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Abstract. When describing a system of interacting genes, A thorough empirical analysis of actual sensors and
a useful approximation is provided by a Boolean networkneasuring instruments have shown that for about half
model, in which each gene is either switched on or off —i..of them, the measurement error is indeed normally dis-
its state is described by a Boolean variable. Hibuted, and for many others, the actual distribution is

Recent papers by I. Shmulevich et al. show that althouQreasonably close to a normal one; see, e.g., [6,7]. Why?

in principle, arbitrarily complex Boolean functions are possi- . N
ble, in reality, the corresponding Boolean networks can be A usual answer to this “Why?” question is that there

well described by Boolean functions from one of the so®XiSts & Central Limit Theorem, according to which,

called Post classes- classes that are closed under composicrudely speaking, if we have many error sources, and
tion. These classes were originally described by E. Post. ~ €rrors corresponding to each source and small and in-

It is known that the Boolean model is only an approxi-dependent of each other, then the resulting distribution
mate description of the real-life gene interaction. In realityjs close to Gaussian. How can we generalize this result
the interaction may be more complex. How can we extengh more general signal processing situations?
these results to more realistic continuous models of gene in- The usual proofs of the Central Limit Theorem use
ter""ICt'Ohr?? How that the Post . specific properties of the normal distribution. There-

n this paper, we show that the Post class approach Cafie it we want to generalize this result, we must first
be viewed as a particular case of a general group-theoretic .

formulate the problem in more general terms.

AN
framework that has already led to a successful justification oF -
empirical formulas from such areas of signal processing as Suppose that we already know that the probability

sensor analysis, neural networks, fuzzy techniques, etc. pdistribution of measurement errofs: are usually de-
cause of this relation, we suggest group-theoretic approach 8§fibed by distributions from a certain claBs How
a framework for describing gene interaction in a more realisti€an we then describe this claB® First, the actual dis-
way. tribution depends on the selection of a measuring unit:
ei_f we change a unit from, say, a meter to a centimeter,
the error remains the same but its numerical value in-
crease 100 times, frothx to 100 - Az. In general, it is
therefore reasonable to assume that if the random vari-
1. MOTIVATIONS FOR THE MAIN IDEA: WHY able Az belongs to the desired clags then, for every
NORMAL DISTRIBUTION positive numbe, the variable\ - Az must also belong

o to this class.
Before we start explaining cases covered by the gen-  gecong, it often happens that we have several inde-

eral group-theoretic approach, [et us.re(.:all a s.imill endent sources of error. Thus,Afz; and Az, are
case — the use of normal (Gaussian) distribution in signgependent variables that are both distributed accord-
nal processing. ing to distributions fronfP, then their sum should also

How can we describe the probability distribution ofye gjstributed according to one of the distributions from
a measurement error? From the purely mathematic.

viewpoint, there are many possible probability distri- ¢ \ye restrict ourselves to 1-parametric families of

butions, but in reality, for many sensors and for manyisributions, then these families should have the type
more sophisticated measuring instruments, normal dis- . ¢, for some standard distributiof, and the sec-
tribution works just_ fine. Normgl di_stribution is the gng property means that a linear combination of such
usual tool that engineers and scientists use when prgistributions must also distributed by a similar type dis-
cessing data; see, e.g., [9]. tribution. Such probability distributions are calle
finitely divisibledistributions. They have all been clas-
sified, Gaussian distribution is one of them, and it is
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known that under certain reasonable additional assump-e When an object is far enough, all we see is a blur.
tion, Gaussian distribution is the only one. We cannot tell its shape, we cannot tell whether it
This more general description can already be ex- is a point object or not.

tended to more general signal processing situations. ¢ \nhenwe get closer, we can recognize some shape,

but we still have trouble telling what shape it is
exactly. We may see a circle as an ellipse, a square
as a rhombus (diamond).

2. FIRST CASE STUDY: SENSORS

Now that we already have the main idea, let us show _ o
how this idea can applied to other situations. We will ® As the object gets closer, we can clearly distin-
start with the sensors. guish parallel lines, but we may not yet tell the an-

Sensors usually transform the value of the physical ~ gles. For example, we are not sure whether what
guantity such as stress, temperature, or pressure, into an We see is a rectangle or a parallelogram.

electric signal (that is later digitized and inputted into e When we get even closer, we can see the shape, but

signal processing software). The dependenee f () at a large distance, our stereoscopic ability does
between the input value and the resulting electric sig- not work, so we cannot say whether what we see
naly is usually smooth; therefore, in the first approxi- s large or small. For example, we already know
mation, we can safely approximate this dependence by this is a square, but we cannot tell whether it is a
a linear functiory = a - = + b. However, when we start nearby small square, or a far away large one.

looking for more accurate descriptions, we realize that
the dependence af on z is usually non-linear. How
can we describe this non-linearity?

Again, in principle, arbitrary non-linearity is pos- |n mathematical terms, at each stage (except for the last
sible, but in reality, some non-linear dependencies akghe), the uncertainty means that we can apply some
more frequent than others. So, a reasonable idea is i@nsformations to the original image without changing
describe the clasg frequently occurring dependencies.the perceived image. So, each stage can be character-

How can we do that? ized by the groug= of all transformations that are, in
A sophisticated sensor usually consists of severghis sense, possible on this stage:

layers in each of which the signal is transformed. If _ _
f1(=) is the transformation performed by the first layer  Atfirst, we have the grougr of all possible trans-
and f>(z) the transformation performed by second formations.

layer, then, for every input, the signal coming out of ¢ Then, we get down to the group of altojective

the second layer is equal fa(f1(z)). In other words, transformations (that describerojections from
the transformation corresponding to the two-layer sen-  one plane to another).

sor is equal to the composition of the transformations
corresponding to individual layers.

It is therefore reasonable to require that if both lay-
ers correspond to a transformation from the cl&s  ® Fourth, we get the group generated by all of mo-
then transformation corresponding to the 2-layer sensor  tions (i.e., translations and rotations) and dilations
should also be in the same clagsi.e., that this class (transformations from this group are calledmo-

F of “frequently occurring” transformations should be ~ theties.
closed under composition. It is also reasonable to re- ¢ Finally, we get the group of all motions.
quire that all linear transformations belong to this class,
and that — since most of the corresponding physical prd=rom this physiological observation, N. Wiener in his
cesses are reversible — that for every funcifon 7, its ~ book [12] (first published in late 1940s), made an inter-
inversef ! should also belong t#. In other words, it €esting conclusion: If there was an intermediate group
is reasonable to require that the cl&ss agroupw.rt.  between, e.g., projective and affine transformations,
composition, i.e., in other words, it istensformation then in an ideal vision system, it would probably be
group. reasonable to use it in situations intermediate between
the situations in which we use these two groups. Since
3. WHAT TRANSFORMATION GROUPS ARE a man is a product of billion years of improving evo-
POSSIBLE? lution, it is therefore reasonable to assume that what-
ever transformation groups are possible, they are al-

What transformation groups are possible? It turnseady used by us humans. Since we only use five differ-
out that there is already an answer to this question, arht groups, he thus concluded that no other transforma-
this answer can be traced back to the work of N. Wienetion groups exist. To be more precise, he conjectured
Namely, in mid-1940s, Wiener analyzed how we huthat the only transformation Lie groups that contain the
mans recognize an object. According to some physiaroup of all motions are: the group of all homotheties,
logical studies, there are five clearly distinct levels othe group of all affine transformations, and the group
recognition: of all projective transformations. Mathematicians were

e Finally, when we get really close, we can see both
the shape and the size of the object.

e Third, we get the group of alinear transforma-
tions (also calle@ffing.



at first sceptical about this conjecture, but surprisinglyif the functions(y) is smooth, then it is possible to show
in mid-1960s, papers appeared that, in effect, provetiat the functionsd(a) throughD(a) are also smooth
Wiener’s hypothesis [11]. (see Appendix A). Differentiating both sides of the
For 1-dimensional case, projective transformationabove equation w.r.ta and substituting: = 0, we ar-
are simply fractionally linear, and affine are simply lin-rive at a differential equation of the typl/dy = f(s)
ear. So, the conclusion is that the only non-trivial transfor some explicit functionf. This equation can be
formation group that contains all linear transformationsewritten asis/ f(s) = dy and integrated explicitly.

is the group of all fractional-linear transformation.
6. THIRD CASE STUDY: FUZZY CONTROL

4. SENSORS: CONTINUES The main idea behind fuzzy control is that in many

It turns out that fractional-linear functions indeedréal-life situations, expert controllers can also describe

provide a very good description of how sensors operatf€ir éxperience by using words from natural language,
To get a really accurate description of a sensor transfofke “if the velocity v is a little bit too high, hit the
mation functiony = f(z), we may need to use different brakes for a short tlméj. If we want to e}utoma.te this
fractional-linear approximations in different parts of thecontrol, we must describe these words in precise terms.
input range, but still, for many sensors, the overall numin fuzzy |_09'C approach, we describe words like _“small”
ber of coefficients needed in this piece-wise fractionalty descnb_mg, for eaCh valug the _degree to which an
linear description is drastically smaller than the overafXpert lt_)eheves that this pal’t!CL_IbirIS s_m_all. T_here are
number of coefficients needed for, e.g., piece-wise lifhany different ways of specifying this idea into an ex-
ear description [2,3]. act methodology.

e First, in reality, we cannot solicit the expert's de-
gree of belief for all possible values of we have

Let us show that this same idea can explain why the 0 ask for some values aof and then interpolate;

5. SECOND CASE STUDY: NEURAL NETWORKS

(empirically selected) sigmoid function there are many possible interpolation procedures.
1 e Another choice comes when we combine different
so(x) = —— 1) pieces of knowledge, e.g., when we have a rule

1+ exp(~z) that says that ifA and B are true, then we should

is successful in neural data processing_ apply a certain level of control. If we know the de-

Indeed, the main application of neural networks is ~ 9rees of beliefind and inB, and we have no infor-
to learn. In the process of learning, we may discover ~ Mation about the possible relation betweéiand

that the original data values have a systematic drror B, what degrees should we assign4& B? There

S0 we may want to correct for this error. So, we must ~ are many possible “and”-operations that intend to

be able, knowing(z) andb, easily compute(xz — b). solve this problem (they are also called t-norms),
Hence, we are looking for (smooth) activations ~ and there are many possible “or-operations (t-

functionss(x) for which, for every real numbé, there conorms).

exists an easy transformatiaensuch that for every, e Finally, at the end, we describe, for each possible

s(xz — b) = e(s(x)). value of controlu, the degree to which this con-

How do we formalize easiness? Linear transforma-  trol is reasonable; we must translate this data into a
tions are easy; composition of two easy transformations  single value that our designed automatic controller
should be easy, and an inverse of an easy transforma- will apply. In other words, we must move from the
tion should be easy. Thus, easy transformations form a  “fuzzy” conclusion to the exact one, “defuzzify”
group that contains all linear ones. If we restrict our-  the conclusion. There are many techniques for
selves to connected Lie groups, then we can conclude such defuzzification.

that all easy transformations are piece-wise linear. There has been a lot of empirical studies showing. for
It is now possible to prove (see, e.g., [4]) that if a b 9,

smooth monotonic function(z) is easily correctable dlﬁntet;ertrncciﬂtrgl Icrlterlla, &NP'CtT] vebrsuznrs ofltthelf[utzzrﬁ
for additive errors, then eithe(z) = a+b-so (K -y+1) control methodology 'ead 1o the best resuts. urns

for somea, b, K andl, or s(z) = a + bexp(K) for out [4,5] that most of these choices can be explained by

someu, b, andK. So, if we require (as it is usually done theli?jlzg dgrt(;té‘:(;theeqsrteg.cﬁgr?:{t rocedures for assian-
in neural networks) that the range of the functiois ! xist d b u '9

bounded, then we are left with only standard sigmoid.mg numeric values that describe uncertainty of the ex-

The proof is as follows: first, we use the above—cite(f;:ts tﬁ::irgiitsr'e;hees S%T:)g:ﬁelré dei%:)ZXOfr:Q;?):
result to show thaE consists of fractional-linear trans- Y P ’ pi€, by P

formations. This means that for evarythere exist4, fo(rj ?urgé _(;an I?ﬁd to 0'9('; we_applydorj]e ptrlc?li:eiufre,t
B, C, andD for which, for everya, we have and to 0.8 if another procedure is used. Just like 1 foo

and 12 inches describe the same length, but in different
A(a) + B(a) - s(y) scales, we can say that 0.9 and 0.8 represent the same
C(a)+ D(a) - s(y)’ @ degree of certainty in two differestales

s(y +a) =
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where A, (a) & A(a)/C(a), Bi(a) ¥ B(a)/C(a), (a+b-tan(ky))/(c+ d - tan(ky)) for somea, b, ¢, d,

and Dy (a) < D(a)/C(a). Multiplying both sides of ©OF $(4) = (a + b tanh(ky))/(c + d - tanh(ky)). In
the new equation (3) by the denominator of its right_the first two cases, we do not get monotonicity, and the
hand side. we conclude that third function is equivalent to a sigmoid. The statement

is proven.
s(y+a)+Di(a) s(y)-s(y+a) = Ai(a)+Bi(a)-s(y)- APPENDIX B: GENERAL PROOF

For everya, we can write this equation for three differ- | ot s show that for 2-D transformations. the only
entvaluey = yi, y2, y3, and get a system of three lin- gnite_narametric smooth family of smooth transfor-
ear equations with three unknowrs (a), Bi(a), and  mations that contains all linear transformations and

D1 (a). According to Kramer's rule, the solution of this that forms a transformation group is the group of all
equation can be expressed as a rational — hence smogify+ional-linear transformations.

— function of the coefficients. Thus, the valuéds(a), o _ _

Bi(a), and Dy (a) smoothly depend on the coefficients B.1. Infinitesimal transformations and Lie algebras
s(y; ands(y;) - s(y; + a). Since the functiors(y) is To prove this result, it is reasonable to consitter
efficients of the piece-wise linear expression (2) indeetat for smalk, the transformationr — = +¢ - f(z) +

depend smoothly oa. O(£?) is a possible transformation. The class of all such
Let us now differentiate both sides w.rd. As a functionsis called &ie algebraof the original transfor-
result, we get mation group.

, , B.2. Lie algebras are closed under multiplication by
s'(y+a)= Aila) + Bila) - s(y) a constant

1+ Di(a) - s(y) Lie algebras have several useful properties. First, if
(Ay(a) + Bi(a) - s(y)) - D} (a) - s(y) @ the functionf(x) Eel?ngs_to the Lie allgebt:al, then for

(11 Difa)-s(1))? every constand, the unctlc_)n/\ - f(z) also be ongs to

! the Lie algebra. Indeed, since the transformation-
Fora = 0, the transformation (3) takes the form z+e-f(x)+0(e2) is possible for alk, itis also possible
s(y +a) = s(y), henceA;(0) = Di(0) = 0and fore’ = ¢ - A. In other words, the transformatian—
B, (0) = 1. Therefore, fora = 0, the above equation g . . f(z) + O(£?) is possible. This, by definition
takes the form of the Lie algebra, means that f(z) also belongs to

the Lie algebra.
s'(y)=a+b-s(y) +c-s*(y), (5) g

B.3. Lie algebras are closed under addition
wherea & 47(0), b & B/(0), ande ¥ —D}(0), or, Let us now prove that the algebrhis closed under
alternatively, addition, i.e., iff(z) € A andg(z) € A, then the sum

f(z) + g(x) of these two functions also belongs 4o
ds 2 Together with the previous property, this would mean
qy " OTbstes ©)  that4is a linear space. Indeed, if two functiofiér)

dy
, ] o andg(x) belong to the Lie algebra, this means that for
We can separate the variables of this equation if we disy a1 transformations

vide both sides by the right-hand side and multiply both

sides bydy; as a result, we get r—y=x+ec- f(z)+0(E?) 9)
ds and

—— =dy. 7

atbste s W % y—z=y+e gy +0(?) (10)
We can now integrate both sides of this equation. ~ @re both possible. Therefore, the composition of these

If ¢ = 0 andb = 0, we gets/a = y + C, SO we get transformations is also possible. This composition
a linear functions(y). takes the formx — z, i.e.,
nene 07 e getdlart brs) = b v = (a4 f(x) +O(E)+
w —bedy. ®) e glz+e- flz)+0(E)) +0@ED).  (11)
a - S

. If we consider only terms that are lineardnthen we
Integrating, we getn(a + b -s) = b-y + C, hence onede that this composition transformation has the
a+b-y = exp(C)-exp(b-y), i.e., we getan exponential ¢y .. _, . +e-(flx) + g(z)) + O(e?), i.e., that the

solutions(y). o sumf(z) + g(x) indeed belongs to the Lie algebra.
If ¢ # 0, the integration is somewhat more com- g4 4 is a linear space.

plex, but still, the integral in the left-hand side is @  The inverse transformation takes the form
textbook integral, so we easily describe the generic so-
lution: either s(y) is fractionally linear, ors(y) = r—¢e- f(x)+O0(?),



thus we conclude that f(z) also belongs tol. In the limit A\ — 0, we conclude thaty, - z* € A —
hence that* € A. From f(z) € A anday, - 2% € A,

B.4. Lie algebras are closed under Lie product we conclude that

Let us now consider composition in more detail. Af-

ter applyingf, we gety = z +¢; - f(x) +O(e1). After f(z)—ap-zF =apy -2+ €A, (16)
applyingg to the result of the first transformation, we ! . . .
get so the first non-zero term’, l. > k, in the expansion
of f(z), also belongs tel. By induction, we can prove
Yt+er-gy) +0(E2) = +er - f(z)+ O+ that all monomials:* that are present in the expansion
of f(x) also belong tA.
ea-glw +e1- f(x) + O(e1) + O(e3). B.7. The algebrad contains, with each monomial

Since the functiow(z) is smooth, we conclude that z*, all smaller powers of:
Oncez® € A, we have(zF) = k- zF"1 € A4,
g(z+e1-2+0(e2)) = g(x)+4' (x)-e1- f(x)+0, (12) hencez*~! € A. By induction, we can conclude that
all smaller powers of: also belong toA.
hence the result of the two transformations takes the

form B.8. The algebrad cannot contain monomialg®

with k > 2
From the previous result, we conclude thatff ¢
A for somek > 3, we havez® € A and2? € A.
Similarly, when we first apply and thenf, we get From this, we conclude that?, 2] ~ 2 € 4, hence
a transformation [z, 2%] ~ 2° € A, ..., and eventually, that* € A for
all k. So, in this cased have infinitely many linearly
t+er-f(x)+ea-glx)+er-eq- flz)-g(x)+O(E2). independent functions®, which contradicts to our as-
sumption that4 is a finite-dimensional space.
If we first apply f theng, then inverse tg and inverse This contradiction shows that Taylor expansions of
to g, we thus get a possible transformation functionsf(z) € A can only contairl, z, andz? —i.e.,

, all functions f (x) are quadratic.

/ /(e :

v ztere (f(@)-g(@) - f(z)-g(2) +0(), B.9. Final result: all possible transformations are
so we can conclude that for every two functigis) ¢ fractionally linear

Aandg(z) € A, the functionf’ (z) - g(z) — f(z)-¢'(z) Since every functiory (x) is quadratic, the corre-
also belongs tol. This function is called &ie product sponding infinitesimal transformations have the follow-

vter- f(x)+ex-g(z)+er-ea f(x) g(x) +O(E).

of the functionsf (x) andg(x) and denoted byf, . N9 form:
. 2 2
B.5. Our Lie algebrad is closed under the deriva- © — ¢ +€-ao+e-a1-x+e-az-2”+0(e7) (17)
tive operation It is easy to see that this transformation can be repre-

We assume that all linear transformations, includgented as fractionally linear transformations:
ing shiftsx — x + h, are possible. So, if(x) € A,

then, comblnmg an infinitesimal transformation related I — (I+e-a1) xz+e-ag + 0(52). (18)

to f(x) with shift, we conclude thaf (z + h) € A. l—e-az-zx

SinceA is a linear space, we conclude that An arbitrary possible transformation can be obtained as
Fla+h) - f(z) a composition of infinitesimal transformations; a com-
AR EL A2y (13) position of fractionally linear transformations is frac-

h tionally linear, so all possible transformations are frac-
As h — 0, this expression tends t/(z). Since the tionally linear. .
algebrad is finite-dimensional, it contains the limits of ~ The statement is proven.
its elements, hencf/(z) € A.
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