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Abstract. Protein structure is invariably connected to protein func-
tion. To analyze the structural changes of proteins, we should have
a good description of basic geometry of proteins’ secondary struc-
ture. A beta-sheet is one of important elements of protein secondary
structure that is formed by several fragments of the protein that form
a surface-like feature. The actual shapes of the beta-sheets can be
very complicated, so we would like to approximate them by simpler
geometrical shapes from an approximating family. Which family
should we choose? Traditionally, hyperbolic (second order) surfaces
have been used as a reasonable approximation to the shape of beta-
sheets. In this paper, we show that, under reasonable assumptions,
these second order surfaces are indeed the best approximating fam-
ily for beta-sheets.

Introduction. Proteins are biological polymers that perform most
of the life’s function. A single chain polymer (protein) is folded in
such a way that forms local substructures called secondary structure
elements. In order to study the structure and function of proteins
it is extremely important to have a good geometrical description of
the proteins structure. There are two important secondary structure
elements: alpha helices and beta-sheets. A part of the protein struc-
ture where different fragments of the polypeptide align next to each
other in extended conformation forming a surface-like feature de-
fines a secondary structure called abeta pleated sheet, or, for short,
abeta-sheet; see, e.g., (Branden et al. 1999).

Beta-sheets are coming in many forms and shapes. In some



cases, we have a cylinder-like structure called abeta-barrelthat is
“closed” in one dimension and “open” in the other, but in most cases,
we have a surface that is open in both directions.

The actual shapes of the beta-sheets can be very complicated,
so we would like to approximate them by simpler shapes from an
approximating family. Which family should we choose?

Traditionally, hyperbolic (second order) surfaces have been used
as a reasonable approximation to the shape of beta-sheets; see, e.g.,
(Novotny et val. 1984). However, it is not clear whether they are
indeed a good approximating family.

Of course, the more parameters we allow, the better the approxi-
mation. So, the question can be reformulated as follows: for a given
number of parameters (i.e., for a given dimension of approximating
family), which is the best family?

In this paper, we formalize and solve this problem. Specifically,
we show that, under reasonable assumptions, these second order sur-
faces are indeed the best low-parameter approximating family for
beta-sheets.

Formalizing the problem. All proposed families of sets have an-
alytical (or piece-wise analytical) boundaries, so it is natural to re-
strict ourselves to such families. By definition, when we say that a
piece of a boundary is analytical, we mean that it can be described
by an equationF (x) = 0 for some analytical functionF (x) =
F (x1, x2, x3) = a0+a1 ·x1+a2 ·x2+a3 ·x3+a11 ·x2

1+a12 ·x1 ·x2+. . .
So, in order to describe a family, we must describe the corresponding
class of analytical functionsF (x1, x2, x3).

Since we are interested in finite-dimensional families of sets, it
is natural to consider finite-dimensional families of functions, i.e.,
families of the type{C1 · F1(x) + . . . + Cd · Fd(x)}, whereFi(x)
are given analytical functions, andC1, . . . , Cd are arbitrary (real)
constants.

For example, a general second-order surface can be described by
the formula

a0 +
3∑

i=1

ai · xi +
3∑

i=1

3∑

j=1

aij · xi · xj = 0, (1)



with F1(x) = 1, F2(x) = x1, F3(x) = x2, F4(x) = x3, F5(x) = x2
1,

. . ., andd = 10 parametersa0, a1, a2, a3, a11, a12, a13, a22, a23, and
a33.

The question is: which of such families is the best?
When we say “the best”, we mean that on the set of all such

families, there must be a relation≥ describing which family is better
or equal in quality. This relation must be transitive (ifA is better than
B, andB is better thanC, thenA is better thanC). This relation is
not necessarily asymmetric, because we can have two approximating
families of the same quality. However, we would like to require
that this relation befinal in the sense that it should define a unique
bestfamily Aopt (i.e., the unique family for which∀B (Aopt ≥ B).
Indeed:

• If none of the families is the best, then this criterion is of no
use, so there should beat least oneoptimal family.

• If severaldifferent families are equally best, then we can use
this ambiguity to optimize something else: e.g., if we have two
families with the same approximating quality, then we choose
the one which is easier to compute. As a result, the original
criterion was not final: we get a new criterion (A ≥new B if
eitherA gives a better approximation, or ifA ∼old B andA
is easier to compute), for which the class of optimal families
is narrower. We can repeat this procedure until we get a final
criterion for which there is only one optimal family.

It is reasonable to require that the relationA ≥ B should not change
if we change the coordinate system and/or the measuring unit, i.e.,
if we shift, rotate, and/or re-scale (x → λ · x) all the pointsx; in
other word, the relationA ≥ B should be shift-, rotation- and scale-
invariant.

Now, we are ready for the formal definitions.

Definition 1. Let d > 0 be an integer. By ad-dimensional family,
we mean a familyA of all functions of the type{C1 · F1(x) + . . . +
Cd · Fd(x)}, whereFi : R3 → R are given analytical functions, and
C1, . . . , Cd are arbitrary (real) constants.



Definition 2. By an optimality criterion, we mean a transitive re-
lation ≥ on the set of alld-dimensional families. We say that a
criterion isfinal if there exists one and only oneoptimalfamily, i.e.,
a familyAopt for which∀B (Aopt ≥ B). We say that a criterion≥ is
shift- (corr., rotation- andscale-invariant) if for every two families
A andB, A ≥ B impliesTA ≥ TB, whereTA is a shift (rotation,
scaling) of the familyA.

We have already mentioned that to describe general second order
surfaces in the above way, we needd = 10 parameters. We show that
among all possible families withd = 10, second order surfaces are
indeed the best approximating family. Moreover, we show that this
family remains optimal even if we allow higher-dimensional fami-
lies, up tod = 12. (With larger number of parameters, we may get
new possible approximating families as well.)

Proposition 1. (d ≤ 12) Let≥ be a final optimality criterion which
is shift-, rotation-, and scale-invariant, and letAopt be the corre-
sponding optimal family. Then, every functionF (x) from this family
Aopt is a quadratic polynomial.

Comment.Thus, the corresponding surfaceF (x) = 0 is a second-
order surface. This result is in good accordance with the experimen-
tal data described, e.g., in (Branden et al. 1999).

A natural next question is: do we needall quadratic surfaces
to describe protein shapes, or a subclass is sufficient? The follow-
ing results provides a mathematical background for answering this
question:

Proposition 2. Let≥ be a final optimality criterion which is
shift-, rotation-, and scale-invariant, and letAopt be the correspond-
ing optimal family of quadratic polynomials. Then, we have 4 pos-
sibilities:

(a) Aopt consists of all linear functions, so the corresponding sur-
facesF (x) = 0 are planes;

(b) surfacesF (x) = 0 are planes and spheres;



(c) Aopt consists of all the quadratic functions (1) for which
a11 + a22 + a33 = 0;

(d) Aopt consists of all possible quadratic surfaces.

Comment.Since some observed surfaces are cylindrical, and cylin-
drical functions do not belong to the classes (a)–(c), we thus con-
clude that, in general, to approximate the shapes of beta-sheets, we
need to use all possible quadratic surfaces.

Proof of Propositions 1 and 2. This proof is similar to the ones
from (Kreinovich et al. 2000) and (Nguyen et al. 1997).

1. Let us first show that the optimal familyAopt is itself shift-,
rotation-, and scale-invariant.

Indeed, letT be an arbitrary shift, rotation, or scaling. Since
Aopt is optimal, for every other familyB, we haveAopt ≥ T−1B
(whereT−1 means the inverse transformation). Since the optimality
criterion≥ is invariant, we conclude thatTAopt ≥ T (T−1B) =
B. Since this is true for every familyB, the familyTAopt is also
optimal. But since our criterion is final, there is only one optimal
family and therefore,TAopt = Aopt. In other words, the optimal
family is indeed invariant.

2. Let us now show that all functions fromAopt are polynomials.
Indeed, every functionF ∈ Aopt is analytical, i.e., can be rep-

resented as a Taylor series (sum of monomials). Let us combine
together monomialsc · xd1

1 · xd2
2 · xd3

3 of the same total degreek =
d1 +d2 +d3; then we getF (x) = F0(x)+F1(x)+ . . .+Fk(x)+ . . .,
whereFk(x) is the sum of all monomials of degreek. Let us show,
by induction overk, that for everyk, the functionFk(x) also belongs
to Aopt.

Let us first prove thatF0(x) ∈ Aopt. Since the familyAopt

is scale-invariant, we conclude that for everyλ > 0, the func-
tion F (λz) also belongs toAopt. For each termFk(x), we have
Fk(λ ·x) = λk ·Fk(x), soF (λ ·x) = F0(x)+λ ·F1(x)+ . . . ∈ Aopt.
Whenλ → 0, we getF (λ · x) → F0(x). The familyAopt is finite-
dimensional hence closed; so, the limitF0(x) also belongs toAopt.
The induction base is proven.



Let us now suppose that we have already proven that for all
k < s, we haveFk(x) ∈ Aopt. Let us prove thatFs(x) ∈ Aopt. For
that, let us takeG(x) = F (x)− F1(x)− . . .− Fs−1(x). We already
know thatF1, . . . , Fs−1 ∈ Aopt; so, sinceAopt is a linear space, we
conclude thatG(x) = Fs(x) + Fs+1(x) + . . . ∈ Aopt.

The familyAopt is scale-invariant, so, for everyλ > 0, the func-
tion G(λ · x) = λs · Fs(x) + λs+1 · Fs+1(x) + . . . also belongs to
Aopt. SinceAopt is a linear space, the function

Hλ(x) = λ−s ·G(λ · x) = Fs(x) + λ · Fs+1(x) + λ2 · Fs+2(x) + . . .

also belongs toAopt.
Whenλ → 0, we getHλ(x) → Fs(x). The familyAopt is finite-

dimensional hence closed; so, the limitFs(x) also belongs toAopt.
The induction is proven.

Now, monomials of different degree are linearly independent;
therefore, if we have infinitely many non-zero termsFk(x), we
would have infinitely many linearly independent functions in a
finite-dimensional familyAopt – a contradiction. Thus, only finitely
many monomialsFk(x) are different from 0, and so,F (x) is a sum
of finitely many monomials, i.e., a polynomial.

3. Let us prove that if a functionF (x) belongs toAopt, then its
partial derivativesF,i(x) = ∂F/∂xi also belong toAopt.

Indeed, since the familyAopt is shift-invariant, for everyh > 0,
we getF (. . . , xi−1, xi + h, xi+1, . . .) ∈ Aopt. Since this family is a
linear space, we conclude that a linear combination

F (. . . , xi−1, xi + h, xi+1, . . .)− F (. . . , xi−1, xi, xi+1, . . .)

h

of two functions fromAopt also belongs toAopt. Since the fam-
ily Aopt is finite-dimensional, it is closed and therefore, the limit
F,i(x, y) of such linear combinations also belongs toAopt.

4. Due to Parts 2 and 3 of this proof, if any polynomial fromAopt

has a non-zero partFk of degreek > 0, then it also has a non-zero
part(Fk),i of degreek−1. Similarly, it has non-zero parts of degrees
k − 2, . . . , 1, 0.



So, in all cases,Aopt contains a non-zero constant and a non-
zero linear functionF1(x) =

∑
ai · xi. We can now use the fact that

the familyAopt is rotation-invariant. For everyi, let T be a rotation
which transforms the vectora = (a1, a2, a3) into thei-th axis, then
we conclude thatF1(Tx) = c · xi ∈ Aopt, and hencexi ∈ Aopt. So,
the familyAopt contains at least 4 linearly independent functions: a
non-zero constant,x1, x2, andx3.

5. We will now prove, by reduction to a contradiction, that functions
from Aopt cannot contain terms of third or higher order. Due to Part
4 of this proof, if F ∈ Aopt has a part of degree> 3, thenAopt

also contains a polynomialF3 all of whose monomials are of degree
3. Thus, it is sufficient to show thatAopt cannot contain such a
polynomial.

5.1. Indeed, let us assume thatAopt contains such a polynomial
F3(x1, x2, x3). Due to rotation-invariance, for every rotationT , the
family Aopt also contains the polynomialF3(Tx). In particular, if,
asT , we take a 180◦ rotation around thex3-axis, i.e., the transfor-
mationx1 → −x1, x2 → −x2, x3 → x3, then we conclude thatAopt

contains the polynomialF ∗
3 (x) = F3(−x1,−x2, x3).

Since Aopt is a linear space, it also contains polynomials
F+(x) = (F3(x) + F ∗

3 (x))/2 andF−(x) = (F3(x) − F ∗
3 (x))/2.

The combinationF+(x) contains all the terms for which the overall
degree inx1 andx2 is even – or, equivalently, for which the degree
in x3 is odd. Similarly,F−(x) contains all the monomials for which
the degree inx3 is even. SinceF3 = F+ + F− 6≡ 0, at least one of
the functionsF+ andF− is non-zero.

Thus, by selecting the non-zero of the two functions (orF+ if
both are non-zero), we can conclude thatAopt contains a polynomial
in which either all monomials are even inx3 or all monomials are
odd inx3 – i.e., all the monomials have the same parity w.r.t.x3.

5.2. By considering rotations aroundx1 andx2, we can similarly
split the resulting function, and end up with a new functionF ∈ Aopt

in which all the monomials have the same parity w.r.t.x1, the same
parity w.r.t.x2, and the same parity w.r.tx3.

Since all monomials inF have an overall degree 3 (i.e., odd), we



must have either all 3 degrees w.r.t.xi odd, or one odd and two even.

5.3. In the first case, the only possible monomial isx1 · x2 · x3,
because this is the only way to represent 3 as the sum of 3 odd natural
numbers; thus,x1 · x2 · x3 ∈ Aopt. Rotating 45◦ aroundx3, we
transformx1 · x2 into x2

1 − x2
2, so we conclude that the familyAopt

containsx2
1 · x3 − x2

2 · x3, a polynomial of the second type. Thus, it
is sufficient to consider the second case.

5.4. Let us consider the second case. If the degree w.r.t.x1 if odd,
then, as one can easily check, the general form of such a polynomial
is c1 ·x3

1+c2 ·x1 ·x2
2+c3 ·x1 ·x2

3, where at least one of the coefficients
ci is different from 0.

Due to rotation invariance,Aopt must contain two similar poly-
nomials in whichx2 (correspondingly,x3) have an odd degree, such
as

c1 · x3
2 + c2 · x2 · x2

1 + c3 · x2 · x2
3.

Thus, Aopt contains at least 3 linearly independent monomials of
third degree.

5.5. According to Part 3 of our proof,Aopt contains partial deriva-
tives of its members. Ifc2 6= 0, then we conclude thatF,2 =
2c2 · x1 · x2 ∈ Aopt hencex1 · x2 ∈ Aopt. Similarly, if c3 6= 0,
thenx1 · x3 ∈ Aopt. Finally, if c2 = c3 = 0, this means thatc1 6= 0,
so, fromF,1 = 3c1 · x2

1 ∈ Aopt, we can conclude thatx2
1 ∈ Aopt.

In all three cases,Aopt contains eitherxi · xj for somei 6= j,
or x2

i .

5.6. If Aopt contains, e.g.,x1 · x2, then, due to rotation invariance, it
also containsx1 · x3 andx2 · x3. Rotating by 45◦, we conclude that
x2

1−x2
2 ∈ Aopt andx2

1−x2
3 ∈ Aopt. Overall, we thus have 5 linearly

independent quadratic polynomials inAopt. Together with 4 con-
stant and linear polynomials (from Part 4) and 3 cubic polynomials
(from Part 5.4), we get a total of4+3+5 = 13 linearly independent
functions inAopt – which contradicts to our assumption thatd ≤ 12.

5.7. If Aopt contains, e.g.,x2
1, then, due to rotation invariance, it

also containsx2
2 andx2

3. SinceAopt is a linear space, it contains,



e.g.,x2
1 − x2

2. Rotating by 45◦, we conclude thatx1 · x2 ∈ Aopt and
similarly, thatx1 · x3 ∈ Aopt andx2 · x3 ∈ Aopt. Overall, we thus
have 6 linearly independent quadratic polynomialsxi · xj in Aopt.
Together with 4 constant and linear polynomials (from Part 4) and 3
cubic polynomials (from Part 5.4), we get a total of4 + 3 + 6 = 14
linearly independent functions inAopt – which contradicts to our
assumption thatd ≤ 12.

Proposition 1 is proven.

6. Let us now prove Proposition 2. We have already proven that the
family Aopt contains all linear function, so ifAopt contains nothing
else, we get the case (a).

Let us now consider the case whenAopt contains at least one
non-linear quadratic function. SinceAopt is a linear space, it is suf-
ficient to consider homogenous quadratic expressions

∑
aij · xi · xj ∈ Aopt.

Each such expression can be transformed, by an appropriate rotation,
into a diagonal form

∑
λi · y2

i . Since the familyAopt is rotation-
invariant, it contains the corresponding function

∑
λi · x2

i .
If for every functionF ∈ Aopt, all three eigenvaluesλi are equal

to each other, then the functionsF (x) have the forma0 +
∑

ai ·xi +
λ · (x2

1 + x2
2 + x2

3). In this case, the equationF (x) = 0 describes a
sphere, so we are in the case (b).

The only remaining case is when there exists a functionF ∈
Aopt for which at least two eigenvalues are different, e.g.,λ1 6= λ2.
In this case, due to rotation-invariance, the familyAopt also contains
not only the original functionF (x) = λ1·x2

1+λ2·x2
2+λ3·x2

3, but also
the rotated version of this functionF ∗(x) = λ1 ·x2

2 +λ2 ·x2
1 +λ3 ·x2

3.
SinceAopt is a linear space, it also contains their linear combination
(F (x)− F ∗(x))/(λ1 − λ2) = x2

1 − x2
2.

Due to rotation-invarience, we conclude thatAopt also contains
x2

1 − x2
3. Applying invariance w.r.t. 45◦ rotations, we conclude that

x1 · x2, x2 · x3, andx1 · x3 also belong toAopt. So,Aopt contains
4 linearly independent functions 1,x1, x2, andx3, and 5 linearly
independent quadratic functions. Thus, the dimension of this family
is at least4 + 5 = 9.



Ovreall, the dimension of the setQ of all quadratic functions is
10. So, we had two possibilities: eitherdim(Aopt) = 10, in which
caseAopt = Q (case (d)), ordim(Aopt) = 9, in which caseAopt is
a linear combination of the above 9 functions – this is exactly case
(c). Proposition 2 is proven.

Open problem. We described optimal 12-D families. What is 12
parameters are not enough? What are the best 13-, 14-, etc.- dimen-
sional families? From the proof, we can conclude that these optimal
families consist ofalgebraicsets, i.e., sets with boundaryF (x) = 0
for a polynomialF , but a more specific description is desirable.
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