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Abstract

In the 1960s, A.N. Kolmogorov described the main reason why a math-
ematical correct solution to a system of differential equations may be not
physically possible: Traditional mathematical analysis tacitly assumes that
all numbers, no matter how large or how small, are physically possible. From
the engineering viewpoint, however, a number like 101010

is not possible, be-
cause it exceeds the number of particles in the Universe. In this paper, we
extend Kolmogorov’s ideas from discrete objects to continuous objects known
with given accuracy ε, and show how this extension can clarify the analysis
of dynamical systems.

1 Problem

In the 1960s, A.N. Kolmogorov described the main reason why a mathematical
correct solution to a system of differential equations may be not physically possible
(see, e.g., [6]):

• Traditional mathematical analysis tacitly assumes that all numbers, no matter
how large or how small, are physically possible.

• From the engineering viewpoint, however, a number like 101010
is not possible,

because it exceeds the number of particles in the Universe.

In particular, solutions to the corresponding systems of differential equations which
lead to some numbers – or statements that we can predict the outcome of a chaotic
system – are mathematically OK, but physically meaningless.

Very small numbers are also physically meaningless. For example, mathemati-
cally, there is a positive probability that a kettle, placed on a cold stove, will boil by
itself. From the viewpoint of a working physicist, this probability is so small that
this is absolutely impossible.

How can we describe this in precise terms?



2 Main Idea

Our main idea is that it is important to list the observables o1, . . . , on of the system,
and to impose physical restrictions on the accuracy and range of these observables.

In particular, two states o = (o1, . . . , on) and o′ = (o′1, . . . , o
′
n) in which the values

of these observables are close – e.g., for which

d(o, o′) def
=

√
(o1 − o′1)2 + . . . + (on − o′n)2 ≤ ε

for some threshold value ε – cannot be physically distinguished.
In effect, what we are doing is introducing discreteness into a system. Clearly,

such a discreteness makes the description of a physical system more realistic. How-
ever, as it is well known, discreteness makes the analysis of the system more com-
putationally difficult: e.g., continuous optimization problems are easy to solve while
the corresponding discrete optimization problems are difficult to solve (NP-hard;
see, e.g., [10]). The complexity of analyzing discrete system is one of the main rea-
sons why it is much easier to describe a solid body as a continuous media than to
describe it as a collection of discrete atoms/molecules.

Let us show that our particular version of discreteness not only makes the models
more realistic, but also often simplifies the analysis. We will show it on the example
of the reversibility problem, a known problem of the foundations of physics:

• On the one hand, Newton’s equations are reversible – they remain the same if
we replace time t by −t.

• On the other hand, it is well known that many physical processes are not
physically reversible – e.g., if we place an ink drop in water, it will spread
around, but it is physically impossible for the ink in water to gather into a
single drop.

From the above viewpoint, there is no contradiction here. Namely, to reverse an op-
eration, we must be able to guarantee the resulting state based on the initial setting.
According to our approach, when we set up an initial state o(t0), we cannot distin-
guish between ε-close states. Different initial states o(t0) lead, generally speaking,
to different resulting states o(t) at a future moment of time t > t0. So, the only
situation when we can guarantee the result is when different resulting states are also
physically indistinguishable, i.e., when d(o(t0), o

′(t0)) ≤ ε implies d(o(t), o′(t)) ≤ ε.
The transition from the drop-of-ink to spread-ink has this property, while the inverse
transition does not.

In general, from the purely mathematical viewpoint, we can predict the behavior
of an arbitrary dynamical system. However, in real life, for many systems, we cannot
do that, because predicting the state o(t) with a given accuracy ε0 requires, for large
t, that we know the initial state o(t0) with an impossible accuracy ε0 · c−(t−t0) (for
some c > 1). The only case when we can meaningfully predict the behavior of the
system is when d(o(t0), o

′(t0)) ≤ ε implies d(o(t), o′(t)) ≤ ε. In other cases, we have
a chaos-type phenomenon.

Similarly, the only case when we can reconstruct the past state is when
d(o(t), o′(t)) ≤ ε implies d(o(t0), o

′(t0)) ≤ ε.
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There are systems for which we can both predict the future and reconstruct the
past. In such systems, d(o(t), o′(t)) ≤ ε ↔ d(o(t0), o

′(t0)) ≤ ε. In geometry, it has
been proven (see, e.g., [1, 2]) that the corresponding transformation o(t0) → o(t) is
linear; moreover, it is an isometry (a composition of shifts and rotations). Thus, the
only true reversible systems are linear ones.

This restriction is not as restrictive as it may sound, because, e.g., in quantum
mechanics, dynamics is always linear – and so, via quantization, we can represent
every system as linear.

Within this idea, how can we describe the properties of a physical state? For
example, suppose that we have some way to describe the complexity K(o) of a
mathematical state (e.g., as its Kolmogorov complexity [12] or as its entropy). In this
case, physically indistinguishable (i.e., ε-close) states may have different complexity,
so, instead of the actual complexity of an observable state, we can only talk about
the bounds on this complexity. For each state o, we can have indistinguishable states
o′ ∼ o with arbitrary high complexity, so the upper bound is simply ∞, and the

only meaningful characteristic is the lower bound Kε(o)
def
= min{K(o′) | d(o, o′) ≤ ε}

(for Kolmogorov complexity, a similar characteristic was first proposed in [13]).
For chaotic systems, thus defined complexity Kε(o(t)) increases with time t; for
stabilizing systems, it decreases; for physically reversible (linear) systems, it remains
≈ const.

It is worth mentioning that our approach is related to A. Trautman’s work [14]
that describes a similar discrete version of spinors, and to Kaneko’s coupled map
lattices approach [5] in which subsystems form a discrete geometry.

3 Towards an Accurate Formalization of This Idea

How can we formalize our solution to the reversibility problem? In effect, our main
idea is that the probability of ink molecules accidentally getting together is so small
that from the physical viewpoint, it is simply impossible.

A similar situation occurs if we flip a coin 100 times in a row, and get heads all
the time. In this case, a mathematician knowledgeable in probability may say that
it is still possible that the coin is fair – since in this case, the probability of 100
heads in a row is small (2−100) but positive. However, an engineer (and any person
who uses common sense) would say that the coin is not fair, because if it is was a
fair coin, then this abnormal event would be impossible.

At first glance, it looks like this idea has a natural formalization: if a probability
of an event is small enough (say, ≤ p0 for some very small p0), then this event cannot
happen. For example, the probability that a fair coin falls heads 100 times in a row
is 2−100, so, if we choose p0 ≥ 2−100, then we will be able to conclude that such an
event is impossible.

The problem with this approach is that every sequence of heads and tails has
exactly the same probability. So, if we choose p0 ≥ 2−100, we will thus exclude all
possible sequences of heads and tails as physically impossible. However, anyone can
toss a coin 100 times, and thus prove that some sequences are physically possible.

“Abnormal” means something unusual, rarely happening: if something is rare
enough, it is not typical (“abnormal”). Let us describe what, e.g., an abnormal

3



height may mean. If a person’s height is ≥ 6 ft, it is still normal (although it may
be considered abnormal in some parts of the world). Now, if instead of 6 pt, we
consider 6 ft 1 in, 6 ft 2 in, etc, then sooner or later we will end up with a height h
such that everyone who is higher than h will be definitely called a person of abnormal
height. We may not be sure what exactly value h experts will call “abnormal”, but
we are sure that such a value exists.

Let us express this idea is general terms. We have a Universe of discourse, i.e.,
a set U of all objects that we will consider. Some of the elements of the set U are
abnormal (in some sense), and some are not. Let us denote the set of all elements
that are typical (not abnormal) by T . On the set U , we have a decreasing sequence
of sets A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . with the property that ∩An = ∅. In the above
example, U is the set of all people, A1 is the set of all people whose height is ≥ 6
ft, A2 is the set of all people whose height is ≥ 6 ft 1 in, A2 is the set of all people
whose height is ≥ 6 ft 2 in, etc. We know that if we take a sufficiently large n,
then all elements of An are abnormal (i.e., none of them belongs to the set T of not
abnormal elements). In mathematical terms, this means that for some n, we have
An ∩ T = ∅.

In case of a coin: U is the set of all infinite sequences of results of flipping a coin;
An is the set of all sequences that start with n heads but have some tail afterwards.
Here, ∩An = ∅. Therefore, we can conclude that there exists an n for which all
elements of An are abnormal. According to mechanics, the result of flipping a coin
is uniquely determined by the initial conditions, i.e., on the initial positions and
velocities of the atoms that form our muscles, atmosphere, etc. So, if we assume
that in our world, only not-abnormal initial conditions can happen, we can conclude
that for some n, the actual sequence of results of flipping a coin cannot belong to
An. The set An consists of all elements that start with n heads and a tail after that.
So, the fact that the actual sequence does not belong to An means that if an actual
sequence has n heads, then it will consist of all heads. In plain words, if we have
flipped a coin n times, and the results are n heads, then this coin is biased: it will
always fall on head.

Let us describe this idea in mathematical terms [4, 11]. To make formal defini-
tions, we must fix a formal theory: e.g., the set theory ZF (the definitions and results
will not depend on what exactly theory we choose). A set S is called definable if
there exists a formula P (x) with one (free) variable x such that P (x) if and only if
x ∈ S.

Crudely speaking, a set is definable if we can define it in ZF. The set of all real
numbers, the set of all solutions of a well-defined equations, every set that we can
describe in mathematical terms is definable.

This does not means, however, that every set is definable: indeed, every definable
set is uniquely determined by formula P (x), i.e., by a text in the language of set
theory. There are only denumerably many words and therefore, there are only
denumerably many definable sets. Since, e.g., there are more than denumerably
many set of integers, some of them are thus not definable.

Definition 1. A sequence of sets A1, . . . , An, . . . is called definable if there exists
a formula P (n, x) such that x ∈ An if and only if P (n, x).
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Definition 2. Let U be a universal set.

• A non-empty set T ⊆ U is called a set of typical (not abnormal) elements if
for every definable sequence of sets An for which An ⊇ An+1 and ∩An = ∅,
there exists an N for which AN ∩ T = ∅.

• If u ∈ T , we will say that u is not abnormal.

• For every property P , we say that “normally, for all u, P (u)” if P (u) is true
for all u ∈ T .

How are these definitions related to Kolmogorov complexity K(x)? Kolmogorov
complexity – i.e., the shortest length of a program that generates x – enables us to
define the notion of a random sequence, e.g., as a sequence s for which there exists
a constant c > 0 for which, for every n, the (appropriate version of) Kolmogorov
complexity K(s|n) of its n-element subsequence s|n exceeds n−c. Crudely speaking,
c is the amount of information that a random sequence has.

Random sequences in this sense do not satisfy the above definition, and are not
in perfect accordance with common sense – because, e.g., a sequence that starts with
106 zeros and then ends in a truly random sequence is still random. Intuitively, for
“truly random” sequences, c should be small, while for the above counter-example,
c ≈ 106. If we restrict ourselves to random sequences with fixed c, we satisfy the
above definition.

There are many ways to define Kolmogorov complexity and random sequences
[12]; it is therefore desirable to aim for results that are true in as general case as
possible. In view of this desire, in the following text, we will not use any specific
version of these definitions; instead, we will assume that Definition 2 is true.

It is possible to prove that abnormal elements do exist [4]; moreover, we can
select T for which abnormal elements are as rare as we want: for every probability
distribution p on the set U and for every ε, there exists a set T for which the
probability p(x 6∈ T ) of an element to be abnormal is ≤ ε:

Proposition 1. [11] For every probability measure µ on a set U (in which all
definable sets are measurable), and for every ε > 0, there exists a set T of typical
elements for which µ(T ) > 1− ε.

What are the possible applications of these definitions? First, restriction to “not
abnormal” solutions leads to regularization of ill-posed problems.

An ill-posed problem arises when we want to reconstruct the state s from the
measurement results r. Usually, all physical dependencies are continuous, so, small
changes of the state s result in small changes in r. In other words, a mapping
f : S → R from the set of all states to the set of all observations is continuous (in
some natural topology). We consider the case when the measurement results are (in
principle) sufficient to reconstruct s, i.e., the case when the mapping f is 1-1. That
the problem is ill-posed means that small changes in r can lead to huge changes in
s, i.e., that the inverse mapping f−1 : R → S is not continuous.

We will show that if we restrict ourselves to states S that are not abnormal, then
the restriction of f−1 will be continuous, and the problem will become well-posed.
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Definition 3. A definable metric space (X, d) is called definably separable if there
exists a definable everywhere dense sequence xn ∈ X.

Proposition 2. [8, 9, 11] Let S be a definably separable definable metric space,
T be a set of all not abnormal elements of S, and f : S → R be a continuous 1-1
function. Then, the inverse mapping f−1 : R → S is continuous for every r ∈ f(T ).

In other words, if we know that we have observed a not abnormal state (i.e., that
r = f(s) for some s ∈ T ), then the reconstruction problem becomes well-posed. So,
if the observations are accurate enough, we get as small guaranteed intervals for the
reconstructed state s as we want.

Another application is justification of physical induction. From the viewpoint of
an experimenter, a physical theory can be viewed as a statement about the results
of physical experiments. If we had an infinite sequence of experimental results
r1, . . . , rn, . . ., then we will be able to tell whether the theory is correct or not. So,
a theory can be defined as a set of sequences r1, r2, . . . that are consistent with its
equations, inequalities, etc. In real life, we only have finitely many results r1, . . . , rn,
so, we can only tell whether the theory is consistent with these results or not, i.e.,
whether there is an infinite sequence r1, r2, . . . that starts with the given results that
satisfies the theory.

It is natural to require that the theory be physically meaningful in the following
sense: if all experiments confirm the theory, then this theory should be correct.
An example of a theory that is not physically meaningful is easy to give: assume
that a theory describes the results of tossing a coin, and it predicts that at least
once, there should be a tail. In other words, this theory consists of all sequences
that contain at least one tail. Let us assume that actually, the coin is so biased
that we always have heads. Then, this infinite sequence does not satisfy the given
theory. However, for every n, the sequence of the first n results (i.e., the sequence
of n heads) is perfectly consistent with the theory, because we can add a tail to it
and get an infinite sequence that belongs to the set T . Let us describe this idea in
formal terms.

Definition 4. Let a definable set R be given. Its elements will be called possi-
ble results of experiments. By S, we will denote the set of all possible sequences
r1, rn, . . ., where ri ∈ R. By a theory, we mean a definable subset T of the set of all
infinite sequences S. If r ∈ T , we say that a sequence r satisfies the theory T , or,
that for this sequence r, the theory T is correct.

Comment. A theory is usually described by its axioms and deduction rules. The
theory itself consists of all the statements that can be deduced from the axioms
by using deduction rules. In most usual definitions, the resulting set is recursively
enumerable (r.e.) – hence definable. We therefore define a theory as a definable set.

Definition 5. We say that a finite sequence (r1, . . . , rn) is consistent with the
theory T if there exists an infinite sequence r ∈ T that starts with r1, . . . , rn and
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that satisfies the theory. In this case, we will also say that the first n experiments
confirm the theory.

Definition 6. We say that a theory T is physically meaningful if the following is
true for every sequence r ∈ S:

If for every n, the results of first n experiments from r confirm the theory T ,
then, the theory T is correct for r.

In this case, the universal set consists of all possible infinite sequence of exper-
imental results, i.e., U = S. Let T ⊆ S be the set of all typical (not abnormal)
sequences.

Proposition 3. [7] For every physically meaningful theory T , there exists an in-
teger N such that if a sequence r ∈ S is not abnormal and the first N experiment
confirm the theory T , then this theory T is correct.

Idea of the proof: as An, we take the set of all the sequences r for which either
the first n experiments confirm T or T is not correct for r.

This result shows that we can confirm the theory based on finitely many obser-
vations. The derivation of a general theory from finitely many experiments is called
physical induction (as opposed to mathematical induction). The general physical in-
duction is difficult to justify, to the extent that a prominent philosopher C. D. Broad
has called the unsolved problems concerning induction a scandal of philosophy [3].
We can say that the notion of “not abnormal” justifies physical induction by making
it a provable theorem (and thus resolves the corresponding scandal).
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