100 ·∆x. In general, it is
therefore reasonable to assume that if the random vari-
able∆x belongs to the desired classP, then, for every
positive numberλ, the variableλ ·∆x must also belong
to this class.

Second, it often happens that we have several inde-
pendent sources of error. Thus, if∆x1 and∆x2 are
independent variables that are both distributed accord-
ing to distributions fromP, then their sum should also
be distributed according to one of the distributions from
P.

If we restrict ourselves to 1-parametric families of
distributions, then these families should have the type
λ · ξ0 for some standard distributionξ0, and the sec-
ond property means that a linear combination of such
distributions must also distributed by a similar type dis-
tribution. Such probability distributions are calledin-
finitely divisibledistributions. They have all been clas-
sified, Gaussian distribution is one of them, and it is



known that under certain reasonable additional assump-
tion, Gaussian distribution is the only one.

This more general description can already be ex-
tended to more general signal processing situations.

2. FIRST CASE STUDY: SENSORS

Now that we already have the main idea, let us show
how this idea can applied to other situations. We will
start with the sensors.

Sensors usually transform the value of the physical
quantity such as stress, temperature, or pressure, into an
electric signal (that is later digitized and inputted into
signal processing software). The dependencey = f(x)
between the input valuex and the resulting electric sig-
nal y is usually smooth; therefore, in the first approxi-
mation, we can safely approximate this dependence by
a linear functiony = a · x + b. However, when we start
looking for more accurate descriptions, we realize that
the dependence ofy on x is usually non-linear. How
can we describe this non-linearity?

Again, in principle, arbitrary non-linearity is pos-
sible, but in reality, some non-linear dependencies are
more frequent than others. So, a reasonable idea is to
describe the classF frequently occurring dependencies.
How can we do that?

A sophisticated sensor usually consists of several
layers in each of which the signal is transformed. If
f1(x) is the transformation performed by the first layer
and f2(x) the transformation performed by second
layer, then, for every inputx, the signal coming out of
the second layer is equal tof2(f1(x)). In other words,
the transformation corresponding to the two-layer sen-
sor is equal to the composition of the transformations
corresponding to individual layers.

It is therefore reasonable to require that if both lay-
ers correspond to a transformation from the classF ,
then transformation corresponding to the 2-layer sensor
should also be in the same classF , i.e., that this class
F of “frequently occurring” transformations should be
closed under composition. It is also reasonable to re-
quire that all linear transformations belong to this class,
and that – since most of the corresponding physical pro-
cesses are reversible – that for every functionf ∈ F , its
inversef−1 should also belong toF . In other words, it
is reasonable to require that the classF is agroupw.r.t.
composition, i.e., in other words, it is atransformation
group.

3. WHAT TRANSFORMATION GROUPS ARE
POSSIBLE?

What transformation groups are possible? It turns
out that there is already an answer to this question, and
this answer can be traced back to the work of N. Wiener.
Namely, in mid-1940s, Wiener analyzed how we hu-
mans recognize an object. According to some physio-
logical studies, there are five clearly distinct levels of
recognition:

• When an object is far enough, all we see is a blur.
We cannot tell its shape, we cannot tell whether it
is a point object or not.

• When we get closer, we can recognize some shape,
but we still have trouble telling what shape it is
exactly. We may see a circle as an ellipse, a square
as a rhombus (diamond).

• As the object gets closer, we can clearly distin-
guish parallel lines, but we may not yet tell the an-
gles. For example, we are not sure whether what
we see is a rectangle or a parallelogram.

• When we get even closer, we can see the shape, but
at a large distance, our stereoscopic ability does
not work, so we cannot say whether what we see
is large or small. For example, we already know
this is a square, but we cannot tell whether it is a
nearby small square, or a far away large one.

• Finally, when we get really close, we can see both
the shape and the size of the object.

In mathematical terms, at each stage (except for the last
one), the uncertainty means that we can apply some
transformations to the original image without changing
the perceived image. So, each stage can be character-
ized by the groupG of all transformations that are, in
this sense, possible on this stage:

• At first, we have the groupG of all possible trans-
formations.

• Then, we get down to the group of allprojective
transformations (that describeprojections from
one plane to another).

• Third, we get the group of alllinear transforma-
tions (also calledaffine).

• Fourth, we get the group generated by all of mo-
tions (i.e., translations and rotations) and dilations
(transformations from this group are calledhomo-
theties).

• Finally, we get the group of all motions.

From this physiological observation, N. Wiener in his
book [12] (first published in late 1940s), made an inter-
esting conclusion: If there was an intermediate group
between, e.g., projective and affine transformations,
then in an ideal vision system, it would probably be
reasonable to use it in situations intermediate between
the situations in which we use these two groups. Since
a man is a product of billion years of improving evo-
lution, it is therefore reasonable to assume that what-
ever transformation groups are possible, they are al-
ready used by us humans. Since we only use five differ-
ent groups, he thus concluded that no other transforma-
tion groups exist. To be more precise, he conjectured
that the only transformation Lie groups that contain the
group of all motions are: the group of all homotheties,
the group of all affine transformations, and the group
of all projective transformations. Mathematicians were



at first sceptical about this conjecture, but surprisingly,
in mid-1960s, papers appeared that, in effect, proved
Wiener’s hypothesis [11].

For 1-dimensional case, projective transformations
are simply fractionally linear, and affine are simply lin-
ear. So, the conclusion is that the only non-trivial trans-
formation group that contains all linear transformations
is the group of all fractional-linear transformation.

4. SENSORS: CONTINUES

It turns out that fractional-linear functions indeed
provide a very good description of how sensors operate.
To get a really accurate description of a sensor transfor-
mation functiony = f(x), we may need to use different
fractional-linear approximations in different parts of the
input range, but still, for many sensors, the overall num-
ber of coefficients needed in this piece-wise fractional-
linear description is drastically smaller than the overall
number of coefficients needed for, e.g., piece-wise lin-
ear description [2,3].

5. SECOND CASE STUDY: NEURAL NETWORKS

Let us show that this same idea can explain why the
(empirically selected) sigmoid function

s0(x) =
1

1 + exp(−x)
(1)

is successful in neural data processing.
Indeed, the main application of neural networks is

to learn. In the process of learning, we may discover
that the original data values have a systematic errorb,
so we may want to correct for this error. So, we must
be able, knowings(x) andb, easily computes(x− b).

Hence, we are looking for (smooth) activations
functionss(x) for which, for every real numberb, there
exists an easy transformations such that for everyx,
s(x− b) = e(s(x)).

How do we formalize easiness? Linear transforma-
tions are easy; composition of two easy transformations
should be easy, and an inverse of an easy transforma-
tion should be easy. Thus, easy transformations form a
group that contains all linear ones. If we restrict our-
selves to connected Lie groups, then we can conclude
that all easy transformations are piece-wise linear.

It is now possible to prove (see, e.g., [4]) that if a
smooth monotonic functions(x) is easily correctable
for additive errors, then eithers(x) = a+b·s0(K ·y+l)
for somea, b, K andl, or s(x) = a + b exp(Kx) for
somea, b, andK. So, if we require (as it is usually done
in neural networks) that the range of the functions is
bounded, then we are left with only standard sigmoid.

The proof is as follows: first, we use the above-cited
result to show thatE consists of fractional-linear trans-
formations. This means that for everya, there existA,
B, C, andD for which, for everya, we have

s(y + a) =
A(a) + B(a) · s(y)
C(a) + D(a) · s(y)

. (2)

If the functions(y) is smooth, then it is possible to show
that the functionsA(a) throughD(a) are also smooth
(see Appendix A). Differentiating both sides of the
above equation w.r.t.a and substitutinga = 0, we ar-
rive at a differential equation of the typeds/dy = f(s)
for some explicit functionf . This equation can be
rewritten asds/f(s) = dy and integrated explicitly.

6. THIRD CASE STUDY: FUZZY CONTROL

The main idea behind fuzzy control is that in many
real-life situations, expert controllers can also describe
their experience by using words from natural language,
like “if the velocity v is a little bit too high, hit the
brakes for a short timet”. If we want to automate this
control, we must describe these words in precise terms.
In fuzzy logic approach, we describe words like “small”
by describing, for each valuex, the degree to which an
expert believes that this particularx is small. There are
many different ways of specifying this idea into an ex-
act methodology.

• First, in reality, we cannot solicit the expert’s de-
gree of belief for all possible values ofx, we have
to ask for some values ofx and then interpolate;
there are many possible interpolation procedures.

• Another choice comes when we combine different
pieces of knowledge, e.g., when we have a rule
that says that ifA andB are true, then we should
apply a certain level of control. If we know the de-
grees of belief inA and inB, and we have no infor-
mation about the possible relation betweenA and
B, what degrees should we assign toA&B? There
are many possible “and”-operations that intend to
solve this problem (they are also called t-norms),
and there are many possible “or”-operations (t-
conorms).

• Finally, at the end, we describe, for each possible
value of controlu, the degree to which this con-
trol is reasonable; we must translate this data into a
single value that our designed automatic controller
will apply. In other words, we must move from the
“fuzzy” conclusion to the exact one, “defuzzify”
the conclusion. There are many techniques for
such defuzzification.

There has been a lot of empirical studies showing, for
different control criteria, which versions of the fuzzy
control methodology lead to the best results. It turns
out [4,5] that most of these choices can be explained by
the same group-theoretic idea.

Indeed, there exist different procedures for assign-
ing numeric values that describe uncertainty of the ex-
perts’ statements. The same expert’s degree of uncer-
tainty that he expresses, for example, by the expression
“for sure”, can lead to 0.9 if we apply one procedure,
and to 0.8 if another procedure is used. Just like 1 foot
and 12 inches describe the same length, but in different
scales, we can say that 0.9 and 0.8 represent the same
degree of certainty in two differentscales.



From a mathematical viewpoint, one can use any
scale, but from the practical viewpoint some of them
will be more reasonable to use, and some of them less
reasonable. It is reasonable to assume that a compo-
sition of two reasonable transformations is reasonable,
that the inverse is reasonable, etc. – i.e., that the set of
all reasonable transformations forms a group containing
all linear ones. Thus, every reasonable transformation
is fractionally linear.

This conclusion enables us to justify all the optimal
choices in fuzzy control. For example, for each state-
mentB, we can consider the degree of belief inA&B
as an indication of degree of belief inA; thus, the trans-
formation fromt(A) to t(A&B) must be fractionally-
linear. This indeed leads to a general family of t-norms
that includes all empirically best ones.

7. POSSIBLE APPLICATION TO GENETIC
NETWORKS

When describing a system of interacting genes, a
useful approximation is provided by a Boolean network
model, in which each gene is either switched on or off
– i.e., its state is described by a Boolean variable; see,
e.g., [1].

Recent papers by I. Shmulevich et al. (see, e.g.,
[10]) show that although in principle, arbitrarily com-
plex Boolean functions are possible, in reality, the cor-
responding Boolean networks can be well described
by Boolean functions from one of the so-calledPost
classes– classes that are closed under composition.
These classes were originally described by E. Post.

It is known that the Boolean model is only an ap-
proximate description of the real-life gene interaction.
In reality, the interaction may be more complex. How
can we extend these results to more realistic continuous
models of gene interaction?

As we have seen, in many areas of non-linear data
processing, in particular, in the areas related to intel-
ligent data processing, it is very fruitful to consider
classes of transformations that are closed under com-
position. We have also seen that such classes have been
successful in describing genetic Boolean networks. It
is therefore reasonable to expect that this approach may
lead to successful extension of genetic Boolean net-
works results to more realistic models of gene interac-
tion.
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APPENDIX A: PROOF FOR NEURAL NETWORKS

Let us first prove that the functionsA(a) through
D(a) are indeed smooth. First of all, we can simplify
the expression (2) if we divide both the numerator and
the denominator of the fraction (2) byC(a). Then, the
equation (2) takes a simplified form

s(y + a) =
A1(a) + B1(a) · s(y)

1 + D1(a) · s(y)
, (3)



whereA1(a) def= A(a)/C(a), B1(a) def= B(a)/C(a),
andD1(a) def= D(a)/C(a). Multiplying both sides of
the new equation (3) by the denominator of its right-
hand side, we conclude that

s(y+a)+D1(a)·s(y)·s(y+a) = A1(a)+B1(a)·s(y).

For everya, we can write this equation for three differ-
ent valuesy = y1, y2, y3, and get a system of three lin-
ear equations with three unknownsA1(a), B1(a), and
D1(a). According to Kramer’s rule, the solution of this
equation can be expressed as a rational – hence smooth
– function of the coefficients. Thus, the valuesA1(a),
B1(a), andD1(a) smoothly depend on the coefficients
s(yi ands(yi) · s(yi + a). Since the functions(y) is
smooth, this dependence ona is smooth, so all the co-
efficients of the piece-wise linear expression (2) indeed
depend smoothly ona.

Let us now differentiate both sides w.r.t.a. As a
result, we get

s′(y + a) =
A′1(a) + B′

1(a) · s(y)
1 + D1(a) · s(y)

−

(A1(a) + B1(a) · s(y)) ·D′
1(a) · s(y)

(1 + D1(a) · s(y))2
. (4)

Fora = 0, the transformation (3) takes the form
s(y + a) = s(y), henceA1(0) = D1(0) = 0 and
B1(0) = 1. Therefore, fora = 0, the above equation
takes the form

s′(y) = a + b · s(y) + c · s2(y), (5)

wherea
def= A′1(0), b

def= B′
1(0), andc

def= −D′
1(0), or,

alternatively,

ds

dy
= a + b · s + c · s2. (6)

We can separate the variables of this equation if we di-
vide both sides by the right-hand side and multiply both
sides bydy; as a result, we get

ds

a + b · s + c · s2
= dy. (7)

We can now integrate both sides of this equation.
If c = 0 andb = 0, we gets/a = y + C, so we get

a linear functions(y).
If c = 0 andb 6= 0, we getd(a + b · s) = b · ds,

hence
d(a + b · s)
a + b · s = b · dy. (8)

Integrating, we getln(a + b · s) = b · y + C, hence
a+b·y = exp(C)·exp(b·y), i.e., we get an exponential
solutions(y).

If c 6= 0, the integration is somewhat more com-
plex, but still, the integral in the left-hand side is a
textbook integral, so we easily describe the generic so-
lution: either s(y) is fractionally linear, ors(y) =

(a + b · tan(ky))/(c + d · tan(ky)) for somea, b, c, d,
or s(y) = (a + b · tanh(ky))/(c + d · tanh(ky)). In
the first two cases, we do not get monotonicity, and the
third function is equivalent to a sigmoid. The statement
is proven.

APPENDIX B: GENERAL PROOF

Let us show that for 2-D transformations, the only
finite-parametric smooth family of smooth transfor-
mations that contains all linear transformations and
that forms a transformation group is the group of all
fractional-linear transformations.

B.1. Infinitesimal transformations and Lie algebras
To prove this result, it is reasonable to considerin-

finitesimal transformations, i.e., functionsf(x) such
that for smallε, the transformationx → x + ε · f(x) +
O(ε2) is a possible transformation. The class of all such
functions is called aLie algebraof the original transfor-
mation group.

B.2. Lie algebras are closed under multiplication by
a constant

Lie algebras have several useful properties. First, if
the functionf(x) belongs to the Lie algebra, then for
every constantλ, the functionλ · f(x) also belongs to
the Lie algebra. Indeed, since the transformationx →
x+ε·f(x)+O(ε2) is possible for allε, it is also possible
for ε′ = ε · λ. In other words, the transformationx →
x + ε · λ · f(x) + O(ε2) is possible. This, by definition
of the Lie algebra, means thatλ · f(x) also belongs to
the Lie algebra.

B.3. Lie algebras are closed under addition
Let us now prove that the algebraA is closed under

addition, i.e., iff(x) ∈ A andg(x) ∈ A, then the sum
f(x) + g(x) of these two functions also belongs toA.
Together with the previous property, this would mean
thatA is a linear space. Indeed, if two functionsf(x)
andg(x) belong to the Lie algebra, this means that for
smallε, transformations

x → y = x + ε · f(x) + O(ε2) (9)

and
y → z = y + ε · g(y) + O(ε2) (10)

are both possible. Therefore, the composition of these
transformations is also possible. This composition
takes the formx → z, i.e.,

x → (x + ε · f(x) + O(ε2))+

ε · g(x + ε · f(x) + O(ε2)) + O(ε2). (11)

If we consider only terms that are linear inε, then we
conclude that this composition transformation has the
form x → x + ε · (f(x) + g(x)) + O(ε2), i.e., that the
sumf(x) + g(x) indeed belongs to the Lie algebra.

So,A is a linear space.
The inverse transformation takes the form

x− ε · f(x) + O(ε2),



thus we conclude that−f(x) also belongs toA.

B.4. Lie algebras are closed under Lie product
Let us now consider composition in more detail. Af-

ter applyingf , we gety = x+ ε1 ·f(x)+O(ε1). After
applyingg to the resulty of the first transformation, we
get

y + ε2 · g(y) + O(ε2
2) = x + ε1 · f(x) + O(ε2

1)+

ε2 · g(x + ε1 · f(x) + O(ε2
1)) + O(ε2

2).

Since the functiong(x) is smooth, we conclude that

g(x+ε1·x+O(ε2
1)) = g(x)+g′(x)·ε1·f(x)+O, (12)

hence the result of the two transformations takes the
form

x+ ε1 · f(x)+ ε2 · g(x)+ ε1 · ε2 · f ′(x) · g(x)+O(ε2
i ).

Similarly, when we first applyg and thenf , we get
a transformation

x+ ε1 · f(x)+ ε2 · g(x)+ ε1 · ε2 · f(x) · g(x)+O(ε2
i ).

If we first applyf theng, then inverse tof and inverse
to g, we thus get a possible transformation

x → x + ε1 · ε2 · (f ′(x) · g(x)− f(x) · g′(x)) + O(ε2
i ),

so we can conclude that for every two functionsf(x) ∈
A andg(x) ∈ A, the functionf ′(x) ·g(x)−f(x) ·g′(x)
also belongs toA. This function is called aLie product
of the functionsf(x) andg(x) and denoted by[f, g].

B.5. Our Lie algebraA is closed under the deriva-
tive operation

We assume that all linear transformations, includ-
ing shiftsx → x + h, are possible. So, iff(x) ∈ A,
then, combining an infinitesimal transformation related
to f(x) with shift, we conclude thatf(x + h) ∈ A.
SinceA is a linear space, we conclude that

f(x + h)− f(x)
h

∈ A. (13)

As h → 0, this expression tends tof ′(x). Since the
algebraA is finite-dimensional, it contains the limits of
its elements, hencef ′(x) ∈ A.

B.6. The algebraA contains, with each function
f(x), all monomials from its Taylor expansion

Combining infinitesimal transformationf(x) with
scalingsx → λx, we conclude thatf(λ · x) ∈ A. Let
us expandf(x) ∈ A into Taylor series and ignore the
first zero terms, then

f(x) = ak · xk + ak+1 · xk+1 + . . . (14)

SinceA is a vector space, we have

λ−k ·f(λ·x) = ak ·xk+λ·ak+1 ·xk+1+. . . ∈ A. (15)

In the limit λ → 0, we conclude thatak · xk ∈ A –
hence thatxk ∈ A. Fromf(x) ∈ A andak · xk ∈ A,
we conclude that

f(x)− ak · xk = ak+1 · xk+1 + . . . ∈ A, (16)

so the first non-zero termxl, l > k, in the expansion
of f(x), also belongs toA. By induction, we can prove
that all monomialsxk that are present in the expansion
of f(x) also belong toA.

B.7. The algebraA contains, with each monomial
xk, all smaller powers ofx

Oncexk ∈ A, we have(xk)′ = k · xk−1 ∈ A,
hencexk−1 ∈ A. By induction, we can conclude that
all smaller powers ofx also belong toA.

B.8. The algebraA cannot contain monomialsxk

with k > 2
From the previous result, we conclude that ifxk ∈

A for somek ≥ 3, we havex3 ∈ A and x2 ∈ A.
From this, we conclude that[x3, x2] ∼ x4 ∈ A, hence
[x4, x2] ∼ x5 ∈ A, . . . , and eventually, thatxk ∈ A for
all k. So, in this case,A have infinitely many linearly
independent functionsxk, which contradicts to our as-
sumption thatA is a finite-dimensional space.

This contradiction shows that Taylor expansions of
functionsf(x) ∈ A can only contain1, x, andx2 – i.e.,
all functionsf(x) are quadratic.

B.9. Final result: all possible transformations are
fractionally linear

Since every functionf(x) is quadratic, the corre-
sponding infinitesimal transformations have the follow-
ing form:

x → x + ε · a0 + ε · a1 · x + ε · a2 · x2 + O(ε2) (17)

It is easy to see that this transformation can be repre-
sented as fractionally linear transformations:

x → (1 + ε · a1) · x + ε · a0

1− ε · a2 · x + O(ε2). (18)

An arbitrary possible transformation can be obtained as
a composition of infinitesimal transformations; a com-
position of fractionally linear transformations is frac-
tionally linear, so all possible transformations are frac-
tionally linear.

The statement is proven.
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