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Abstract. In many practical situations, the measurement
resultz depends not only on the measured valuex, but also
on the parameterss describing the experiment’s setting and
on the values of some auxiliary quantitiesy; the dependence
z = f(x, s, y) of z on x, s, andy is usually known. In the
ideal case when we know the exact value of the auxiliary pa-
rametery, we can solve the above equation and find the de-
sired valuex. In many real-life situations, we only knowy
with some uncertainty, and this uncertainty leads to additional
uncertainty inx.

If we are trying to reconstructx based on asinglemea-
surement result, then, of course, the measurement error iny
leads to the corresponding measurement error inx – and, un-
less we perform more accurate measurements, we cannot im-
provex’s accuracy.

In many practical situations, however, if we haveseveral
measurement results corresponding to different values oft
and/ory, we can reconstructx with a much higher accuracy –
because we can combine these measurement results in such a
way that the influence ofy drastically decreases. As a result,
we get asub-noisemeasurement accuracy, the accuracy that
is much better than the accuracy with which we knowy.
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1. FORMULATION OF THE PROBLEM

In many practical situations, the measurement result
z depends not only on the measured valuex, but also
on the parameterss describing the experiment’s setting
and on the values of some auxiliary quantitiesy; the
dependencez = f(x, s, y) of z onx, s, andy is usually
known. In the ideal case when we know the exact value
of the auxiliary parametery, we can solve the above
equation and find the desired valuex. In many real-life
situations, we only knowy with some uncertainty, and
this uncertainty leads to additional uncertainty inx.

If we are trying to reconstructx based on asingle
measurement result, then, of course, the measurement
error iny leads to the corresponding measurement error
in x – and, unless we perform more accurate measure-
ments, we cannot improvex’s accuracy.

In many practical situations, however, if we have
severalmeasurement results corresponding to different
values ofy, we can reconstructx with a much higher
accuracy – because we can combine these measurement
results in such a way that the influence ofy drastically
decreases. As a result, we get asub-noisemeasurement
accuracy, the accuracy that is much better than the ac-
curacy with which we knowy.

In different areas of science and engineering, a lot of
different ingenious measurement procedures have been
invented that lead to such sub-noise accuracy. Our ob-
jective is to design a general methodology for designing
such procedures.

We start with describing several measurement situ-
ations where procedures of this type have been applied.
Then, we provide the basic mathematical foundations
for the desired general methodology.

2. CASE STUDIES

2.1. Multi-spectral astronomical imaging
In multi-spectral imaging, we may have cosmic dust

preventing us from seeing details of an image.
Let ~p be an arbitrary point in the image, letf de-

note the observation frequency, and letI(f, ~p ) denote
the intensity of the object of interest at the point~p at
frequencyf . Usually, for astronomical objects, obser-
vations at different wavelengths reflect the same struc-
ture I(~p ), and our objective is to reveal this structure.
In the first approximation, we can therefore assume that
I(f, ~p ) = C(f) · I(~p ) for some (partially unknown)
functionC(f).

Because of the dust, instead of observing the inten-
sity I(f, ~p ) of the object’s radiation, what we actually
measure is the sum̃I(f, ~p ) = I(f, ~p )+D(f, ~p ), where
D(f, ~p ) is the intensity of dust radiation at point~p at
frequencyf . For many astronomical objects, the dust
radiation is much more intensive than the radiation of
the object; as a result, from the observed valuesĨ(f, ~p ),
we cannot determine the object’s structure.

If we only have an observation at a single wave-
length, then there is nothing that we can do to improve
the quality of the image. Luckily, however, we have ob-
servations at different wavelengths, and we know how
dust effect depends on the frequency. In the first ap-
proximation, we can describe this dependence by the
power lawD(f, ~p ) = D(~p ) · fα for some known real
valueα.

In this case, for each point~p:

• the measured valuex is the actual object’s inten-
sity I(~p ) at this point;

• the experiment settings is describe by the fre-
quencyf ,



• the auxiliary quantitiesy include the amount of
dustD(~p ) at this point, and

• the dependence of the measurement resultz =
Ĩ(f, ~p ) on x, s, andy is given by the following
formula:

Ĩ(f, ~p ) = C(f) · I(~p ) + D(~p ) · fα. (1)

In other words, here

z = f(x, s, y) = C(s) · x + y · sα. (2)

It turns out that we can combine the intensities from
different wavelengths in such a way that the resulting
combined image does not depend on the dust. Specif-
ically, after observing the same object at two different
wavelengthss1 ands2, we get two measurement results

z1 = C(s1) · x + y · sα
1 ; z2 = C(s2) · x + y · sα

2 . (3)

Well known variable elimination techniques from linear
algebra enable us to get rid of the parametery: namely,
we multiply z1 by sα

2 , z2 by sα
1 , and subtract the result,

to get

z1 · sα
2 − z2 · sα

1 = x · (C(s1) · sα
2 − C(s2) · sα

1 ). (4)

In other words, this simple combination enables us to
eliminate the effect of dust and observe the desired
structurex = I(~p ).

Comment.Strictly speaking, we do not reconstruct
the exact values of the structure, we only reconstruct it
modulo a constantC(s1) · sα

2 −C(s2) · sα
1 , so while we

can determine the relative intensity of different parts of
the image, we cannot reconstruct theabsolutevalues of
these intensities unless we know the exact dependence
C(s).

This is a somewhat simplified description of the
dust. The effect of the actual dust can be better de-
scribed by assuming that there dust consists of two
componentsD(f, ~p ) = D1(f, ~p ) + D2(f, ~p ) whose
dependence on the observation frequency follows two
different power laws:D1(f, ~p ) = D1(~p ) · fα1 and
D2(f, ~p ) = D2(~p ) · fα2 . In this case, to eliminate
the effect of the dust, we must perform the observa-
tions not on two, but at least on three different wave-
lengthsf1, f2, andf3. After performing these observa-
tions and computing the appropriate linear combination
C1 · z1 + C2 · z2 + C3 · z3 of the observation resultszi,
we get an expression that is proportional to the desired
intensityI(~p ) and is not affected by the dust.

This technique has been successfully used, it en-
ables us to uncover previously unseen spiral and ring-
like structures in distant galaxies [1].

2.2. Astrometry coming from VLBI
A similar situation occurs inastrometry, especially

in astrometry coming from the Very Large Baseline In-
terferometry (VLBI).

The main idea behind VLBI is that we simultane-
ously observe a distant radiosource by two (or more)
radioantennasi, j located very far from each other. The
signal generated by a distant sourcek at some moment
of time reaches both antennas. Since the path from the
source to the antennas is slightly different, there is a
time delayτi,j,k between these antennas. If the two an-
tennas have precise synchronized clocks, then we can
determine this delay by comparing the signals observed
by the two antennas and finding the shift that makes
these two signals maximally correlated.

Geometric analysis enables us to conclude that the
differencedij between the lengths of the paths leading
to the two antennas is equal todi,j,k = bi,j ·cos(αi,j,k),
where bi,j is the distance between the two antennas
(calledbaseline) andαi,j,k is the angle between the di-
rection towards the source and the direction connecting
the two antennas. In algebraic terms,di,j,k = ~bi,j,k ·~sk,
where~bi,j is the vector connecting the two antennasi
andj, ~sk is the unit vector in the direction of the source
k, and~bi,j · ~sk denotes a “dot” (scalar) product of the
two vectors. Thus, in the ideal case, the time delayτi,j,k

between the two antennas is equal to

τi,j,k =
1
c
·~bi,j · ~sk, (5)

wherec denotes the speed of light.
In real life, the synchronization between the anten-

nas is not perfect; for each antenna, there is an (un-
known) synchronization error∆ti – the difference be-
tween the actual and the time recorded on this antenna.
As a result of these synchronization errors, the mea-
sured time delay is different from its ideal value:

τi,j,k =
1
c
·~bi,j · ~sk + ∆ti −∆tj . (6)

In this case:

• the desired variablesx are the coordinates of the
radiosource, i.e., the components of the vector~sk,
and

• the auxiliary quantitiesy are the baseline vectors
~bi,j and the synchronization errors∆ti.

If we knew the exact value of the baseline vec-
tors and of the synchronization errors, then, based on
the measured time delay, we would have obtained the
exact value of the projection of the desired vector~sk

on the baseline. By performing two measurements by
two pairs of radiotelescopes (or, alternatively, the same
pair at different time when, due to Earth’s rotation, the
orientation of the baseline changes), we would thus
uniquely determine the unit vector~sk and thus, mea-
sured the exact location of the radiosource. In this ideal
situation, the only source of measurement error would
be the noise which translates into milliarcsecond accu-
racy (≈ 0.001′′).

In reality, we only have an approximate knowledge
of the baseline vector and of the synchronization errors.



As a result, the accuracy with which we can determine
the location of a radiosource based on a single (or two)
measurement, is several orders of magnitude lower that
it could be if the signal noise was the only source of the
measurement error.

It turns out, however, that we can drastically im-
prove this accuracy if we simultaneously observe sev-
eral different sources by using several different antenna
pairs.

First of all, we can get rid of the synchronization er-
rors. Specifically, if we observe two different sourcesk
andl by using the same antennasi andj, we can simply
compute the difference of the measurement results and
thus get rid of the synchronization errors. Namely,

∆τi,j,k,l =
1
c
·~bi,j ·∆~sk,l, (7)

where∆τi,j,k,l
def= τi,j,k − τi,j,l is the difference be-

tween the measured time delays, and∆~sk,l
def= ~sk − ~sl

is the difference between the corresponding unit vec-
tors. This technique is calleddifferential astrometry.

Getting rid of the unknown baseline vectors is a lit-
tle bit more complicated. For that, we need at least 4
antennas so that, in general, the baseline vectors~b1,2,
~b2,3, and~b3,4 are linearly independent. We also need
to fix at least 4 different “basic” sources 1, 2, 3, and 4.
After observing each pair of sourcesk andl, we get the
three values∆τi,j,k,l that are related to the unknown
baseline vectors and source locations by the formulas:

∆τ1,2,k,l =
1
c
·~b1,2 ·∆~sk,l,

∆τ2,3,k,l =
1
c
·~b2,3 ·∆~sk,l,

∆τ3,4,k,l =
1
c
·~b3,4 ·∆~sk,l.

We define thedual basis~Bi,j in such a way that

~Bi,j · 1
c
·~bi,j = 1; ~Bi,j ·~bi′,j′ = 0 for (i′, j′) 6= (i, j).

Due to Kramer’s rule, e.g.,

~B1,2 =
c ·~b2,3 ×~b3,4

~b1,2 · (~b2,3 ×~b3,4)
. (8)

Then, from the above three equations, we conclude that

~sk,l = ∆τ1,2,k,l · ~B1,2+∆τ2,3,k,l · ~B2,3+∆τ3,4,k,l · ~B3,4.

We have these linear expansions for~s1,2, for ~s1,3, and
for ~s1,4. Thus, we can determine the dual vectors~Bi,j

as linear combinations of~s1,2, ~s1,3, and~s1,4. Now, for
any other sourcek, we have a similar expression

~sk,1 = ∆τ1,2,k,1· ~B1,2+∆τ2,3,k,1· ~B2,3+∆τ3,4,k,1· ~B3,4.

Since we already know how to describe the dual vectors
~Bi,j as linear combinations of~s1,2, ~s1,3, and~s1,4, we

therefore get an explicit expression of~sk,1 = ~sk−~s1 as
a linear combination of~s1,2, ~s1,3, and~s1,4, with known
coefficients.

In other words, we have an affine transformation be-
tween the actual and the observed values~sk. Since all
the vectors~sk must be unit vectors, the only possible
affine transformation is rotation. Thus, we can deter-
mine all the position modulo rotation. The resulting
method calledarc methodis described in detail in [2,3].

Thus, by combining the signals from several sources
on several antennas, we can combine these results in
such a way as to minimize the effect of the (not pre-
cisely known) antenna coordinates and clock rates.

2.3. VLBI imaging
In the astrometry section, we described how VLBI

responds to point sources. For non-point sources, we
can use VLBI not only to locate the source, but also to
determine its imageI(~p ), i.e., to determine how the in-
tensity of the radiosignal depends on the point~p within
the source.

In the ideal case of well-synchronized antennas, the
phase shift̃ϕi,j between the signals observed by anten-
nasi and j is equal to the phaseϕi,j of the complex
valueF (~bij), whereF (~ω) is a Fourier transform of the
desired imageI(~p ).

In real life, due to synchronization errors∆ϕi, the
observed phasẽϕi,j is different from the desired phase
ϕi,j :

ϕ̃i,j = ϕi,j + ∆ϕi −∆ϕj . (9)

The synchronization errors are so huge that, based on
a single measurement of the phase, we cannot say any-
thing at all about the desired phaseϕi,j of the image.

In this case:

• the desired parametersx are the phasesϕi,j that
correspond to the actual image;

• the auxiliary parametersy are the synchronization
errors∆ϕi.

A known way to eliminate the effect of the auxil-
iary parameters is to combine the measured phasesϕ̃ij

between antennasi andj into a combination (“closure
phase”)ϕ̃ij + ϕ̃jk + ϕ̃ki; this combination is called a
closure phase.

As one can see from the above formula forϕ̃i,j , we
have:

ϕ̃ij + ϕ̃jk + ϕ̃ki = ϕij + ϕjk + ϕki, (10)

so the dependence on the synchronization errors disap-
pears [5,9,10].

2.4. Image georeferencing
In image georeferencing, we are interested in find-

ing the relative orientation of the two geospatial images
I1(~p ) andI2(~p ), i.e., we must find the shift, the rota-
tion angle between the images, and the scaling between
them.



Overall, given two images, we must find 4 parame-
ters: 2 parameters describing the shift, 1 parameter (an-
gle) describing the rotation, and 1 parameter describing
scaling.

This is a difficult problem. Indeed, if all we had to
do is determine one single parameter – e.g., the rotation
angle – then we could, in principle, determine the value
of this parameter as follows: we test all possible angle
and finding the rotation angle such that it we rotate the
first image by this angle, we get the best match with the
second image. Even if we had to try all possible angle
with a step of 1 degree, it would be only 360 possi-
ble tests – which is quite doable on modern computers,
even for large images.

In reality, we must determine 4 parameters. If we
take 360 possible values of each parameter, then we
need to test3604 ≈ 109 possible combinations of these
parameters – something that is practically impossible.

It is therefore desirable to separate the problem so
that we will be able to determine, e.g., rotation angle
and scaling separately from determining the shift.

Many signal and image processing techniques in-
volve using the frequency domain, i.e., involve taking
the Fourier transformsF1(~ω) andF2(~ω) of the given
imagesI1(~p ) andI2(~p ).

In Fourier domain, the shift~p → ~p + ~a leads to the
following transformation: whenI2(~p ) = I1(~p + ~a),
then

F2(~ω) = F1(~ω) · exp(i · ~ω · ~a). (11)

In order to determine the rotation angle and the scaling,
we would like top be able to eliminate the effect of the
shift. In other words, here, for each frequency~ω:

• the desired valuex is F (~ω), and

• the auxiliary parameter is the shift~a.

In this case, the shift-independent combination is easy
to describe: it is the absolute value|Fi(~ω)| of the im-
age’s Fourier transform. Indeed, since

| exp(i · ~ω · ~a)| = 1,

the above relation leads to

|F2(~ω)| = |F1(~ω)|. (12)

Thus, if we want to determine the rotation angle and
the scaling between the two images, it is possible to
combine the two referenced images so that the effect of
possible shift between these images is minimized [4,8]:
namely, we can take the absolute value of the image’s
Fourier transform.

2.5. Measuring strong electric current
A typical example ofmeasuring strong electric cur-

rents is measuring the cable current at an aluminum
plant. These current are so huge that it is difficult to
measure them directly, they are measured by the mag-
netic fields that they generate.

If we have a single cable, then the magnetic filed
generated by the currentI flowing through this cable is
determined by a simple formulaE = I/r, wherer is
the distance between the sensor and the cable’s central
axis.

In real plants, in addition to the cable in which we
are interested, there is often nearby an auxiliary cable
that influence the measurement results. It is therefore
desirable to somehow eliminate the effect of this auxil-
iary cable.

We can do that by considering several cables. In this
case:

• the desired parameterx is the current flowing
through the main cable;

• the experiment settingss are the locations of the
sensors; and

• the auxiliary variablesy are the location of the
auxiliary cable and the current flowing through
this auxiliary cable.

The dependence of the observed magnetic filedz on the
values ofx, s, andy is described by the standard for-
mulas of electrodynamics. These formulas are linear in
currents but non-linear in terms of the unknown loca-
tion of the auxiliary cable.

It turns out it is possible to combine the measure-
ment results at different points so as to eliminate the
influence of the current in the auxiliary cable [7].

2.6. Ultrasonic non-destructive testing
In ultrasonicnon-destructive testing, if we are only

interested in the orientation of the fault, we can com-
bine the measurement results in such a way that the ef-
fect of location minimizes [6].

3. TOWARDS A GENERAL METHODOLOGY

3.1. Formulation of the general problem
Let us describe the problem in the most general

terms.

• We are interested in the parametersx. Let nx de-
note the overall number of scalar quantities that
form the desiredx.

• The measurement resultsz depend not only on the
valuesx of the desired quantities, but also on the
values of the auxiliary quantitiesy: z = f(x, s, y).
Let ny denote the overall number of scalar quanti-
ties that formy, and letnz denote the overall num-
ber of quantities that constitute a single measure-
ment.

We would like to determinex without knowingy pre-
cisely.

As we have seen from the above examples, we have
two possible situations:

• In situations like multi-spectral astronomical
imaging, the values ofy are fixed and cannot be
varied. We can, however, change the settingss.



• In situations like VLBI astrometry, we cannot
change the settings, but we can use different values
of y.

Let us describe these situations one by one.

3.2. Variable settings: analysis of the problem
In the first situation, to determinex, we must per-

form the measurements in several different settings.
After we performed the measurement inNs differ-

ent settingss1, . . . , sNs
, we getNs measurement re-

sultsz1, . . . , zNs
. Based on these results, we must be

able to uniquely reconstruct the desired valuex. Since
we do not knowy, we must selectNs in such a way
that fromNs measurement results, we will be able to
uniquely determine bothx andy.

After Ns measurements, we haveNs equationszi =
f(x, si, y) to determine the unknownx andy. Since the
measurement result may contain several components,
these equations are, in general, vector-valued. Each
of the valueszi has nz scalar components, so each
of theseNs vector-valued equations can be described
asnz component scalar-valued equations. Overall, we
haveNs · nz scalar equations to determinenx parame-
ters that formx andny parameters that formy.

In general, a system of equation is sufficient to de-
termine the values of all its unknowns if the number
of equations is at least as large as the overall number
of unknowns. We haveNs · nz equations to determine
nx +ny unknowns, so we must selectNs in such a way
thatNs · nz ≥ nz + ny.

As a result, we arrive at the following recommenda-
tion:

3.3. Variable settings: general recommendation
In the situation with variable settings, we must per-

form the measurements in at leastNs ≥ (nx + ny)/nz

different settings.

3.4. Practical question: how can we actually solve
the corresponding system of equations?

We showed that if the above inequality is satisfied
then, in principle, we can uniquely determine the de-
sired valuex. This theoretical possibility leads us to a
practical question: how can we actually determinex?

In general, the dependencez = f(x, y) is non-
linear, so we must solve a system ofnon-linearequa-
tions, a systems that is, in general, rather difficult to
solve.

Most often, however, we know the approximate val-
uesx(0) andy(0). In this case, all we have to determine

is the differences∆x
def= x− x(0) and∆y

def= y − y(0)

between the actual valuesx and y and their known
approximate values. The approximations are usually
good enough, so we canlinearizethe above system of
non-linear equations. Namely, we expand the depen-
dencef(x, y) in Taylor series in∆x and∆y and ignore
quadratic and higher order terms in this expansion.

As a result, to determine∆x and∆y, we get a much
easier-to-solve system oflinear equations.

3.4. Variable settings: example
Let us illustrate this recommendation on the exam-

ple of multi-spectral astronomical imaging. In this case,
nx = 1 andnz = 1.

In the first approximation, we have only one auxil-
iary variable, i.e.,ny = 1. In this case, the above rec-
ommendation means that the number of different set-
tingsNs should be at least as large as(nx + ny)/nz =
(1 + 1)/1 = 2. Indeed, as we have shown, based
on measurements in two different settings, we can
uniquely determine the desired valuex.

In a more realistic description, we need two auxil-
iary parameters to describe the cosmic dust, i.e.,ny =
2. In this case, the above recommendation means that
the number of different settingsNs should be at least
as large as(nx + ny)/nz = (1 + 2)/1 = 3. Indeed,
as we have shown, in this more realistic description,
based on measurements in three different settings, we
can uniquely determine the desired valuex.

3.5. Different values ofy: analysis of the problem
In this situation, the general idea is that we measure

several (Nx) objectsxi, and we measure each object
under several (Ny) circumstancesyj , j = 1, . . . , Ny.
Based on the resultszi,j = f(xi, yj) of these measure-
ments, we must be able to uniquely determine bothxi

andyj .
For example, in the VLBI astrometry example, we

observe several sourcesxi by using several radiotele-
scopesyj . Based on the results of these observations,
we determine the coordinates of the objects.

Comment.In principle, we can also determine the
baseline vectors~b and the synchronization errors∆ti:
knowing~b determines how tectonic plates move relative
to each other; knowing∆ti helps to synchronize the
clocks.

Overall, we performNx ·Ny measurements, so we
end up withNx ·Ny vector-valued equations for deter-
miningxi andyj . Each of these equations hasnz scalar
components, so we havenz ·Nx ·Ny scalar equations.

Based on these equations, we must determineNx

unknown vectorsxi with nx components in each of
these vectors, andNy unknown vectorsyj with ny com-
ponents in each of these vectors. Overall, we need to
determineNx · nx + Ny · ny scalar unknown.

To be able to uniquely determine all the unknowns,
the number of equations must be at least as large as the
overall number of unknowns. Thus, we arrive at the
following recommendation:

3.6. Different values ofy: recommendation
In the situation with different values ofy, we must

select the number of objectsNx and the number of en-
vironmentsNy in such a way that:

nz ·Nx ·Ny ≥ Nx · nx + Ny · ny. (13)

To actually find the valuesxi andyj , we must, in
general, solve the corresponding system of non-linear
equations.



In many practical cases, we know reasonably good
approximationsx(0)

i and y
(0)
j to xi and yj . In such

cases, we can linearize this system.

3.7. Different values ofy: good news and bad news
Good news is that whenNx and Ny are large

enough, the left-hand side of the desired inequality be-
comes larger than its right-hand side, so this determina-
tion is always possible.

Bad news is that the above inequality holds in a
generic situation. In many practical situations, we can-
not uniquely determinexi andyj no matter how many
measurements we make. For example, in astrometry,
what we observe is, in essence, the angles between the
directions to the sources and the directions between the
antennas. If we simply rotate the positions of all the
sources and all the antennas, the angles will remain the
same – thus, observations will remain the same. As a
result, we cannot uniquely determine the coordinates of
all the sources – we can only determine them modulo
rotations.

3.8. How can we describe these non-general situ-
ations? These situations can be naturally described in
terms of invariance w.r.t. transformation groups

What does it mean that we cannot uniquely deter-
minexi andyj no matter how many measurements we
make? It means that even if we measure all the objects
x for all the valuesy, we will not be able ti uniquely
determine all the valuesx and y. In other words, in
addition to the actual valuesx andy, it would also be
possible to have different valuesTx(x) andTy(y) for
objectsx and auxiliary quantitiesy for which the mea-
surement results would be exactly the same as for the
actual values, i.e., for which

f(x, y) = f(Tx(x), Ty(y)). (14)

If this invariance property holds for a pair of functions
(Tx, Ty) and for another pairs(Sx, Sy), then it will also
hold for their composition and for the inverse functions.
In mathematical terms, it means that such pairs of trans-
formations form agroup.

In this case, we can only determinex modulo trans-
formations from this group. In the astrometry exam-
ple, this group was the group of all rotations. What
we are claiming here is that every time we have a non-
uniqueness, it is because there is some transformation
group under which the functionf(x, y) is invariant.
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