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ABSTRACT

A radar observes the result of a space explosion. Due to
radar’s low horizontal resolution, we get a 1-D signalx(t)
representing different 2-D slices. Based on these slices, we
must distinguish between the body at the core of the explo-
sion and the slowly out-moving fragments. We propose new
algorithms for processing this 1-D data. Since these algo-
rithms are time-consuming, we also exploit the possibility
of parallelizing these algorithms.

1. FORMULATION OF THE PROBLEM

Most astronomical processes are slow; however, sometimes,
space explosions happen: starts become supernovae, plan-
etoids are torn apart by tidal and gravitational forces, etc.
Even the Universe itself is currently viewed as a result of
such an explosion – the Big Bang.

From the astrophysical viewpoint, these explosions are
very important, because, e.g., supernovae explosions is how
heavy metals spread around in the Universe.

The explosion processes are very rare and very fast, so
unless they are very powerful and spectacular – like an ex-
plosion of a nearby supernovae that happened in 1054 – they
are very difficult to observe. As a result, space explosion
processes often go unnoticed.

What we do observe in most cases is theresult of the
space explosion, i.e., the explosion core – the remainder of
the original celestial body – surrounded by the explosion
fragments. The most well known example of such a result
is the Crab Nebula formed after the 1054 supernovae explo-
sion.

Thanks to NASA grant NCC5-209, AFOSR grant F49620-00-1-0365,
NSF grants EAR-0112968, EAR-0225670, and EIA-0321328, and ARL
grant DATM-05-02-C-0046 for funding. The authors are very thankful to
Sergio Cabrera and to the anonymous referees for the valuable advise.

In order to better understand the corresponding physical
process, it is extremely important to identify the explosion
core.

In space, there is not much friction, so, due to inertia,
most of the fragments travel with approximately the same
speed as in the beginning of the explosion. Dividing the
distance between the two fragments by their relative speed,
we can determine – reasonably accurately – when the ex-
plosion occurred (this is how we know that the supernovae
in the Crab Nebulae exploded in the year 1054). At that ex-
plosion time, all the fragments and the core were located at
the same point, so it is difficult to distinguish between the
core and the fragments.

In general, we have a 2-D (and sometimes even 3-D)
image of the result of the explosion. In such situations, de-
tecting the explosion core is an image processing problem.

However, there is one important case when we only have
1-D data. In this case, we cannot use image processing tech-
niques, we have to use techniques for processing 1-D data –
i.e., DSP techniques.

This is the case of nearby space explosions, when the
radar is the main source of information. A radar sends a
pulse signal toward an object; this signal reflects from the
object back to the station. We can measure, very accurately,
the overall time that the signal traveled, which gives us the
distance to the object. We can also measure the velocity, or,
to be more precise, the rate with which the distance changes.
It is, however, very difficult to separate the signals from dif-
ferent fragments located at the same distance.

As a result, what we observe is a 1-D signals(t), where
each values(t) represents the intensity of the reflection
from all the fragments located at distancec · t from the
radar – i.e., from the 2-D slice corresponding to this dis-
tance. Based on these slices, we must distinguish between
the body at the core of the explosion and the (slowly ex-



panding) fragments.
In this paper, we describe a new method of identifying a

core based on the slice observations.

2. A NEW METHOD FOR SOLVING THE
PROBLEM: MAIN IDEA

2.1. Repeated signal measurements at several different
moments of timeTk

At first glance, there may seem to be no difference between
the signals reflected by the fragments and the signal re-
flected by the core. However, in the process of an explosion,
fragments usually start rotating fast, at random rotation fre-
quencies, with random phases. As a result, the signals re-
flected from the fragments oscillate, while the signal from
the original core practically does not change.

As a result, the reflected signals change with time.
Therefore, it makes sense to measure the signals(t) not just
once, but at several consequent moments of time, i.e., to
consider the signalss1(t), . . . , sN (t) measured at moments
T1 < . . . < TN , and use the difference between the dy-
namic character of the fragments and the static character of
the core to identify the core.

2.2. Relating measurements performed at different mo-
ments of time Tk 6= Tl: the corresponding t-scales are
linearly related

In order to compare signals measured at different moments
of time Tk 6= Tl, we must identify the layers measured at
different moments of time.

Let T0 be the moment of explosion, and letx0 be the
initial distance between the radar and the core (and the frag-
ments) at that initial moment of timeT0. We assume that our
coordinate system has the radar as its origin, and that thex
axis is the axis in the direction of the analyzed “cloud”. For
each fragmenti, let v(i)

x be thex-component of the velocity
of i-th fragment (velocity relative to the radar). Hence, at
momentTk, thex-coordinate ofi-th fragment in our coor-
dinate system – i.e., its distance from the radar – is equal to
x(i)(Tk) = x0 +v

(i)
x · (Tk−T0). Therefore, the radar signal

reflected from this fragment corresponds to the time

t
(i)
k =

x
(i)
k

c
=

x0

c
+ v(i)

x · Tk − T0

c
. (1)

Similarly, when we repeat the radar measurement at time
Tl 6= Tk, the radar signal reflected from thei-th fragment
corresponds to the time

t
(i)
l =

x0

c
+ v(i)

x · Tl − T0

c
. (2)

What is the relation between the corresponding timest
(i)
k

andt
(i)
l ? From the equation (1), we conclude that

v(i)
x =

c · t(i)k − x0

Tk − T0
.

Substituting this expression into the formula (2), we con-
clude that

t
(i)
l =

x0

c
+

c · t(i)k − x0

Tk − T0
· Tl − T0

c
= akl · t(i)k + bkl, (3)

where

akl =
Tl − T0

Tk − T0
> 0

and

bkl =
x0

c
− x0

Tk − T0
· Tl − T0

c

do not depend oni.
In other words, thet-scales of the signalssk(t) andsl(t)

are related by a linear dependencetk → tl = akl · tk + bkl.

2.3. How can we experimentally find the coefficients of
this linear relation?

At each moment of timeTk, we get the observed signal
sk(t). Let tk be the smallest time at which we get some
reflection from the fragments cloud, and lettk be the largest
time at which we observe the radar reflection from this
cloud. This means that there is a fragmenti for which
t
(i)
k = tk, there is a fragmentj for which t

(j)
k = tk, and

for every other fragmentf , the corresponding moment of
time is in betweentk andtk: t

(f)
k ∈ [tk, tk].

As we have mentioned, for every other observationTl,
the relation between the corresponding timest

(i)
k andt

(i)
l is

linear, with a positive coefficientakl. Sinceakl > 0, the
corresponding linear functionst → akl · t + bkl is mono-
tonically increasing. Thus, the valuetl is the smallest for
the same fragmenti for which tk was the smallest. Hence,
tl = t

(i)
l = akl · t(i)k + bkl, i.e.,

tl = akl · tk + bkl. (4)

Similarly,
tl = akl · tk + bkl. (5)

The valuestk, tk, tl, andtl are directly observable. Thus, by
solving the system of two linear equations (4) and (5) with
2 unknowns, we get explicit expressions forakl andbkl in
terms of these observable values:

akl =
tl − tl
tk − tk

; bkl =
tk · tl − tk · tl

tk − tk
.



2.4. How can we transform signalssk(t) and sl(t) to the
same scale?

Our main idea is that after we measure the fragments cloud
at two different moments of timeTk andTl, we should com-
pare the valuessk(t) andsl(t) corresponding to the same
fragments.

We know that for each moment of timet, the valuesk(t)
describes the same fragment(s) as the valuesl(t′), where
t′ = akl · t + bkl. We also know how to experimentally de-
termine the coefficientsakl andbkl. So, to make the desired
comparison easier, it is reasonable to “re-scale” the signals
to the samet-scale, so that the compared values correspond
to exactly the same valuet. In other words, we would like
to generate a re-scaled signal

s̃l(t)
def= sl(akl · t + bkl). (6)

If the measurements were absolutely accurate, i.e., if we
had the valuessk(t) corresponding to each individual time
t, then such a re-scaling would be easy: we could simply
explicitly use the formula (6).

In real life, however, each valuesl(t) corresponds not
just to a single timet, but to the entire “bin” of values, from
some valuet to the valuet + ∆t, where∆t is the accuracy
with which the radar can measure the timet (in other words,
∆t = ∆x/c, where∆x is the accuracy with which the radar
can measure the distance). In other words, what we actually
observe is a sequence of values . . . ,s((i−1) ·∆t), s(i ·∆t),
s((i + 1) · ∆), . . . Crudely speaking, each observed value
s(i ·∆t) represent the overall intensity of all the fragments
for which the actual reflection timet = x/c is in the interval

Ii
def= [(i− 0.5) ·∆t, (i + 0.5) ·∆t]. (7)

Because of this discreteness, we cannot directly use the for-
mula (6) to match the signals: Indeed, from the moment
Tk to the momentTl, the cloud slightly expands. At the
momentTk, the valuesk(i · ∆t) is the overall intensity of
all the fragments for whichtk belongs to the interval (6) of
width ∆t. At momentTl, the timestl = akl · tk + bkl corre-
sponding to these same fragments occupy a wider interval –
of width akl ·∆t > ∆t. Thus, these fragments are no longer
in the same bin, they may be in different bins.

How can we match the values? A natural idea is to use
linear extrapolation. In other words, to estimates̃(t) for
t = i ·∆t, we apply the linear transformationakl · t+ bkl to
the intervalIi. The resulting interval̃Ii consists of several
parts from different intervalsIj . As s̃l(t), we take a linear
combination of the corresponding valuessl(j · ∆t), with
weights proportional to the relative length|Ĩi ∩ Ij |/∆t of
the intersectioñIi ∩ Ij :

s̃l(i ·∆t) def=
∑

j

|Ĩi ∩ Ij |
∆t

· sl(j ·∆t).

For example, ifĨi consists of the entire intervalIj , 0.1 of
Ij−1, and 0.05 ofIi−1, thens̃l(i ·∆t) is equal to:

0.1 · sl((i− 1) ·∆t) + sl(i ·∆t) + 0.05 · sl((i + 1) ·∆t).

In the following text, we will assume that the signals
si(t) have already been thus rescaled.

2.5. Algorithm: main idea

Each layer (“bin”) contains several fragments. These frag-
ments oscillate with random (uncorrelated) frequencies and
phases; the overall signalx(t) is the sum of the reflections
from all these fragments. Due to the central limit theorem,
the resulting overall signalx(t) is approximately normally
distributed with some meanE(t) and varianceV (t).

If a layer only contains fragments, then, due to the inde-
pendence assumption,E(t) ≈ n(t) ·E andV (t) ≈ n(t) ·V ,
wheren(t) is the (unknown) number of fragment in layer
t, andE andV are the mean and variance corresponding
to each fragment. Therefore, for each such layer,E(t) ≈
(E/V ) · V (t).

For a layer that also contains the core, we haveE(t) ≈
Ec+N(t)·E andV (t) ≈ N(t)·V , whereEc is the intensity
of the core (since the core is supposed to be not rotating fast,
its signal does not change with time, so the corresponding
variance is negligible). Thus, for this layer,E(t) ≈ Ec +
(E/V ) · V (t). So, for the core,E(t)/V (t) À E/V .

Therefore, crudely speaking, our best guess for the core
location is the pointt for which the ratioE(t)/V (t) is the
largest.

This is, of course, a very naive description of the idea.
Let us see how this idea can be described in more adequate
DSP terms.

3. TOWARDS A STATISTICALLY VALID
ALGORITHM

3.1. Motivations for the main distribution formula

The intensityIi(t) of each fragmenti depends on time. Let

ai = lim
T→∞

T−1 ·
T∫
0

Ii(t) dt denote the average intensity over

time, and letbi = lim
T→∞

T−1 ·
T∫
0

(Ii(t)− ai)2 dt.

In the ensemble of fragments, leta0 be the mean ofai,
let A0 be the variance ofai, let b0 be the mean ofbi, and let
B0 be the mean ofai. Then, according to the main idea, we
can assume thatE(t) is normally distributed with the mean
n(t) · a0 and the variancen(t) · A0, andV (t) is normally
distributed with the meann(t)·b0 and the variancen(t)·B0.

We assumed the layers to be independent. As a result,
we arrive at the following formula for the resulting proba-



bility distribution:

ρ =
N∏

t=1

1√
2π · n(t) ·A0

· exp
(
− (E(t)− n(t) · a0)2

2n(t) ·A0

)
×

N∏
t=1

1√
2π · n(t) ·B0

· exp
(
− (V (t)− n(t) · b0)2

2n(t) ·B0

)
,

with the proviso that for the layert = t0 containing the core,
we haveE(t)− Ec − n(t) · a0 instead ofE(t)− n(t) · a0.

Based on the experimental dataE(t) andV (t), we must
find estimates for the parametersa0, b0, A0, B0, n(t), t0,
andEc – and what we are really interested in ist0. In ac-
cordance with the Maximum Likelihood Method (MLM),
we must find the values of these parameters for whichρ →
max. As usual in statistics, it is convenient to replace the
problem of maximizingρ with a mathematically equivalent

problem of minimizing a simpler functionψ
def= − ln(ρ),

i.e., in our case,

ψ =
N∑

t=1

(E(t)− n(t) · a0)2

2n(t) ·A0
+

N∑
t=1

(V (t)− n(t) · b0)2

2n(t) ·B0
+

N∑
t=1

ln(n(t)) +
N

2
· log(A0) +

N

2
· log(B0). (8)

3.2. First case: when we know the parameters that
characterize fragment distribution

Let us start with the simplest case when we know the values
of the parametersa0, b0, A0, andB0 that describe the dis-
tribution of fragments. In this case, differentiating byn(t)
and equating the derivative to 0, we conclude that

− 1
2n(t)2

(
E(t)2

A0
+

V (t)2

B0

)
+

1
2

(
a2
0

A0
+

b2
0

B0

)
+

1
n(t)

= 0.

The first two terms are approximately independent on the
number of fragmentsn(t), the third term1/n(t) is much
smaller (since we have many fragments). So, we can safely
ignore the their term and conclude thatn(t) = ‖vt‖/‖v0‖,
where we denoted

vt
def=

(
E(t)√

A0

,
V (t)√

B0

)
; v0

def=
(

a0√
A0

,
b0√
B0

)
,

and‖(va, vb)‖ =
√

v2
a + v2

b denotes the length of the vector
v = (va, vb). Substituting this expression forn(t) into the
corresponding part of (8), i.e., into

ψ(t) def=
(E(t)− n(t) · a0)2

2n(t) ·A0
+

(V (t)− n(t) · b0)2

2n(t) ·B0
+

ln(n(t)) =
1

2n(t)
·
(

E(t)2

A0
+

V (t)2

B0

)
−

(
E(t) · a0

A0
+

V (t) · a0

A0

)
+

n(t)
2
·
(

a2
0

A0
+

b2
0

B0

)
+ln(n(t)),

we conclude thatψ(t) ≈ ψ0(t), where

ψ0(t)
def= ‖vt‖ · ‖v0‖ − vt · v0, (9)

andvt · v0 denotes the dot (scalar) product. (≈ because we
use the approximate value forn(t).)

For t = t0, due to the presence of an additional variable
Ec, we getψ(t0) ≈ 0. Thus,

ψ = (N/2) · (log(A0) + log(B0)) +
N∑

t=1

ψ0(t)− ψ0(t0).

Thus,ψ is the smallest if and only ifψ(t0) is the largest.
Therefore, we arrive at the following algorithm for locating
the core:

• First, we re-scale the signalssk(t) into s̃k(t) so that
the same valuet corresponds to the same fragments.

• For eacht, we compute the sample averageE(t) and
the sample varianceV (t) of the values̃sk(t).

• For eacht, we computevt andψ0(t), and findt0 for

whichψ0(t0) = m
def= max

t
ψ0(t).

How reliable is this estimate? We are interested in the
value of a single variablet0, and we know that for one vari-
able, 95% of the values are within2σ from the mean, and
99.9% are within3σ. In terms ofψ = ln(ρ), the mean
corresponds to its minimum, the2σ deviation means differ-
ence(2σ)2/(2σ2) = 2 from the minimum, and3σ devia-
tion means the difference of(3σ)2/(2σ2) = 4.5 from the
minimum. Thus, with reliability 95%, we conclude that the
core is among thoset for which ψ0(t) ≥ m − 2, and that
with reliability 99.9%, the core is among thoset for which
ψ0(t) ≥ m− 4.5.

3.3. General case

The value (8) does not change if we re-scale all the pa-
rameters:n(t) → K · n(t), a0 → a0/K, b0 → b0/K,
A0 → A0/K, andB0 → B0/K, for anyK > 0. W.l.o.g.,
we can therefore assume thata0 = 1.

Differentiating (8) by a0, we conclude thata0 =
(
∑

E(t))/(
∑

n(t)). Similarly, b0 = (
∑

V (t))/(
∑

n(t)).
Sincea0 = 1, we thus getb0 = (

∑
V (t))/(

∑
E(t)). Dif-

ferentiating byA0, we conclude that

A0 =
1
N

∑
t

(E(t)− n(t) · a0)2

n(t)
=

1
N

(∑
t

E(t)2

n(t)
−

∑
t

E(t)

)
(10)



and similarly,

B0 =
1
N

(∑
t

V (t)2

n(t)
− b0 ·

∑
t

V (t)

)
. (11)

If we denoteλ
def= A0/B0, then the above formula forn(t)

takes the formn(t)2 = (E(t)2 + λ · V 2(t))/(1 + λ · b2
0).

Substituting this expression into (10) and (11) and using the
fact thatA0 = λ ·B0, we conclude that

∑
t

E(t)2√
E(t)2 + λ · V (t)2

·
√

1 + λ · b2
0 −

∑
t

E(t) =

∑
t

λ · V (t)2√
E(t)2 + λ · V (t)2

·
√

1 + λ · b2
0 − b0 ·

(∑
t

V (t)

)

with the only unknownλ. After we findλ from this equa-
tion, we can thus findA0, B0, and hence, the desiredt0.

To test our technique, we simulated an explosion with
randomly distributed fragments. On this simulation, the
above algorithm does detect the core.

4. POSSIBILITY OF PARALLELIZATION

In the above algorithms, processing values corresponding
to bin i uses only measurement only from this bin and from
the neighboring bins. Therefore, if we have several proces-
sors working in parallel (see, e.g., [1]), we can speed up the
computations by having each processor process a section of
bins. For example, for 2 processors, the first can handle bins
1 toN/2 + n, and the second all the bins fromN/2− n to
N , wheren is the number of neighboring bins that we need
to take into consideration.

5. MULTIPLE EXPLOSIONS:
CASE OF A VERY ACCURATE RADAR

Sometimes, the observed fragments cloud comes not from
a single explosion, but from several consequent explosions.
How can we then determine the core?

Let us show that when the radar is accurate enough, so
that we can distinguish between individual fragments, the
problem of determining the core becomes even easier than
in the case of a single explosion.

First, we observe that if the radar is that accurate, then,
by making observations at very close moments of timeT1,
T2, etc., we cantrace individual fragments. Indeed, at
the initial momentT1, we identify fragments by the times
t
(1)
1 < t

(2)
1 < . . . at which the corresponding signals1(t)

is non-zero. At the next momentT2, we can find the times
t2, t′2, . . . corresponding to the fragments as the timest for
which s2(t) 6= 0. When the time differenceT2 − T1 is so
small that the relative motion of a fragment is smaller than

the distance between different fragments, we can identify,
for each fragmenti, the corresponding timet(i)2 as the clos-

est tot
(i)
1 among all observed valuest2, t′2, . . .

For a single explosion, a linear formula (3) relatest
(i)
2

and t
(i)
1 ; the corresponding slopeakl depends on the mo-

ment T0 of the explosion. If two explosions occurred at
momentsT0 andT ′0, we get similar linear formulas for the
fragments of each explosion, with two slopesakl 6= a′kl.

Thus, by plotting the dependence oft
(i)
2 on t

(i)
1 , we will get

two straight lines with different slopes. The core belongs
to both families of fragments. Thus, the core can be deter-
mined as the fragmenti0 that lies at the intersection of the
two corresponding straight lines.

For two explosions, we can determine both lines and
easily find the intersection. For numerous explosions, we
will have many straight lines, and finding all of them may
be computationally difficult; so, we need a different idea.

The dependence ofak on T0 is monotonic, so in such

situations, the 2-D pointst(i)
def= (t(i)1 , t

(i)
2 ) occupy a zone

between two straight lines with different slopea < a corre-
sponding to the first and the last explosions; geometrically,
it is a 2-D cone with the core’s valuet(i0) as the vertex.
Since we have numerous explosions, we can conclude that
the corresponding pairs fill the entire cone.

Let us show that the core can be determined as the only
valuei for which

max
j: t

(j)
1 <t

(i)
1

t
(2)
j < min

j: t
(j)
1 >t

(i)
1

t
(2)
j . (12)

Let us first consider the casei = i0. For each of the
corresponding straight lines, the dependence oft

(i)
2 on t

(i)
1

is monotonically increasing; since the corei0 belongs to
all the lines, we can therefore conclude that ift

(j)
1 < t

(i0)
1 ,

then we havet(j)2 < t
(i0)
2 , and if t(j)1 > t

(i0)
1 , then we have

t
(j)
2 > t

(i0)
2 – which implies (12).

If t
(i)
1 > t

(i0)
1 , then the maximum in the left side of the

formula (12) corresponds to the largest possible slopeakl

and is therefore equal tot(i0)2 + akl · (t(i)1 − t
(i0)
1 ). On the

other hand, the minimum in the right side of the formula
(12) corresponds to the smallest possible slope slopeakl and
is therefore equal tot(i0)2 +akl·(t(i)1 −t

(i0)
1 ) – which is clearly

smaller than the maximum in the left side of (12).
Similarly, (12) cannot occur fort(i)i < t

(i0)
1 .
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