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Abstract

In one of his early papers, D. Grigoriev analyzed the decidability and
computational complexity of different physical theories. This analysis
was motivated by the hope that this analysis would help physicists. In
this paper, we describe newer similar results that are already helping
physicists. We feel that further research may lead to even more interesting
physical applications.

1 Introduction

How it all started for us. Our first serious attempt to analyze the rela-
tion between computational complexity and foundations of physics was in the
early 1970s, when both Dima Grigoriev and one of us (V.K.) were students
at the Math Department of St. Petersburg University. V.K. knew some about
physics, especially about space-time geometry, and he felt that Dima’s (already
then) experience in decidability of the first-order theory of real numbers (and
its fragments) could be very helpful in analyzing different space-time models.

We “clicked” nicely, and we wrote a joint paper in which we analyzed decid-
ability of different space-time models. Some of our results were rather trivial:
e.g., that, due to Tarski’ theorem [32], the first order theory of Minkowski
(flat) space-time, with the causal relation (t, x1, x2, x3) Â (s, y1, y2, y3) iff
t−s >

√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2, is decidable. Some of our results

were new (although still not very difficult to prove): that for some physically
meaningful classes of space-time models, the first order theory of the causality
relation is decidable, while for other physically meaningful classes, the corre-
sponding theory is undecidable.

1



For decidable theories, we also looked into the computational complexity of
the corresponding deciding algorithms.

Why is this interesting? The first (mundane) reason. Why is it inter-
esting to analyze the relation between computational complexity and founda-
tions of physics? Why was it interesting to us then, and why is this research
still of big interest to me?

Of courses, there is a mundane reason: One of the objectives of physics
is to predict the future of the world. We are not talking about the future in
any grandiose sense, but simply about predictions: where will the Moon be in a
month (this we can do very well), what will the weather be tomorrow (this we can
also do reasonably well now), where and when will the next earthquake happen
(this we cannot do well yet), etc. In many such problems, the equations are well
known, the initial conditions are measured with a reasonable accuracy, the main
problem is that computations take so long a time that the predicted event occurs
before the predicting computations end. This is why supercomputers are used
in weather prediction, and this is why long-term weather prediction is not yet
practically possible. Of course, from the viewpoint of a computer engineer, this
is an excellent motivation to design even faster supercomputers. However, from
the viewpoint of a computer scientist, before trying to build high-cost hardware
that would run the existing algorithms faster, it is desirable to first check if we
can design faster algorithms.

In other words, it is desirable to analyze the computational complexity of
the existing physics problems – with the hope that some of these problems can
be solved by much faster algorithms that now.

This is a well-known activity, relating computational complexity and working
physics, many folks in computer science and mathematical physics are working
on it. What exciting us more was the relation not with working physics but
rather with fundamental physics. Let me explain the possibilities in more detail.

Why is this interesting? This activity has led to the excitement of
quantum computing. Suppose that we analyze a prediction problem – like
predicting geometry of space-time. If it turns out that this problem has a
reasonable computational complexity, great. But what is this problem turns
out to be computationally difficult? In other words, what if the future event
always occurs before we can predict it?

At first glance, it may sound as if this inability to predict is bad, it limits
our ability to cognize the world. However, it is possible to put a positive twist
on this seemingly negative result. Namely, what such a result means is that
the analyzed physical phenomenon provides us with a unique opportunity to
compute the results faster than any of the existing computers – and thus, we
can use this phenomenon in designing new faster computers. This positive twist
can be traced to Lobachevsky, one of the fathers of non-Euclidean geometry.
When Lobachevsky found out that in his non-Euclidean geometry, formulas for
the volumes and areas are much more complex than in the standard Euclidean
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geometry, a fact that seems to make his geometry less desirable, he immediately
suggested that this complexity may be a good thing. For example, the fact
that the volume of a ball is a complex expression means that we can then
compute this complex expression by simply filling a spherical shell with water
and measuring the resulting volume.

This positive twist is behind the current interest in quantum computing: the
fact that it is very difficult to solve the quantum mechanics equations seems to
indicate that the quantum phenomena, when properly arranged, can speed up
computations. And indeed, by using quantum computing, we can reduce the
time needed to search in an unsorted n-element array from n to O(

√
n) [10, 11,

12], and the time needed to factor large integers from probably exponential to
definitely polynomial [30]; see also [28].

A similar positive twist has also been used in complexity related to space-
time geometry: Namely, in contrast to Euclidean geometry, where the volume
V (R) of a ball of a radius R grows as R3, in Lobachevsky geometry, this vol-
ume exponentially increases with R: V (R) ≈ KR for some K > 1. Thus, in
Lobachevsky space-time, we can solve propositional satisfiability in polynomial
time: for every n, we can place exponentially many (≈ Kn) processors in a ball
of radius n, let each of them test a different Boolean vector, and let the one who
found a satisfying Boolean vector send the result back to us. Checking a single
Boolean vector is fast, so, since the largest distance d is ≈ n, the communication
time d/c – where c is the speed of light – is also polynomial in n.

In Euclidean space-time, we can collect the same exponential number of
processors, but these processors will then require an exponential distance –
hence exponentially growing communication time.

This scheme, originally proposed in [18, 27], is described in more detail in
[13]. Of course, the real physical space-time is more complex than Lobachevsky
space; however, a similar speed-up can be achieved for more physically reason-
able space-times as well [15, 17, 27].

Why is this interesting? Because not only can physicists can help
us, we can help physics as well. When we have a well-established physical
theory, like quantum mechanics, then whatever this theory implies, we have to
say “Yes, sir!”. If the theory implies that fast prediction is impossible, we have
no other choice but to take this impossibility at face value, and design ways of
making the best use of this seeming inconvenience.

In fundamental physics, however, few theories are as well established as
quantum mechanics. Be it cosmology, be it quantum field theory, there are
often several competing theories (or at least several competing versions of the
same theory). In this situation, if one of the competing theories leads to efficient
predictions while in the competing theory, prediction is impossible, then this
cognizability may be a good argument in favor of the first theory.

This is what excited Dima and V.K.: that by analyzing computational com-
plexity of different physical problems, we may be able to help physicists under-
stand the world.
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This is a very ambitious desire, but, as we will try to show in this paper,
it is quite doable. Some of the following examples are rather mathematically
trivial, others require some proofs – but in all these cases, we gain some new
understanding of physical phenomena.

A word of caution is in order: no matter how excited we may feel, from the
viewpoint of physics, these examples are simply a humble beginning. This is
not an opportunity to brag about the results, this is rather an opportunity to
present the proof of concept – and thus, to hopefully encourage further research
in this direction.

2 Proof of Concept: Back-of-the-Envelope Cal-
culations

Before dwelling into more serious math, let us show that this idea can work, on
the example of Dirac’s large numbers. Let us first explain what they are.

There are many constants in physics. In physics, there are many con-
stants such as the speed of light, the charge of the electron, etc. Most of these
constants are dimensional in the sense that their numerical value depends on
the choice of the measuring units for the corresponding physical quantities. For
example, if we express the numerical value of the speed of light c in miles per
second, we get a different numerical value than when we express it in kilometers
per second. (In theoretical physics, it is often convenient to select a special
system of units if which c = 1.)

Fundamental dimensionless constants. Some physical constants are di-
mensionless in the sense that they are independent on the choice of units. A
simple example of such a constant is a ratio between the masses of a neutron and
a proton. The values of most of these dimensionless constants can be derived
from the corresponding physical theory. However, for some constants, we know
of no such derivation, so these constants are fundamental.

Most dimensionless constants are not too large and not too small.
The values of most fundamental dimensionless constants are usually close to
1. This fact is the reason why engineers and physicists can safely estimate
and neglect, e.g., quadratic (or, in general, higher order terms) in asymptotic
expansions, even though no accurate estimates on the coefficients on these terms
is known [8]. In particular, such methods are used in quantum field theory, where
we add up several first Feynman diagrams [1]; in celestial mechanics [31], etc.

However, there are few very large and very small ones. In 1937,
P. A. M. Dirac, one of the founding fathers of quantum field theory, discov-
ered an interesting empirical relation between such unusual constants [5, 6].
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An example of a very large fundamental constant. One such fundamen-
tal dimensionless constant is related to the lifetime T of the Universe (T ≈ 1010

years). By definition, the value T is the largest physically possible time in-
terval. To transform it into a dimensionless constant, let us divide T by the
smallest possible time interval ∆t. The smallest possible time is the time when
we pass through the smallest possible object with the largest possible speed.
The largest possible speed is the speed of light c, the smallest possible object
is an elementary particle. Which of the elementary particles has the smallest
size?

In Newtonian physics, particles of smaller mass m have smaller sizes, but
in quantum physics, the situation is different: An elementary particle does not
have any components, so it is, in some sense, a point particle. However, due to
Heisenberg’s uncertainty principle between energy E and time t, ∆E ·∆t ≥ h̄
(where h̄ is Planck’s constant), we do not see it as a point particle: the accuracy
∆t with which we can locate the particle in time cannot be smaller than ∆t ≈
h̄/E = h̄/(mc2). Thus, the smallest size particle is the one with the largest
mass. Among independent stable particles – photon, electron, proton, etc. –
proton has the largest mass and hence, the smallest possible ∆t.

If we divide T by proton’s ∆t, we get a dimensionless constant ≈ 1040. There
is no good physical explanation for this constant.

Dirac’s relation between fundamental physical constants. Dirac no-
ticed that this constant ≈ 1040 is unexpectedly related to another dimensionless
constant: the fine structure constant α ≈ 1/137. This constant occurs in quan-
tum electrodynamics; crudely speaking, the largest possible size of an atom is
1/α. Dirac noticed that 1040 ≈ 21/α. Indeed, as every computer science person
knows, 210 ≈ 103, hence 1040 ≈ (103)13.3 ≈ (210)13.3 ≈ 2133.

Of course, this is not an exact equality, but, on the other hand, we do not
even know T well enough: it can be 10 billion years, it can be 20. Within the
accuracy with which we know T , this coincidence was, in Dirac’s viewpoint,
very impressive.

Why? Since Dirac’s 1937 paper, physicists have tried to explain this empirical
relation; alas, there is still no widely accepted physics-based explanation. Let
us show that simple cognizability (= computational complexity) arguments can
explain this relation.

Our back-of-the-envelope explanation. According to quantum mechan-
ics, the dynamics of an n-particle quantum system is described by Schrödinger’s

equation ih̄
∂Ψ
∂t

= HΨ, where Ψ(x1, . . . , xn) is a wave function, a function whose
values depend on the coordinates x1, . . . , xn of all n particles.

If some particles do not interact with each other, then we can consider
simplified wave functions: e.g., if particles 1, . . . , m and particles m + 1, . . . , n
form two clusters that do not interact with each other, then Ψ(x1, . . . , xn) =
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Ψ1(x1, . . . , xm) ·Ψ2(xm+1, . . . , xn). However, if all n particles actively interact
with each other, we need a general function of n coordinate variables.

If we assume that the world is cognizable, then we must be able to predict
at least something for such n-particle clusters. From this viewpoint, what is
the largest size n of the atom, i.e., what is the largest size of the cluster of
actively interacting particles? We want to be able to predict something about
each of these particles. Thus, for each of n particles i, we must consider at least
2 different locations x

(1)
i and x

(2)
i . In the minimal case, in which we consider

exactly two locations for each particle, we still have 2n possible combinations
(x(ε1)

1 , . . . , x
(εn)
n ), where εi ∈ {1, 2}. Thus, we must consider at least 2n different

values of Ψ(x1, . . . , xn).
Our prediction algorithm must handle each value at least once, so it requires

at least 2n computational steps. The shortest computational step time is the
shortest possible time interval ∆t. Thus, during the entire history of the Uni-
verse, we can perform no more than T/∆t computational steps. The largest
possible atom is thus the one for which we need this largest number of steps,
i.e., for which 2n ≈ T/∆t. This is exactly Dirac’s relation.

3 A More Detailed Analysis (Still on the Phys-
ical Level of Rigor)

Other Dirac’s relations. Dirac has discovered several other relations be-
tween dimensionless constants. These relations can also be justified in a similar
way, but this justification requires a deeper physical analysis than simple back-
of-the-envelope calculations from the previous section.

Most of the analysis in this section is still on the physical level of rigor. In
the following section, we show how many of these results can be described in
precise mathematical terms.

Let us start our analysis by formulating an important difference between the
physical intuition and the existing mathematical formalisms.

Physicists assume that initial conditions and values of parameters are
not abnormal. To a mathematician, the main contents of a physical theory
is the equations. The fact that the theory is formulated in terms of well-defined
mathematical equations means that the actual field must satisfy these equations.
However, this fact does not mean that every solution of these equations has a
physical sense. Let us give three examples:

Example 1. At any temperature greater than absolute zero, particles are ran-
domly moving. It is theoretically possible that all the particles start moving in
one direction, and, as a result, a person starts lifting up into the air. The prob-
ability of this event is small (but positive), so, from the purely mathematical
viewpoint, we can say that this event is possible but highly unprobable. How-
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ever, the physicists say plainly that such an abnormal event is impossible (see,
e.g., [7]).

Example 2. Another example from statistical physics: Suppose that we have
a two-chamber camera. The left chamber if empty, the right one has gas in it.
If we open the door between the chambers, then the gas would spread evenly
between the two chambers. It is theoretically possible (under appropriately cho-
sen initial conditions) that the gas that was initially evenly distributed would
concentrate in one camera, but physicists believe this abnormal event to be im-
possible. This is a general example of what physicists call irreversible processes:
on the atomic level, all equations are invariant with respect to changing the
order of time flow t → −t). So, if we have a process that goes from state A to
state B, then, if at B, we revert all the velocities of all the atoms, we will get a
process that goes from B to A. However, in real life, many processes are clearly
irreversible: an explosion can shatter a statue, but it is hard to imagine an
inverse process: an implosion that glues together shattered pieces into a statue.
Boltzmann himself, the 19 century author of statistical physics, explicitly stated
that such inverse processes “may be regarded as impossible, even though from
the viewpoint of probability theory that outcome is only extremely improbable,
not impossible.” [2].

Example 3. If we flip a fair coin 100 times in a row, and get heads all the time,
then a person who is knowledgeable in probability would say that it is possible
– since the probability is still positive, while an engineer (and any person who
uses common sense reasoning) would say that the coin is not fair, because if it
is was a fair coin, then this abnormal event would be impossible.

In all these cases, the physicists (implicitly or explicitly) require that the ac-
tual values of the fields must not satisfy the equations, but they must also satisfy
the additional condition: that the initial conditions should not be abnormal.

A natural formalization of this idea. This property of being “not abnor-
mal” has a natural formalization: if a probability of an event is small enough,
i.e., ≤ p0 for some very small p0, then this event cannot happen. For example,
the probability that a fair coin falls heads 100 times in a row is 2−100, so, if
we choose p0 ≥ 2−100, then we will be able to conclude that such an event is
impossible.

In the next section, we will see that this formalization is not perfect (and
how computational complexity can help), but as of now, let us describe the
physical consequences of this assumption.

What is the smallest physically meaningful spatial size? We have al-
ready mentioned, in the previous section, that the range of particle’s time
location is ∆t ≈ h̄/(mc2), so the range of the particle’s spatial location is
∆x = c ·∆ ≈ h̄/(mc).
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As we have also mentioned, in quantum physics, an elementary particle is not
located at an exact point with 100% probability, but it is, nevertheless, a point-
wise particle. In other words, the fact that we cannot locate a particle with an
accuracy better than ∆x does not mean that smaller spatial sizes ε < ∆x do not
have physical sense. In principle, we can measure the particle’s location with a
higher accuracy, but this higher-accuracy value does not mean that the particle
is located at this particular point within the ∆x-size range. The particle is
characterized by a probability distribution, not by an exact location value, and
repeated measurements will lead to different values within the particle’s spatial
range. For every zone within the ∆x-size range, there is a probability that the
coordinates measurement will result in coordinates within this particular zone.

According to quantum mechanics, the probability density of a particle dis-
tribution is equal to |Ψ(x)|2. Thus, the probability p to find a particle in a zone
of linear size ε around a point x is ≈ |Ψ(x)|2 · ε3.

When we decrease ε, at first, we get more and more accurate location of
the particle. However, when the spatial size ε gets very small, the probability p
becomes smaller than the threshold p0, so we will not see anything at all [16].

Comment. This is similar to what Chris Kelvin, the hero of Lem’s “Solaris”
[24], finds when he analyzes the ghost creature resembling his ex-wife: when
he increases the amplification of the electronic microscope, he sees more and
more details – until he sees nothing at all. The difference between Lem’s science
fiction and the actual physical picture is that in Lem’s vision, this phenomenon
is only true for ghost creatures, while in reality, it is true for all the universe’s
matter.

We would like to estimate the smallest spatial size ε0 for which we can still see
something, i.e., the smallest spatial size that still makes physical sense. In the
first approximation, it is reasonable to assume that the probability distribution
ρ(x) = |Ψ(x)|2 is isotropic Gaussian

ρ(x) =
1

(
√

2π)3 · σ3
· exp

(
− (x− x0)2

2σ2

)
,

with the standard deviation σ equal to the particle’s spatial range ∆x = h̄/(mc).
The largest possible value of the probability density ρ(x) = |Ψ(x)|2 is attained
at the central point x = x0 and is equal to ≈ σ−3 = (∆x)−3. Thus, when
(∆x)−3 · ε3 < p0, we conclude that p < p0 for all points x – hence, within this
spatial size, we will not be able to see anything at all.

So, the smallest possible spatial size ε0 that makes physical sense is deter-
mined by the equation (∆x)−3 · ε3

0 = p0. Due to this equation, this size is equal
to ε0 = p

1/3
0 ·∆x.

What is the smallest physically possible probability p0? How can we
find the value p0? In physics, it is known that there is a length ε0 beyond
which (due to quantum effects in geometry) we cannot localize anything (see,
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e.g., [26]): the so-called Planck length ε0 =
√

h̄ · γ/c3 ≈ 10−33 cm, where γ is
the gravitational constant. Equating the two expressions for ε0 and taking into
consideration that ∆x = h̄/(mc) ≈ 10−13 cm, we conclude that p0 ≈ 10−60.

Lifetime of a free particle – and another way of estimating p0. Ac-
cording to Schrödinger’s equation (see, e.g., [8]), the Gaussian free particle is
not a static solution: as time grows, the state continues to be Gaussian, but it
expands, so that at a time t, its range is ∆x(t) ≈

√
h̄t/m =

√
∆x · (ct), where

∆x = h̄/(mc) denotes the standard spatial range of the particle.
The probability to notice the presence of the particle within its standard

range of linear size ∆x is proportional to ρ(x) ·∆x3; similar to localization case,
we can conclude that the largest possible value of ρ(x) is ≈ (∆x(t))−3. Thus,
when (∆x(t))−3 ·∆x3 < p0, we will not be able to find the particle in its normal-
size range: the particle kind of disappears. Thus, we can determine the lifetime
T of a free particle as the largest value T for which the corresponding probability
is still ≥ p0, i.e., as the value for which (∆x(T ))−3 ·∆x3 = p0. Substituting the
expression ∆x(T ) =

√
∆x · (cT ) into this equation, we conclude that

∆x3

(∆x · (cT ))3/2
=

∆x3/2

(cT )3/2
= p0,

i.e., that cT/∆x = T/∆t = p
−2/3
0 .

The ratio T/∆t is one of Dirac’s large numbers, and it is known to be equal
to 1040. Thus, from 1040 = p

−2/3
0 , we conclude that p0 ≈ 10−60 – exactly the

same value as before.

Number of particles in the Universe, one more Dirac’s relation, and
the third estimate of p0. In the previous analysis, we considered individual
particles. In quantum physics, specifically in field theory, it is known that the
real state of the world may not have a fixed number of particle, we may have
different number of particles with different probabilities.

We have assumed that events with a low probability (< p0) cannot occur.
From this viewpoint, what we consider physically as a single particle may be,
from the mathematical viewpoint, a multi-particle state, in which the probabil-
ity of measuring the number of particles as 0, 2, 3, etc., is ≤ p0. In a typical such
state, the probability p(k) of having k particles is equal to ≈ p0 for k = 0, 2, 3, . . .
until some value n0. This value n0 can be determined by the fact that in this

state, the expected number of particles n̄ =
n0∑

k=0

k · p(k) ≈ 1. Since p(k) = p0,

this expected value is equal to 1 ≈ p0 ·
n0∑

k=0

k ≈ p0 · n2
0/2, hence n0 ≈ p

−1/2
0 .

Thus, the standard deviation σ of the number of particles in this state is
equal to

σ =

√√√√
n0∑

k=1

k2 · p(k) ≈
√

n3
0 · p0 ≈ p

−1/4
0 .
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If we combine N independent particles, then the (random) overall number of
particles in the resulting state is equal to the sum of N independent random
variables that describe the numbers of particles in the composed states. Due to
the central limit theorem, for large N , the distribution of the number of particles
pN (k) in the resulting composite state is Gaussian, with the average and the
standard deviation of the composite state equal to N · n̄ and σN = σ · √N :

pN (k) =
1√

2π · σN

· exp
(
− (k −N · n̄)2

2σ2
N

)
.

The largest of these probability values is attained when k ≈ N ·n̄, and it is equal
to ≈ 1/σN . Thus, when 1/σN < p0 and we measure the number of particles in
this configuration, the probabilities pN (k) of all possible outcomes k are smaller
than the threshold, and thus, no outcome is possible.

So, only N -particle states for which 1/σN = 1/(σ · √N) ≥ p0 are physically
possible. The largest such N is therefore determined by the equation

1
σ · √N

= p0.

Since σ ≈ p
−1/4
0 , we get N ≈ p

−3/2
0 .

It is reasonable to equate the largest physically possible number of particles
with the overall number of particle in the Universe N ≈ 1088 = 1080 baryons
×108 photons per baryon. As a result, we get an estimate p0 ≈ N−2/3 ≈ 10−60.

It is worth mentioning that the relation between the overall number of par-
ticles N in the Universe and the overall number of time moments T/∆t is one
of the relations that Dirac noticed in his original papers [5, 6].

The agreement between three independent estimates for p0 is promis-
ing. Three independent estimates for p0 lead to the same value p0 ≈ 10−60.
This is a very good indication that we are on the right track.

Possible commonsense corollaries. Since we know the value of p0, we can
now make a specific conclusion: events with probability p < p0 ≈ 10−60 are
physically impossible.

Previously, we were talking about the physical consequences of this conclu-
sion. Let us now analyze what this conclusion means in common sense terms. If
we repeatedly toss a fair coin, or perform any similar random experiment, then
we can have several (h) heads in a row. The probability of having h heads in a
row is equal to 2−h. Since 103 ≈ 210, the inequality 2−h < p0 = 10−60 means
that 2−h < (103)−20 ≈ (210)−20 = 2−200, i.e., it means that h > 200. Thus, we
can have less than 200 heads in a row, but we cannot have more than 200 heads
in a row.

Similarly, if an experiment can have two possible outcomes, we run it three
times and get the first outcome in all 3, it may be a coincidence: even if in
reality the results are random, it is quite possible (probability 2−3 = 1/8 À p0)
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that we get first outcome in all three experiments. However, if we run the
experiment 200 times and we get the same result in all 200 repetitions, then
this can no longer be a coincidence. In other words, we get – on a physical level
– a justification for physical induction. In the next section, we show how to
transform this informal argument into a precise theorem.

Relation to psychology? This result is in good accordance with a known
psychological fact, first established by I. P. Pavlov in his famous experiments
with dogs, that 200 repetitions of a joint occurrence is sufficient to make a
brain recognize the relation (i.e., in Pavlov’s terms, acquire a conditional reflex).
Indeed, fewer than 200 repetitions may still be an accidental coincidence, but
more than 200 mean that the the two co-occurring events cannot be independent.

4 Ideas Related to Computational Complexity
Lead to a Consistent Description of the Above
Physical Idea and to Useful Physical Applica-
tions

Why the above formalization of the notion of “not abnormal” is not
always adequate. In the previous section, we described a seemingly natural
formalization of the notion “not abnormal”: if a probability of an event is small
enough, i.e., ≤ p0 for some very small p0, then this event cannot happen.

The problem with this approach is that every sequence of heads and tails has
exactly the same probability. So, if we choose p0 ≥ 2−100, we will thus exclude all
possible sequences of heads and tails as physically impossible. However, anyone
can toss a coin 100 times, and this prove that some sequences are physically
possible.

Historical comment. This problem was first noticed by Kyburg under the name
of Lottery paradox [23]: in a big (e.g., state-wide) lottery, the probability of
winning the Grand Prize is so small, then a reasonable person should not expect
it. However, some people do win big prizes.

Kolmogorov’s idea: use computational complexity. Crudely speaking,
the main problem is with selecting the same threshold p0 for all events. For
example, if we toss a fair coin 100 times, then a sequence consisting of all heads
should not be possible, and it is a reasonable conclusion because the probability
that tossing a fair coin will lead to this sequence is extremely small: 2−100.

On the other hand, whatever specific sequence of heads and tails we get after
tossing a coin, this sequence also has the same small probability 2−100. In spite
of this, it does not seem to be reasonable to dismiss such sequences.

Several researchers thought about this, one of them A. N. Kolmogorov, the
father of the modern probability theory. Kolmogorov came up with the follow-
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ing idea: the threshold below which the event is dismissed as impossible must
depend on the event’s complexity. The event in which we have 100 heads is
easy to describe and generates, so for this event, the threshold is higher, and
the probability 2−100 means that we this event is impossible. On the other
hand, the event corresponding to an actual sequence of heads and tails is much
more complicated; for this event, the threshold is much lower, so the event with
a probability 2−100 is still possible.

This idea – and the related notion of Kolmogorov complexity – was used
by Kolmogorov and Martin-Löf in their formalization of randomness. This no-
tion of Kolmogorov complexity was introduced independently by several people:
Kolmogorov in Russia and Solomonoff and Chaitin in the US. Kolmogorov de-
fined a complexity K(x) of a binary sequence x as the shortest length of a
program which produces this sequence. Thus, a sequence consisting of all 0’s or
a sequence 010101. . . have a very small Kolmogorov complexity because these
sequences can be generated by simple programs, while for a sequence of results
of tossing a coin, probably the shortest program is to write print(0101. . . ) and
then reproduce the entire sequence. Thus, when K(x) is approximately equal
to the length len(x) of a sequence, this sequence is random, otherwise it is not.
(The best source for Kolmogorov complexity is a book [25].)

However, the existing Kolmogorov complexity theory does not yet lead to
a formalism describing when low-probability events do not happen; we must
therefore extend the original Kolmogorov’s idea so that it would cover this case
as well.

Important comment: we may not know probability at all. In the above
three physical examples when physicists talks about ”not abnormal” initial con-
ditions, we knew something about probability. However, there are examples of
this type of reasoning in which probability does not enter into picture at all.

For example, in general relativity, it is known that for almost all initial
conditions (in some reasonable sense) the solution has a singularity point. From
this, physicists conclude that the solution that corresponds to the geometry of
the actual world has a singularity (see, e.g., [26]): the reason is that the initial
conditions that lead to a non-singularity solution are abnormal (atypical), and
the actual initial conditions must be not abnormal.

Towards a new formalization of Kolmogorov’s idea. “Abnormal” means
something unusual, rarely happening: if something is rare enough, it is not
typical (“abnormal”). Let us describe what, e.g., an abnormal height may mean.
If a person’s height is ≥ 6 ft, it is still normal (although it may be considered
abnormal in some parts of the world). Now, if instead of 6 pt, we consider 6 ft
1 in, 6 ft 2 in, etc, then sooner or later we will end up with a height h such that
everyone who is higher than h will be definitely called a person of abnormal
height. We may not be sure what exactly value h experts will call “abnormal”,
but we are sure that such a value exists.

Let us express this idea is general terms. We have a Universe of discourse,
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i.e., a set U of all objects that we will consider. Some of the elements of the
set U are abnormal (in some sense), and some are not. Let us denote the set
of all elements that are typical (not abnormal) by T . On the set U , we have a
decreasing sequence of sets A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . with the property that
∩An = ∅. In the above example, U is the set of all people, A1 is the set of all
people whose height is ≥ 6 ft, A2 is the set of all people whose height is ≥ 6
ft 1 in, A2 is the set of all people whose height is ≥ 6 ft 2 in, etc. We know
that if we take a sufficiently large n, then all elements of An are abnormal (i.e.,
none of them belongs to the set T of not abnormal elements). In mathematical
terms, this means that for some n, we have An ∩ T = ∅.

In case of a coin: U is the set of all infinite sequences of results of flipping a
coin; An is the set of all sequences that start with n heads but have some tail
afterwards. Here, ∩An = ∅. Therefore, we can conclude that there exists an n
for which all elements of An are abnormal. According to mechanics, the result
of flipping a coin is uniquely determined by the initial conditions, i.e., on the
initial positions and velocities of the atoms that form our muscles, atmosphere,
etc. So, if we assume that in our world, only not abnormal initial conditions
can happen, we can conclude that for some n, the actual sequence of results of
flipping a coin cannot belong to An. The set An consists of all elements that
start with n heads and a tail after that. So, the fact that the actual sequence
does not belong to An means that if an actual sequence has n heads, then it
will consist of all heads. In plain words, if we have flipped a coin n times, and
the results are n heads, then this coin is biased: it will always fall on heads.

Let us describe this idea in mathematical terms [9, 22]. To make formal
definitions, we must fix a formal theory: e.g., the set theory ZF (the definitions
and results will not depend on what exactly theory we choose). A set S is called
definable if there exists a formula P (x) with one (free) variable x such that P (x)
if and only if x ∈ S.

Crudely speaking, a set is definable if we can define it in ZF. The set of all
real numbers, the set of all solutions of a well-defined equations, every set that
we can describe in mathematical terms is definable.

This does not means, however, that every set is definable: indeed, every
definable set is uniquely determined by formula P (x), i.e., by a text in the
language of set theory. There are only denumerably many words and therefore,
there are only denumerably many definable sets. Since, e.g., there are more
than denumerably many set of integers, some of them are thus not definable.

Definition 1. A sequence of sets A1, . . . , An, . . . is called definable if there
exists a formula P (n, x) such that x ∈ An if and only if P (n, x).

Definition 2. Let U be a universal set.

• A non-empty set T ⊆ U is called a set of typical (not abnormal) elements if
for every definable sequence of sets An for which An ⊇ An+1 and ∩An = ∅,
there exists an N for which AN ∩ T = ∅.
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• If u ∈ T , we will say that u is not abnormal.

• For every property P , we say that “normally, for all u, P (u)” if P (u) is
true for all u ∈ T .

Relation to Kolmogorov complexity. Kolmogorov complexity enables us
to define the notion of a random sequence, e.g., as a sequence s for which there
exists a constant c > 0 for which, for every n, the (appropriate version of)
Kolmogorov complexity K(s|n) of its n-element subsequence s|n exceeds n− c.
Crudely speaking, c is the amount of information that a random sequence has.

Random sequences in this sense do not satisfy the above definition, and are
not in perfect accordance with common sense – because, e.g., a sequence that
starts with 106 zeros and then ends in a truly random sequence is still random.
Intuitively, for “truly random” sequences, c should be small, while for the above
counter-example, c ≈ 106. If we restrict ourselves to random sequences with
fixed c, we satisfy the above definition.

There are many ways to define Kolmogorov complexity and random se-
quences [25]; it is therefore desirable to aim for results that are true in as
general case as possible. In view of this desire, in the following text, we will
not use any specific version of these definitions; instead, we will assume that
Definition 2 is true.

It is possible to prove that abnormal elements do exist [9]; moreover, we
can select T for which abnormal elements are as rare as we want: for every
probability distribution p on the set U and for every ε, there exists a set T for
which the probability p(x 6∈ T ) of an element to be abnormal is ≤ ε:

Proposition 1. For every probability measure µ on a set U (in which all
definable sets are measurable), and for every ε > 0, there exists a set T of
typical elements for which µ(T ) > 1− ε.

Proof. Similarly to the above argument, one can show that there are no more
than countably many definable sequences of sets {An}. Thus, there are at most
countably many definable decreasing sequences a = {An} for which ∩An = ∅.
Therefore, we can order all such sequences into a sequence of sequences: a(1) =
{A(1)

n }, a(2) = {A(2)
n }, . . . For each of these sequences a(k), since ∩A

(k)
n = ∅, we

have µ(A(k)
n ) → 0 as n →∞, hence there exists an Nk for which µ(A(k)

Nk
) < ε/2k.

Let us show that as T , we can take the complement U \A to the union A of all
the sets A

(k)
Nk

. Indeed, by our choice of T , for every definable decreasing sequence

a(k) = {A(k)
n }, there exists an N , namely N = Nk, for which T ∩A

(k)
N = ∅.

To complete the proof, we must show that µ(T ) > 1 − ε. Indeed, from
µ(A(k)

Nk
) < ε/2k, we conclude that µ(A) = µ(∪A

(k)
Nk

) ≤ ∑
µ(A(k)

Nk
) <

∑
ε/2k = ε,

and therefore, µ(T ) = µ(U \A) = 1− µ(A) > 1− ε.
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First application to physics: restriction to “not abnormal” solutions
leads to regularization of ill-posed problems. An ill-posed problem arises
when we want to reconstruct the state s from the measurement results r. Usu-
ally, all physical dependencies are continuous, so, small changes of the state s
result in small changes in r. In other words, a mapping f : S → R from the set
of all states to the set of all observations is continuous (in some natural topol-
ogy). We consider the case when the measurement results are (in principle)
sufficient to reconstruct s, i.e., the case when the mapping f is 1-1. That the
problem is ill-posed means that small changes in r can lead to huge changes in
s, i.e., that the inverse mapping f−1 : R → S is not continuous.

We will show that if we restrict ourselves to states S that are not abnormal,
then the restriction of f−1 will be continuous, and the problem will become
well-posed.

Definition 3. A definable metric space (X, d) is called definably separable if
there exists a definable everywhere dense sequence xn ∈ X.

Proposition 2. Let S be a definably separable definable metric space, T be
a set of all not abnormal elements of S, and f : S → R be a continuous 1-
1 function. Then, the inverse mapping f−1 : R → S is continuous for every
r ∈ f(T ).

In other words, if we know that we have observed a not abnormal state (i.e.,
that r = f(s) for some s ∈ T ), then the reconstruction problem becomes well-
posed. So, if the observations are accurate enough, we get as small guaranteed
intervals for the reconstructed state s as we want.

Proof. It is known that if a set K is compact, then for any 1-1 continuous
function K → R, its inverse is also continuous. Thus, to prove our result, we
will show that the closure T of the set T is compact.

A set K in a metric space S is compact if and only it is closed, and for every
positive real number ε > 0, it has a finite ε-net, i.e., a finite set K(ε) with the
property that every s ∈ K, there exists an element s(ε) ∈ K(ε) that is ε-close
to s.

The closure K = T is clearly closed, so, to prove that this closure is compact,
it is sufficient to prove that it has a finite ε-set for all ε > 0. For that, it is
sufficient to prove that for every ε > 0, there exists a finite ε-net for the set R.

If a set T has a ε-net T (ε), and ε′ > ε, then, as one can easily see, this same
set T (ε) is also a ε′-net for T . Therefore, it is sufficient to show that finite ε-nets
for T exist for ε = 2−k, k = 0, 1, 2, . . .

Let us fix ε = 2−k. Since the set S is definably separable, there exists a
definable sequence x1, . . . , xi, . . . which is everywhere dense in S. As An, we will
now take the complement to the union Un of n closed balls Bε(x1), . . . , Bε(xn)
of radius ε with centers in x1, . . . , xn.
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Clearly, An ⊇ An+1. Since xi is an everywhere dense sequence, for every
s ∈ S, there exists an n for which s ∈ Bε(xn) and for which, therefore, s ∈ Un

and x 6∈ An = S \ Un. Hence, the intersection of all the sets An is empty.
Therefore, according to the definition of a set of typical elements, there exists

an N for which T ∩AN = ∅. This means that T ⊆ UN . This, in its turn, means
that the elements x1, . . . , xN form an ε-net for T . So, the set T has a finite
ε-net for ε = 2−k.

Comment. To actually use this result, we need an expert who will tell us what is
abnormal, and whose ideas of what is abnormal satisfies the (natural) conditions
described in Definition 2.

Another application: every physical quantity is bounded.

Proposition 3. If U is a definable set, and f : U → R is a definable function,
then there exists a number C such that if u ∈ U is not abnormal, then |f(u)| ≤
C.

Proof. We can take An
def= {u | |f(u)| > n}; then, ∩An = ∅, hence there exists

N for which AN ∩ T = ∅, i.e., for which, once u ∈ T , we have u 6∈ AN – i.e.,
|f(u)| ≤ N . The statement is proven.

Measurable physical quantities come from an algorithmically described pro-
cedures, hence in a reasonable physical theory, these quantities should be defin-
able in terms of the objects. If we now use the physicists’ idea that abnormal
initial conditions and/or abnormal values of parameters are impossible, then we
can make the following conclusions:

Special relativity. If as U , we take the set of all the particles, and as f ,
we take velocity, then we can conclude that the velocities of all (not abnormal)
particles is bounded by some constant C. This is exactly what special relativity
says, with the speed of light as C.

Cosmology. If we take the same state U , and as f , take the distance from the
a particle u to some fixed point in the Universe, then we can conclude that the
distances between particles in the Universe are bounded by a constant C. So,
the Universe is finite. Similarly, if we take a time interval between the events
as f , we can conclude that the Universe has a finite lifetime.

Why particles with large masses do not exist. Several existing particle
classification schemes allow particles with arbitrarily large masses [3]. E.g., in
Regge trajectory scheme, particles form families with masses mn = m0 + n · d
for some constants m0 and d: when n →∞, we have mn →∞. However, only
particles with relatively small masses have been experimentally observed (see,
e.g., [29]).
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These particles with large masses, that are difficult to weed out using equa-
tions only, can be easily weeded out if use the notion of “not abnormal”. Indeed,
if we take mass of the particle as f , then we can conclude that the masses of all
(not abnormal) particles are bounded by some constant C.

Dimensionless constants are usually small. As we have mentioned, this
is the reason why engineers and physicists can safely estimate and neglect, e.g.,
quadratic (or, in general, higher order terms) in asymptotic expansions, even
though no accurate estimates on the coefficients on these terms is known.

Thus, complexity idea not only helps us formalize the way physicists think, it
also helps us formalize Dirac’s intuition that why large constants are abnormal.

This development is in line with Kolmogorov’s original idea that some natu-
ral numbers which are mathematically possible (like 101010

) are not feasible and
thus, should not be considered as feasible [14].

One more application: justification of physical induction. From the
viewpoint of an experimenter, a physical theory can be viewed as a statement
about the results of physical experiments. If we had an infinite sequence of
experimental results r1, . . . , rn, . . ., then we will be able to tell whether the
theory is correct or not. So, a theory can be defined as a set of sequences
r1, r2, . . . that are consistent with its equations, inequalities, etc. In real life,
we only have finitely many results r1, . . . , rn, so, we can only tell whether the
theory is consistent with these results or not, i.e., whether there is an infinite
sequence r1, r2, . . . that starts with the given results that satisfies the theory.

It is natural to require that the theory be physically meaningful in the fol-
lowing sense: if all experiments confirm the theory, then this theory should be
correct. An example of a theory that is not physically meaningful is easy to give:
assume that a theory describes the results of tossing a coin, and it predicts that
at least once, there should be a tail. In other words, this theory consists of all
sequences that contain at least one tail. Let us assume that actually, the coin
is so biased that we always have heads. Then, this infinite sequence does not
satisfy the given theory. However, for every n, the sequence of the first n results
(i.e., the sequence of n heads) is perfectly consistent with the theory, because
we can add a tail to it and get an infinite sequence that belongs to the set T .
Let us describe this idea in formal terms.

Definition 4. Let a definable set R be given. Its elements will be called possi-
ble results of experiments. By S, we will denote the set of all possible sequences
r1, rn, . . ., where ri ∈ R. By a theory, we mean a definable subset T of the set
of all infinite sequences S. If r ∈ T , we say that a sequence r satisfies the theory
T , or, that for this sequence r, the theory T is correct.

Comment. A theory is usually described by its axioms and deduction rules.
The theory itself consists of all the statements that can be deduced from the
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axioms by using deduction rules. In most usual definitions, the resulting set is
r.e. – hence definable. We therefore define a theory as a definable set.

Definition 5. We say that a finite sequence (r1, . . . , rn) is consistent with the
theory T if there exists an infinite sequence r ∈ T that starts with r1, . . . , rn and
that satisfies the theory. In this case, we will also say that the first n experiments
confirm the theory.

Definition 6. We say that a theory T is physically meaningful if the following
is true for every sequence r ∈ S:

If for every n, the results of first n experiments from r confirm the theory
T , then, the theory T is correct for r.

In this case, the universal set consists of all possible infinite sequence of
experimental results, i.e., U = S. Let T ⊆ S be the set of all typical (not
abnormal) sequences.

Proposition 4. For every physically meaningful theory T , there exists an in-
teger N such that if a sequence r ∈ S is not abnormal and the first N experiment
confirm the theory T , then this theory T is correct.

Idea of the proof: as An, we take the set of all the sequences r for which
either the first n experiments confirm T or T is not correct for r.

This result shows that we can confirm the theory based on finitely many
observations. The derivation of a general theory from finitely many experiments
is called physical induction (as opposed to mathematical induction). There have
been many attempts to justify physical induction. However, in spite of the
success, the general physical induction is difficult to justify, to the extent that a
prominent philosopher C. D. Broad has called the unsolved problems concerning
induction a scandal of philosophy [4]. We can say that the complexity-motivated
notion of “not abnormal” justifies physical induction by making it a provable
theorem (and thus resolves the corresponding scandal). It is also nice to notice
that a more “low-brow” thing like computational complexity can be useful in
more “high-brow” things like philosophical foundations of physical induction.
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