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1. Introduction

Typically, in engineering applications, we need to make decisions under
uncertainty. In addition to measurement errors, some uncertainty comes
from the fact that we do not know how exactly the engineering devices
that we produced will be used: e.g., we have limits Li on the loads li
in different rooms i, but we do not know how exactly these loads will
be distributed – and we want to make sure that our design is safe for
all possible li ≤ Li.

Traditionally, in engineering, statistical methods are used, methods
assuming that we know the probability distribution of different uncer-
tain parameters. Usually, we can safely linearize the dependence of the
desired quantities y (e.g., stress at different structural points) on the
uncertain parameters xi – thus enabling sensitivity analysis.

Often, the number n of uncertain parameters is huge – e.g., in
ultrasonic testing, we record (= measure) signal values at thousands
moments of time. To use sensitivity analysis, we must call the model n
times – and if the model is complex, this leads to a lot of computation
time. To speed up the processing, we can use Monte-Carlo simulations.
Their main advantage is that for Monte-Carlo techniques, the required
number of calls to a model depends only on the desired accuracy ε and
not on n – so for large n, these methods are much faster.



2

In real life, we often do not know the exact probability distribution
of measurement errors; we also do not know the distribution of user
loads – and if we knew, it would be a disaster to, e.g., design a building
that is stable against random loads, but could fall down with a rare
(but allowable) combination of loads. In such cases, usually, all we know
is the intervals of possible values of the corresponding parameters: e.g.,
we know that the load li is in [0, Li].

In such situations, we can use sensitivity analysis, we can use interval
techniques – but for large n, this takes too long. To speed up, we
developed a new Monte-Carlo-type technique for processing interval
uncertainty (Trejo and Kreinovich, 2001; Kreinovich and Ferson, 2004).

In this paper, we will describe this new technique, discuss its appli-
cations to engineering problems, describe its limitations, and explain
how these limitations can be overcome.

2. Formulation of the Problem

In many real-life situations, we are interested in the value of a quantity
y that is difficult (or even impossible) to measure directly. In this cases,
a natural idea is to measure easier-to-measure quantities x1, . . . , xn that
are related to the desired quantity y, and try to estimate y based on the
results x̃1, . . . , x̃n of these measurements. To be able to produce such an
estimate, we need to have an algorithm f(x1, . . . , xn) that, based on the
values x1, . . . , xn of the directly measured quantities, reconstructs the
value y of the desired quantity as y = f(x1, . . . , xn). Once we have such
an algorithm, we plug in the measured values of xi into this algorithm
f , and get the following estimate for y: ỹ = f(x̃1, . . . , x̃n).

Measurements are never 100% accurate; as a result, the actual values
xi of the measured quantities may somewhat differ from the measured
values. In other words, we know the inputs to the algorithm f only
with some (measurement-related) uncertainty. Because of this input
uncertainty x̃i 6= xi, our estimate ỹ = f(x̃1, . . . , x̃n) is, in general,
different from the actual value y = f(x1, . . . , xn) of the desired quantity.
In other words, uncertainty in the inputs leads to the uncertainty in
the output as well. It is therefore desirable to estimate this output
uncertainty. So, we arrive at the following problem:

− We know:

• the algorithm f(x1, . . . , xn);
• the measured values x̃1, . . . , x̃n; and

• the information about the uncertainty ∆xi
def= x̃i− xi of each

direct measurement.
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− We must estimate: uncertainty ∆y = ỹ − y of the algorithm’s
output.

In order to solve this problem, we must know what are the possible
types of information that we can have about the uncertainty of each
measurement error ∆xi.

We do not know the exact values of the measurement errors ∆xi;
as a result, in real life, we may have (and often we do have) several
situations in which we get exactly exactly the same measurement results
x̃1, . . . , x̃n, but the actual values x1, . . . , xn of the measured quantity
are different. Thus, to describe the uncertainty, we need to know:

− what are the possible values of ∆xi, and

− how often can different possible values occur.

In the ideal case, when we have a complete description of un-
certainty, we know the exact frequency (probability) of all possible
error combinations (∆x1, . . . ,∆xn). In other words, we know the ex-
act probability distribution of the set of all n-dimensional vectors
∆x = (∆x1, . . . ,∆xn). Often, the measurement errors corresponding
to different measurements are independent, so it is sufficient to know
the distribution of each variable xi. This distribution can be described,
e.g., by a cumulative density function (cdf) Fi(t)

def= Prob(xi ≤ t).
Most traditional methods of processing uncertainty in science and

engineering (see, e.g., (Wadsworth, 1990)) are based on the assumption
that we have a probabilistic uncertainty, i.e., that the error distributions
are independent, and that we know the probability distribution Fi(t)
for each of the variables xi. However, in real life, we often do not have
all this information.

In some real-life situations, we do not have any information about
the frequency of different measurement error ∆xi; all we know is the
range [∆−

i , ∆+
i ] of possible values of this error. In this case, the only

information that we have about the actual measured value xi = x̃i−∆xi

of i-th quantity is that xi must be in the interval [xi, xi], where we
denoted xi

def= x̃i −∆+
i and xi

def= x̃i −∆−
i . The corresponding uncer-

tainty is called interval uncertainty; see, e.g., (Moore, 1979; Kearfott,
1996; Kearfott and Kreinovich, 1996; Jaulin et al., 2001).

So far, we have describe two extreme situations:

− in the case of probabilistic uncertainty, we have a complete in-
formation on which values ∆xi are possible, and what are the
frequencies of different possible values;
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− in the case of interval uncertainty, we only know the range of
possible values of ∆xi, we do not have any information about the
frequencies at all.

In many real-life cases, we have an intermediate situation: we have some
(partial) information about the frequencies (probabilities) of different
values of ∆xi, but we do not have the complete information about these
frequencies.

How can we describe such situations? To describe the complete in-
formation about the probabilities of different values of ∆xi, we must
describe, for every real number t, the value Fi(t) of the corresponding
cdf. Thus, when we have a partial information about these probabili-
ties, it means that, instead of the exact value Fi(t), we only have the
range [F i(t), F i(t)] of possible values of Fi(t). Thus, to describe such
an intermediate situation, we must describe the bounds F i(t) and F i(t)
for the cdf. These bounds are called probability boxes (or p-boxes, for
short) (Ferson, 2002).

Both probability distributions and intervals can be described as a
particular case of p-boxes:

− a probability distribution Fi(t) can be described as a degenerate
p-box [Fi(t), Fi(t)]; and

− an interval [a−, a+] can be described as a p-box [F i(t), F i(t)] in
which:

• F i(t) = 0 for t < a+ and F i(t) = 1 for t ≥ a+;

• F i(t) = 0 for t < a− and F i(t) = 1 for t ≥ a−.

So, p-boxes are the most general way of representing these types of
uncertainty.

Another way to describe partial information about the uncertainty
is by using the Dempster-Shafer approach. In this approach, for each
variable xi, instead of a single interval [xi, xi], we have several intervals
[x(k)

i , x
(k)
i ] with probabilities p

(k)
i attached to each such interval (so that

for every i, p
(k)
1 + p

(k)
2 + . . . = 1). For example, we may have several

experts who provide us with different intervals [x(k)
i , x

(k)
i ], and p

(k)
i is

the probability that k-th expert is right. The collection of intervals with
probabilities attached to different intervals constitutes a DS knowledge
base.

Thus, depending on the information that we have about the un-
certainty in xi, we can have five different formulations of the above
problem:
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− we know the probability distribution Fi(t) for each variable xi, we
know that these distributions are independent, and we must find
the distribution F (t) for y = f(x1, . . . , xn);

− we know the interval [xi, xi] of possible values of each variable xi,
and we must find the interval [y, y] of possible values of y;

− we know the p-boxes [F i(t), F i(t)] that characterize the distribu-
tion of each variable xi, we know that the corresponding distri-
butions are independent, and we must find the p-box [F (t), F (t)]
that describe the variable y;

− we know the DS knowledge bases

〈[x(1)
i (t), x(1)

i (t)], p(1)
i 〉, 〈[x(2)

i (t), x(2)
i (t)], p(2)

i 〉, . . .

that characterize the distribution of each variable xi, we know that
the corresponding distributions are independent, and we must find
the DS knowledge base that describe the variable y;

− we may also have different types of uncertainty for different vari-
ables xi: e.g., we may have probabilistic uncertainty or x1 and
interval uncertainty for x2.

It is also reasonable to consider the formulations in which the corre-
sponding distributions may be dependent.

There exist efficient methods for solving these problems; see, e.g.,
(Ferson, 2002) and references therein (in particular, for interval un-
certainty, see (Moore, 1979; Kearfott, 1996; Kearfott and Kreinovich,
1996; Jaulin et al., 2001)). Many of these methods are based on the fact
that we know the algorithm f ; so, instead of applying this algorithm
step-by-step to the measured values x̃1, . . . , x̃n, we apply this same
algorithm step-by-step to the corresponding “uncertain numbers”:
probability distributions, intervals, and/or p-boxes.

In several practical situations, however, the algorithm is given as a
black box: we do not know the sequence of steps forming this algorithm;
we can only plug in different values into this algorithm and see the
results. This situation is reasonably frequent:

− with commercial software, where the software’s owners try to
prevent competitors from using their algorithms, and

− with classified security-related software, where efficient security-
related algorithms are kept classified to prevent the adversary from
using them.



6

In some practical cases, the situation is made even more difficult by
the fact that the software f(x1, . . . , xn) is so complex and requires so
much time to run that it is only possible to run it a few times. This
complex black-box situation is what we will analyze in this text.

Comment. It is worth mentioning that even for a black-box function,
it may be possible to run more simulations if we do the following:

− first, we use the actual black-box function f(x1, . . . , xn) to provide
an approximating easier-to-compute model fapprox(x1, . . . , xn) ≈
f(x1, . . . , xn), and

− then, we use this approximate model to estimate the uncertainty
of the results.

So, if our preliminary computations show that we need more simula-
tions that the black-box function can give us, it does not necessarily
mean that the corresponding uncertainty estimation method cannot be
applied to our case: we may still be able to apply it to the approximate
function fapprox.

3. From Traditional Monte-Carlo Techniques
for Probabilistic Uncertainty

to Monte-Carlo-Type Techniques
for Interval Uncertainty:

What Was Previously Known

Probabilistic uncertainty: Monte-Carlo techniques. Let us first con-
sider the case of the probabilistic uncertainty, when we know that the
values ∆xi are distributed according to the cdf Fi(t), and that the
corresponding random variables ∆xi are independent. In this case, we
are interested to know the distribution F (t) of ∆y.

In the probabilistic case, a natural idea is to use Monte-Carlo
simulations. Specifically, on each iteration k:

− for each input variable xi, we simulate the values x
(k)
i distributed

according to the known distribution Fi(t);

− then, we plug the simulated values x
(k)
i the algorithm f , and thus

get the value y(k) = f(x(1)
1 , . . . , x

(k)
n ).

After N iterations, we get N values y(k).
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Since the inputs x
(k)
i are independently distributed according to the

corresponding input distributions Fi(t), the outputs y(k) are distributed
according to the desired distribution F (t). Thus, the N values y(k) are
a sample from the unknown distribution F (t). It is therefore necessary
to extract information about F (t) from this sample.

Interval uncertainty: case of linearization. Let us now consider the
case of interval uncertainty.

In the interval case, we have intervals [xi, xi] of possible values
of each input xi, and we are interested in finding the corresponding
interval [y, y] of possible values of y.

It is convenient to represent each interval [xi, xi] by its midpoint

xmid
i

def=
xi + xi

2
and by its half-width ∆i

def=
xi − xi

2
, so that each such

interval takes the form [xmid
i − ∆i, x

mid
i + ∆i]. In this representation,

instead of the original variables xi that take values from xi to xi, it is
often convenient to consider auxiliary variables δxi

def= xi − xmid
i that

take values from −∆i to ∆i.
When the function f(x1, . . . , xn) is reasonable smooth and the box

[x1, x1] × . . . × [xn, xn] is reasonably small, then on this box, we can
reasonably approximate the function f by its linear terms:

f(xmid
1 + δx1, . . . , x

mid
n + δxn) ≈ ymid + δy,

where δy
def= c1 · δx1 + . . . + cn · δxn, ymid def= f(xmid

1 , . . . , xmid
n ), and

ci
def=

∂f

∂xi
. One can easily show that when each of the variables δxi takes

possible values from the interval [−∆i, ∆i], then the largest possible
value of the linear combination δy is

∆ = |c1| ·∆1 + . . . + |cn| ·∆n, (1)

and the smallest possible value of δy is −∆. Thus, in this approxima-
tion, the interval of possible values of δy is [−∆, ∆], and the desired
interval of possible values of y is [ymid −∆, ymid + ∆].

Interval uncertainty: sensitivity analysis. For small n, we can use the
following sensitivity analysis method – a method that is applicable not
only for approximately linear functions f(x1, . . . , xn), but also for all
functions that are monotonic (increasing or decreasing) with respect of
each of its variables. Specifically, in the sensitivity analysis method:

− First, we apply f to the results x̃1, . . . , x̃n of direct measurements,
resulting in the value ỹ = f(x̃1, . . . , x̃n).
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− Then, for each of n inputs xi, we modify this input to x′i 6= x̃i

and, leaving other inputs, apply f again. By comparing the val-
ues f(x̃1, . . . , x̃i, x

′
i, x̃i+1, . . . , x̃n) and ỹ = f(x̃1, . . . , x̃n), we decide

whether f in increasing or decreasing in xi.

− Finally, we apply f two more times to get the desired bounds for
y as follows: y = f(x−1 , . . . , x−n ) and y = f(x+

1 , . . . , x+
n ), where:

• for the variables xi for which f increases with xi, we take
x−i = xi and x+

i = xi, and

• for the variables xi for which f decreases with xi, we take
x−i = xi and x+

i = xi.

The main disadvantage of this method is that it requires n calls to the
program f . Often, the number n of uncertain parameters is huge – e.g.,
in ultrasonic testing, we record (= measure) signal values at thousands
moments of time. To use sensitivity analysis, we must call the model n
times – and if the model is complex, this leads to a lot of computation
time.

Interval case: Cauchy deviates method. One way to speed up compu-
tations is to use the following Cauchy deviate method. This method
works when the function f(x1, . . . , xn) is reasonable smooth and the
box [x1, x1]× . . .× [xn, xn] is reasonably small, so that on this box, we
can reasonably approximate the function f by its linear terms.

This method uses Cauchy distribution with a parameter ∆, i.e.,
a distribution described by the following density function: ρ(x) =

∆
π · (x2 + ∆2)

. It is known that if ξ1, . . . , ξn are independent variables

distributed according to Cauchy distributions with parameters ∆i,
then, for every n real numbers c1, . . . , cn, the corresponding linear
combination c1 · ξ1 + . . . + cn · ξn is also Cauchy distributed, with the
parameter ∆ described by the formula (1).

Thus, if we for some number of iterations N , we simulate δx
(k)
i

(1 ≤ k ≤ N) as Cauchy distributed with parameter ∆i, then, in the
linear approximation, the corresponding differences

δy(k) def= f(xmid
1 + δx

(k)
1 , . . . , xmid

n + δx(k)
n )− ymid

are distributed according to the Cauchy distribution with the parame-
ter ∆. The resulting values δy(1), . . . , δy(N) are therefore a sample from
the Cauchy distribution with the unknown parameter ∆. Based on this
sample, we can estimate the value ∆.
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Simulation can be based on the functional transformation of uni-
formly distributed sample values: δx

(k)
i = ∆i · tan(π · (ri − 0.5)), where

ri is uniformly distributed on the interval [0, 1].
In order to estimate ∆, we can apply the Maximum Likelihood

Method which leads to the following equation:

1

1 +
(

δy(1)

∆

)2 + . . . +
1

1 +
(

δy(N)

∆

)2 =
N

2
.

The left-hand side of this equation is an increasing function that is equal
to 0(< N/2) for ∆ = 0 and > N/2 for ∆ = max

∣∣∣δy(k)
∣∣∣; therefore the

solution to this equation can be found by applying a bisection method
to the interval

[
0, max

∣∣∣δy(k)
∣∣∣
]
.

How many iterations do we need for the ideal estimate. In (Trejo and
Kreinovich, 2001; Kreinovich and Ferson, 2004), we found the number
of iterations N that would provide the desired accuracy (usually, 20%
accuracy in estimating ∆). The difference between the actual value
∆ and its estimate ∆̃ is distributed, for large N , according to normal
distribution, with 0 mean and standard deviation σe = ∆·√2/N . Thus,
e.g., to get a 20% accuracy 0.2 ·∆ with 95% certainty (corresponding
to 2σe), we need N = 200 runs.

After 200 runs, we can conclude that ∆ ≤ 1.2 · ∆̃ with certainty
95%.

Thus, the required number of calls to a model depends only on the
desired accuracy ε and not on n – so for large n, these methods are
much faster.

4. Applications: Brief Overview

We have applied the Cauchy deviate techniques to the following
engineering examples:

− Environmental and power engineering: safety analysis of complex
systems (Kreinovich and Ferson, 2004). In this example, x1, . . . , xn

are the parameters of the system that are only known with interval
uncertainty such as the thickness of the wall of the drum that con-
tains radioactive waste. The program f(x1, . . . , xn) (usually given
as a black box) describes how the desired parameters such as the
radioactivity level at different places depend on xi.
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− Civil engineering: building safety. This example is similar to the
models considered in (Muhanna and Mullen, 2001; Muhanna and
Mullen, 2001a) and references therein. In this example, x1, . . . , xn

are the loads on a structure for each of which we only know the
tolerance intervals, and the elastic parameters of this structure
which are only known with interval uncertainty. The program
f(x1, . . . , xn) (often commercial and thus, given as a black box)
is a finite-element model that describes how the stresses in the
corresponding structure (e.g., building) depend on xi.

− Petroleum and geotechnical engineering: estimating the uncer-
tainty of the solution to the inverse problem caused by the mea-
surement errors (Doser et al., 1998). In this example, x1, . . . , xn

are the traveltimes of the seismic signals between the source and
the sensor (and possibly other measurement results). The program
f(x1, . . . , xn) solves the inverse problem, i.e., uses the traveltimes
xi to estimate the density y at different locations and at different
depths. To be more accurate, the program reconstructs the speed
of sound at different locations and at different depths, and then
uses the known (approximate) relationship between the speed of
sound and the density to reconstruct the desired density.

In all these cases, we got reasonable estimates:

− In the environmental and civil engineering applications, we got the
same results as sensitivity analysis, but much faster.

− In geotechnical engineering, the dependence of the accuracy on
the location and depth fits much better with the geophysicists’
understanding than the previous accuracy results obtained under
the assumption that all the measurement errors are independent
and normally distributed.

5. Limitations of the Existing Cauchy Deviate Techniques
and How These Limitations Can Be Overcome

5.1. Limitations

Cauchy deviate technique is based on the following assumptions:

− that the measurement errors are small, so we can safely linearize
the problem;

− that we only have interval information about the uncertainty, and
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− that we can actually call the program f 200 times.

In real-life engineering problems, these assumptions may not be satis-
fied. In this section, we describe how we can modify the Cauchy deviate
technique so as to overcome these limitations.

5.2. What If We Cannot Perform Many Iterations

Problem. In many real-life engineering problems, we do not have the
possibility to run the program f 200 times. In this case, we can still
use the Cauchy deviates estimates with the available amount of N
iterations, but we need to come up with new formulas that translate
the numerical estimate into the enclosure for ∆.

Case when N is large enough. In this case, the difference ∆̃ − ∆ is

still Gaussian, we can conclude that ∆ ≤ ∆̃ ·
(

1 + k0 ·
√

2
N

)
(where

k0 = 2), with certainty 95%. (If we want, e.g., 99.9% certainty, which
corresponds to 3 sigma, then we should take k0 = 3.)

Thus, e.g., for N = 50, we conclude that ∆ ≤ 1.4 · ∆̃. This is not
such a bad estimate.

Case of very small number of iterations: idea. When the number of
iterations is even smaller, then we can no longer assume that the distri-
bution of the error ∆̃−∆ is Gaussian. In this case, to find the bounds on
∆ with, e.g., 95% certainty, we must perform numerical experiments.

The possibility of such experiments is caused by the fact that, as
we have mentioned in the above description of the Cauchy deviates
method, the distribution of the results δy(k) always follows the Cauchy
distribution, no matter how small N is.

So, to find out the confidence bounds on the Cauchy deviate esti-
mates, it is sufficient to make experiments with the Cauchy distribution.
The Cauchy distribution with a parameter ∆ can be obtained by multi-
plying the Cauchy-distributed random variable with parameter ∆0 = 1
by the number ∆. Thus, it is sufficient to test the method on Cauchy
deviates with parameter 1.

For each N and α, we want to find k(N, α) for which ∆ ≤ k(N,α)·∆̃
with certainty 1−α, i.e., for which ∆̃ ≥ (1/k(N, α))·∆ with probability
1−α. Since we will be using Cauchy distribution with ∆ = 1, we must
thus find k(N,α) for which ∆̃ ≥ 1/k(N,α) with probability 1− α.

To find such value, we do the following. We pick a large number of
iterations M (the relative accuracy of our estimate of k(N, α) will be
≈ 1/

√
M). Then:
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− For each m from 1 to M :

• we simulate Cauchy distribution (with parameter ∆0 = 1) N
times, producing N numbers

δy
(m)
1 = tan(π · (r(m)

1 −0.5)), . . . , δy(m)
N = tan(π · (r(m)

N −0.5));

• we then apply the above Maximum Likelihood Method to find
∆̃m as the solution to the following equation:

1

1 +

(
δy

(m)
1

∆̃m

)2 + . . . +
1

1 +

(
δy

(m)
N

∆̃m

)2 =
N

2
;

we solve this equation by applying a bisection method to the

interval
[
0, max

i

∣∣∣δy(m)
i

∣∣∣
]
.

− After that, we sort the values ∆̃m into an increasing sequence

∆̃(1) ≤ . . . ≤ ∆̃(M).

− We take the value ∆̃(α·M) for which the probability to be
greater than this number is exactly 1 − α, and estimate k(N, α)
as 1/∆̃(α·M).

Simulation results. We wrote a C program that implements this
algorithm. For α = 0.05, the results of applying this program are:

− For N = 20, we get k ≈ 1.7, which fits very well with the above
Gaussian-based formula knorm ≈ 1 + 2 ·√2/20 ≈ 1.7.

− For N = 10, we get k ≈ 2.1, which is slightly higher than the
Gaussian-based formula knorm ≈ 1 + 2 ·√2/10 ≈ 1.9.

− For N = 5, we get k ≈ 5, which is already much higher than the
Gaussian-based value knorm ≈ 1 + 2 ·√2/5 ≈ 2.3.

5.3. p-Boxes and Dempster-Shafer Knowledge Bases:
An Idea

Formulation of the problem. In the previous sections, we described
and analyzed different methods for estimating uncertainty in the cases
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when we have probabilistic or interval uncertainty in the inputs. What if
the uncertainty in each input xi is characterized, e.g., by the Dempster-
Shafer knowledge bases?

Why this problem is difficult. One reason why this problem is difficult
is that it is not even clear how we can represent the DS knowledge base
corresponding to the output.

Indeed, a DS knowledge base for each input variable xi means that
we may have different intervals [x(k)

i , x
(k)
i ], with different probabilities

p
(k)
i . For each combination of intervals, [x(k1)

1 , x
(k1)
1 ], . . . , [x(kn)

n , x
(kn)
n ],

we can use the known techniques to find the corresponding interval
[y(k1,...,kn), y(k1,...,kn)] for the output. Since we know the probability

p
(ki)
i of each interval [x(ki)

i , x
(ki)
i ], and we assume that these probabili-

ties are independent, we can compute the probability p(k1,...,kn) of the
corresponding output interval as the product p(k1,...,kn) = p

(k1)
1 ·. . .·p(kn)

n .
At first glance, this may sound like a reasonable solution to our

problem, but in reality, this solution is not practical at all: even in the
simplest case, when for each variable, we have two possible intervals,
for n = 50 inputs, we will have an astronomical number of 250 ≈ 1015

output intervals [y(k1,...,kn), y(k1,...,kn)].
Thus, although the resulting uncertainty is still a DS uncertainty,

we can no longer represent it as we represented the uncertainty for each
input: by listing all the intervals and the corresponding probabilities.

Thus, not only it is not clear how to compute the resulting
uncertainty, it is not even clear what exactly we want to compute.

Can we use the fact that DS uncertainty is a generalization of interval
uncertainty? Our idea comes from the fact that the Dempster-Shafer
uncertainty is a generalization of interval uncertainty, a generalization
in which, for each inputs xi, instead of a single interval [xi, xi], we
have several possible intervals [x(k)

i , x
(k)
i ], with different probabilities

p
(k)
i . For the interval uncertainty, in a realistic case when the black-

box function is linearizable, we can use the Cauchy deviates method to
estimate the interval uncertainty of the output. Let us see whether it is
possible – at least, under some reasonable assumptions – to extend the
Cauchy deviates method to the more general Dempster-Shafer case.

Analysis. The fact that the black-box function is linearizable means

that we have f(x1, . . . , xn) = ỹ +
n∑

i=1
ci · (xi − x̃i), where ỹ

def=

f(x̃n, . . . , x̃n) and for every i, ci denotes the (unknown) value of the



14

partial derivative ∂f/∂xi of the black-box function f(x1, . . . , xn) with
respect to i-th input xi.

If we know the exact values x1, . . . , xn of all the inputs, then we can
simply plug in the values xi and get the desired value.

If for each i, we know the interval [xmid
i −∆i, x

mid
i + ∆xi], then, in

the linearized case described above, the corresponding range of y can
be described by the interval [ymid −∆, ymid + ∆], where:

ymid = ỹ +
n∑

i=1

ci · (ymid
i − ỹi); (2)

∆ =
n∑

i=1

|ci| ·∆i. (3)

In the Dempster-Shafer case, for each i, instead of a single pair
(ymid

i ,∆i), we have different pairs with different probabilities. Due to
the formulas (2) and (3), the vector (ymid, ∆) is a linear combination
of the vectors (ymid

i , ∆i) corresponding to different inputs xi.
If one of these vectors was prevailing, then we would have a single

input (or a few dominating inputs), and there would be no need to
consider the uncertainty in all n inputs. Thus, the only case when
this problem makes sense is when the contributions of all n vectors is
approximately of the same size (or at least the same order of magni-
tude). In this case, the vector (ymid,∆) is a linear combination of n
independent vectors of approximately the same size.

This situation is exactly the case covered by the Central Limit
Theorem, the case when in the limit n →∞, we have a normal 2-D dis-
tribution and hence, for sufficient large n, with a good approximation,
we can assume that the pair (ymid,∆) is normally distributed.

Comment: strictly speaking, the distribution is almost normal but not
exactly normal. From the purely theoretical viewpoint, the distribu-
tion of the pairs (ymid, ∆) cannot be exactly normal, because:

− the interval half-width ∆ is always non-negative, while

− for every normally distributed random variable, there is a non-zero
probability that this value attains negative values.

However, in practice, every normal distribution with mean µ and stan-
dard deviation σ is located within the interval [µ− k · σ, µ + k · σ] with
practically a certainty, i.e., with probability ≈ 1:

− for k = 3, the probability to be outside the 3 sigma interval is
≈ 0.1%;



15

− for k = 6, the probability to be outside the 3 sigma interval is
≈ 10−6%; etc.

Thus, if µ ≥ k · σ, then, for all practical purposes, the half-width ∆ is
indeed always non-negative.

Resulting idea. It is therefore reasonable to conclude that for large n,
the uncertainty in y can be characterized as follows: we have different
intervals [ymid − ∆, ymid + ∆], and the probability of an interval is
described by a 2-D normal distribution on the (ymid,∆) plane.

To describe a 2-D normal distribution, it is sufficient to know 5
parameters: the means and standard deviations of both variables and
the covariance (that describes their dependence).

Discussion: are we abandoning the idea of non-parametric estimates?
At first glance, it may seem like we are abandoning our approach: we
started with the idea of having non-parametric estimates, and we ended
up with a 5-parametric family.

However, realistically, to exactly describe a generic distribution, we
must use infinitely many parameters. In reality, we only have finitely
many runs of the black-box function f with reasonable accuracy, and
based on their results, we can only estimate finitely many parameters
anyway.

Even in the ideal case of Monte-Carlo tests, we need N experiments
to get a value of each parameter with an accuracy of 1/

√
N . Thus,

to get a reasonably low accuracy of 30% (everything worse makes it
order-of-magnitude qualitative estimate), we need ≈ 10 runs.

With 50 runs, we can therefore determine the values of no more
than 5 parameters anyway. The above 5-parametric family is reason-
able, its justification is very similar to the justification of the Gaussian
distribution – the main workhorse of statistics – so why not use it?

How can we determine the parameters of this model? If we simply
take the midpoints x

(k)mid
i of the corresponding intervals in our sim-

ulations, then the resulting value y(k) are normally distributed, with
the distribution corresponding to ymid. We can therefore estimate the
mean and standard deviation of ymid as simply the sample mean and
the sample variance of the values y(1), y(2), . . .

For ∆, from the formula (3), we conclude that

E[∆] =
n∑

i=1

|ci| · E[∆i] (4)
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and

σ[∆] =

√√√√
n∑

i=1

|ci|2 · σ2[∆i]. (5)

Due to the formula (4), we can use the Cauchy deviates technique to
estimate E[∆] if for each input xi, we use the average half-width

E[∆i] = p
(1)
i ·∆(1)

i + p
(1)
i ·∆(1)

i + . . .

of the corresponding interval.
Due to the fact that |ci|2 = c2

i , the formula (5) means that we can
compute σ[∆] by using the standard Monte-Carlo simulation technique:
namely, we simulate δxi to be normally distributed with 0 mean and
standard deviation σ[∆i], then the resulting value of δy =

∑
ci · δxi

is also normally distributed, with the standard deviation equal to (5).
We can thus estimate (5) as a sample variance of the corresponding
simulated values δy(k).

We thus know how to estimate 4 of 5 parameters that describe the
desired uncertainty. The only remaining problem is how to estimate
the covariance between ymid and ∆. For this, we propose the following
idea.

The non-zero covariance means, in particular, that the conditional
average E[∆ | ymid ≤ E[ymid]] of ∆ over the cases when ymid is smaller
than its average E[ymid] is different from the conditional average
E[∆ | ymid ≥ E[ymid]] of ∆ over the cases when ymid is larger than
its average E[ymid]. From the difference between these two conditional
averages, we can determine the desired value of the covariance.

To compute the conditional averages, we can use the Cauchy devi-
ates idea. Namely, at each simulation, for each variable xi, we select one
of the intervals [x(k)

i , x
(k)
i ] with the corresponding probability p

(k)
i , and

we apply the black box function f to the centers of the corresponding
intervals, to get the result ymid. We then apply the Cauchy techniques
with the corresponding intervals and get the value distributed according
to the Cauchy distribution with the width corresponding to selected
intervals for xi.

The main difference between what we propose to do here and the
previously described Cauchy deviates methods is the following:

− in the previously described Cauchy deviates method, we combine
all the results of Cauchy simulation into a single sample, and we
then compute the parameter ∆ based on this sample;

− in the proposed methods, we separate the results of Cauchy
simulation into two different samples:
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• a sample containing all the cases in which ymid ≤ E[ymid],
and

• a sample containing all the cases in which ymid ≥ E[ymid].

In the previous described approach, in all simulations, we had the
same interval width, so the results of the simulation belong to the same
Cauchy distribution. In the new method, we have different widths with
different probabilities, so the resulting distribution is a combination of
different Cauchy distributions, with different probabilities.

For each sample, we can safely assume that the distribution of
the width ∆ is a Gaussian distribution, with mean µ and standard
deviation σ. Thus, our sample corresponds to the combination in
which the Cauchy distribution with parameter ∆ occurs with the

Gaussian probability density
1√

2 · π · σ · exp

(
−(∆− µ)2

2σ2

)
. Cauchy-

distributed random variable ξ with the parameter ∆ can be described
by its characteristic function E[exp(i · ωξ)] = exp(−|ω| ·∆). Thus, the
above-described probabilistic combination of Cauchy distributions can
be described by the corresponding probabilistic combination of these
characteristic functions:

E[exp(i ·ω · ξ)] =
∫ 1√

2 · π · σ · exp
(
−∆− µ

2σ2

)
· exp(−|ω| ·∆)d∆. (6)

By separating the full square in the integrated expression, one can show
that this integral is equal to:

exp
(

1
2
· σ2 · ω2 − µ · |ω|

)
. (7)

We can estimate the characteristic function by its sample value

E[exp(i · ω · ξ)] ≈ 1
N
·

N∑

k=1

cos(ω · y(k))

(Since the expression (7) is real, it makes sense to only consider the
real part of exp(i · ω · ξ), i.e., cos(ω · ξ).)

So, we arrive at the following algorithm for computing µ and σ from
the sample values y(1), . . . , y(N):

− for different real values ω1, . . . , ωk > 0, compute l(ωk)
def=

− ln(c(ωk)), where c(ωk)
def=

1
N
·

N∑
k=1

cos(ω · y(k));

− use the Least Squares Method to find the values µ and σ for which

µ · ωk − 1
2
σ2 · ω2

k ≈ l(ωk).
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The resulting value µ is the average ∆.
Thus, when we repeat this algorithm for both samples, we get

the two desired conditional averages of ∆ – from which we can then
compute the covariance.

What about p-boxes? It is known that a p-box can be described as a
DS knowledge base. Namely, a p-box [F (t), F (t)] is a generalization of
a cdf function F (t). A cdf function can be represented by an explicit
formula, or it can be represented if we list, for uniformly spaced levels
p = 0, ∆p, 2 ·∆p, . . . , 1.0 (e.g., for p = 0, 0.1, 0.2, . . . , 0.9.1.0), the corre-
sponding quantiles, i.e., values t for which F (t) = p. In mathematical
terms, quantiles are the values of the inverse function f(p) = F−1(t)
at equally spaced values p.

The variable with a probability distribution F (t) can be approxi-
mately described as follows: we have the values f(0), f(∆p), etc., with
equal probability ∆p.

Similarly, a p-box can be alternatively represented by listing, for
each p, the interval [f(p), f(p)] of the possible quantile values. Here:

− the function f(p) is an inverse function to F (t), and

− the function f(p) is an inverse function to F (t).

This description, in effect, underlies some algorithms for processing
p-boxes that are implement in RAMAS software (Ferson, 2002).

Because of this description, we can interpret the p-box as the DS
knowledge base, in which, with equal probability ∆p, we can have
intervals [f(0), f(0)], [f(∆p), f(∆p)], etc.

Thus, whatever method we have for DS knowledge bases, we can
apply it to p-boxes as well.

How can we describe the resulting p-boxes? We have just mentioned
that, in principle, we can interpret each p-box as a DS knowledge base,
and apply the above DS-based method to describe th uncertainty of
the output. The result, however, is a DS knowledge base. How can we
describe the corresponding “Gaussian” DS knowledge base as a p-box?

It is known that for a DS knowledge base, i.e., for a probabilistic
distribution on the set of intervals [x, x]:

− The probability F (t) = Prob(X ≤ t) attains its largest possible
value F (t) if for each interval, we take the smallest possible value x.

− Similarly, the probability F (t) = Prob(X ≤ t) attains its smallest
possible value F (t) if for each interval, we take the largest possible
value x.
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Thus:

− F (t) is a probability distribution for the lower endpoints ymin−∆,
and

− F (t) is a probability distribution for the upper endpoints ymin +∆
of the corresponding intervals.

Since the 2-D distribution of the pairs (ymid, ∆) is Gaussian, the distri-
butions of both linear combinations ymin−∆ and ymin+∆ are Gaussian
as well.

Therefore, as a result of this procedure, we get a p-box [F (t), F (t)]
for which both bounds F (t) and F (t) correspond to Gaussian distribu-
tions.

Comment: strictly speaking, the distributions are almost normal but
not exactly normal. Let us denote the cdf of the standard Gaussian
distribution, with 0 mean and standard deviation 1 by F0(t). Then, an
arbitrary Gaussian distribution, with mean µ and standard deviation
σ, can be described as F (t) = F0((t−µ)/σ). In particular, if we denote:

− the mean and the standard deviations of the Gaussian distribution
F (t) by µ and σ, and

− the mean and the standard deviations of the Gaussian distribution
F (t) by µ and σ,

then we conclude that F (t) = F0((t− µ)/σ) and F (t) = F0((t− µ)/σ).
From the theoretical viewpoint, for thus defined functions F (t) and

F (t), we cannot always have F (t) ≤ F (t), because, due to monotonicity

of F0(t), this would be equivalent to
t− µ

σ
≤ t− µ

σ
for all t, i.e., to one

straight line being always below the other – but this is only possible
when they are parallel.

However, as we have mentioned while describing the similar situation
with the DS knowledge bases, in practice, we can have this inequality
if we ignore the values t for which F0(t) is very small – and thus, not
practically possible.

Alternatively, we can assume that the inequality F (t) ≤ F (t) holds
for all t – but the distributions F (t) and F (t) are only approximately
– but not exactly – normal.

What if we have different types of uncertainty for different inputs?
If we have different types of uncertainty for different inputs, we can
transform them to p-boxes (Ferson, 2002) – hence, to DS knowledge
bases – and use a similar approach.
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5.4. Cauchy Deviates Methods for Non-Linear Functions
f(x1, . . . , xn)

Case of weak non-linearity. In some cases, we cannot reasonably ap-
proximate f by a linear expression on the entire box, but we can divide
the box into a few subboxes on each of which f is approximately lin-
ear. For example, if the dependence of f on one of the variables xi is
strongly non-linear, then we can divide the interval [xi, xi] of possible
values of this variable into two (or more) subintervals, e.g., [xi, x

mid
i ]

and [xmid
i , xi], and consider the corresponding subboxes

[x1, x1]× . . .× [xi−1, xi−1]× [xi, x
mid
i ]× [xi+1, xi+1]× . . .× [xn, xn]

and

[x1, x1]× . . .× [xi−1, xi−1]× [xmid
i , xi]× [xi+1, xi+1]× . . .× [xn, xn].

By using the Cauchy deviates methods, we compute the range of f over
each of these subboxes, and then take the union of the resulting range
intervals.

Quadratic case. Linearization technique is based on the assumption
that the measurement errors ∆xi and/or uncertainties are so small that
we can safely ignore terms that are quadratic (or of higher order) in
∆xi. If the measurement errors are larger, so that we can no longer
reasonably approximate f by a linear expression, a natural next step is
to take quadratic terms into consideration while still ignoring cubic and
higher-order terms: f(xmid

1 + δx1, . . . , x
mid
n + δxn) ≈ ymid + δy, where

δy
def=

n∑

ı=1

ci · δxi +
n∑

i=1

n∑

j=1

cij · δxi · δxj , (8)

where ci are the same as for the linearized case and cij
def=

1
2
· ∂2f

∂xi∂xj
.

In general, computing the exact bound for a quadratic function
of n variables in case of interval uncertainty is an NP-hard problem
(Vavasis, 1991; Kreinovich et al., 1997). Luckily, in many practical
case, the dependence of f on xi is monotonic (see, e.g., (Lakeyev and
Kreinovich, 1995)), so we can use, e.g., the above-described sensitivity
analysis technique.

The problem with the sensitivity analysis technique, as we have
mentioned, is that this technique requires n calls to the program f ,
which for large n may be too long. It is therefore desirable to modify the
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Cauchy deviate technique so that it can be used for quadratic functions
as well.

Analysis of the problem. We consider the case when the function
f(x1, . . . , xn) is monotonic in each variable xi.

If the function f is increasing in xi, then the derivative
∂f

∂xi
is always

positive; in particular, it is positive at the central point (xmid
1 , . . . , xmid

n ),
so ci > 0. In this case, the maximum of f is attained when δxi = ∆i

and xi = xi = xmid
i + ∆i.

Similarly, when the function f is decreasing in f , then ci < 0 and
the maximum is attained when δxi = −∆i and xi = xmid

i −∆i. In both
cases, the largest possible value ∆+ of the difference δy is attained when
for every i, we have δxi = εi ·∆i, where εi

def= sign(ci). Substituting this
expression for δxi into the above formula for δy, we conclude that

∆+ =
n∑

i=1

ci · εi ·∆i +
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j =

n∑

i=1

|ci| ·∆i +
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j . (9)

Similarly, the smallest possible value δymin of δy is attained when δxi =
−εi ·∆i, hence ∆− def= |δymin| is equal to:

∆− =
n∑

i=1

|ci| ·∆i −
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j . (10)

We would like to use a Cauchy-type method to find the bounds (9) and
(10). For this, we consider, for every pairs of vectors z = (z1, . . . , zn)
and t = (t1, . . . , tn), the following auxiliary expression:

f(xmid + z + t)− f(xmid + z − t)
2

=

1
2
· f(xmid

1 + z1 + t1, . . . , x
mid
n + zn + tn)−

1
2
· f(xmid

1 + z1 − t1, . . . , x
mid
n + zn − tn). (11)

Substituting δxi = zi + ti into the formula (8), we conclude that

f(xmid+z+t) = ymid+
n∑

ı=1

ci ·(zi+ti)+
n∑

i=1

n∑

j=1

cij ·(zi+ti)·(zj+tj), (12)
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and similarly,

f(xmid+z−t) = ymid+
n∑

ı=1

ci ·(zi−ti)+
n∑

i=1

n∑

j=1

cij ·(zi−ti)·(zj−tj), (13)

hence

1
2
·(f(xmid+z+t)−f(xmid+z−t)) =

n∑

i=1


ci + 2 ·

n∑

j=1

cij · zj


·ti. (14)

This expression is linear with respect to t1, . . . , tn. Therefore, we can
use the existing linear Cauchy algorithm in order to find bounds for
this expression as a function of ti when |ti| ≤ ∆i.

Let g(z) = g(z1, . . . , zn) denote the result of applying the linear
Cauchy method to the expression (14) considered as as a function of t;
then,

g(z) =
n∑

i=1

∣∣∣∣∣∣
ci + 2 ·

n∑

j=1

cij · zj

∣∣∣∣∣∣
·∆i.

Since the function f is monotonic on the box, its derivative
∂f

∂xi
has

the same sign at all the points from the box. Hence, the sign of the

derivative ci + 2 ·
n∑

j=1
cij · zj at the point

xmid + z = (xmid
1 + z1, . . . , x

mid
n + zn)

is the same as the sign εi of the derivative ci at the midpoint xmid =
(xmid

1 , . . . , xmid
n ) of the box. Since |E| = sign(E) ·E for every expression

E, we thus conclude that
∣∣∣∣∣∣
ci + 2 ·

n∑

j=1

cij · zj

∣∣∣∣∣∣
= εi ·


ci + 2 ·

n∑

j=1

cij · zj


 ,

hence

g(z) =
n∑

i=1

|ci| ·∆i + 2 ·
n∑

i=1

n∑

j=1

cij · εi ·∆i · zj . (15)

In particular, for z = 0 = (0, . . . , 0), we get g(0) =
n∑

i=1
|ci| ·∆i.

From (12) and (14), we conclude that

f(xmid + z)− f(xmid − z) = 2 ·
n∑

i=1

ci · zi.
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We can therefore construct a new function h(z) as follows:

h(z) def=
1
2
· (g(z)− g(0) + f(xmid + z)− f(xmid − z)) =

n∑

i=1

ci · zi +
n∑

i=1

n∑

j=1

cij · εj ·∆j · zi. (16)

This expression is linear with respect to z1, . . . , zn. Therefore, we can
use the existing linear Cauchy algorithm in order to find bounds for
this expression as a function of zi when |zi| ≤ ∆i. As a result, we get
the estimate

H
def=

n∑

i=1

∣∣∣∣∣∣
ci +

n∑

j=1

cij · εj ·∆j

∣∣∣∣∣∣
·∆i.

Since the function f is monotonic on the box, its derivative
∂f

∂xi
has

the same sign at all the points from the box. Hence, the sign of the

derivative ci +
n∑

j=1
cij · εj ·∆j at the point

(xmid
1 +

1
2
· ε1 ·∆1, . . . , x

mid
n +

1
2
· εn ·∆n)

is the same as the sign εi of the derivative ci at the midpoint xmid =
(xmid

1 , . . . , xmid
n ) of the box. Since |E| = sign(E) ·E for every expression

E, we thus conclude that
∣∣∣∣∣∣
ci +

n∑

j=1

cij · εj ·∆j

∣∣∣∣∣∣
= εi ·


ci +

n∑

j=1

cij · εj ·∆j


 ,

hence

H =
n∑

i=1

|ci| ·∆i +
n∑

i=1

n∑

j=1

cij · εi ·∆i · εj ·∆j ,

which is exactly the above expression for ∆+. The value ∆− can now
be computed as 2g(0)−∆+.

We thus arrive at the following algorithm for computing ∆+ and ∆−.

Algorithm. As an auxiliary step, we first design an algorithm that,
given a vector z = (z1, . . . , xn), computes g(z). This algorithm consists
of applying the linear Cauchy deviate method to the auxiliary function

t → 1
2
·(f(xmid+z+t)−f(xmid+z−t)) and the values ti ∈ [−∆i, ∆i]. The

linear Cauchy methods requires N calls to the auxiliary function (where
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N depends on the desired accuracy), and each call to the auxiliary
function means 2 calls to the program f ; so, overall, we need 2N calls
to f .

The algorithm itself works as follows:

− First, we apply the algorithm g(z) to the vector 0 = (0, . . . , 0),
thus computing the value g(0).

− Second, we apply the linear Cauchy deviate method to the auxil-

iary function h(z) =
1
2
· (g(z)− g(0) + f(xmid + z)− f(xmid − z));

the result is the desired value ∆+.

− Finally, we compute ∆− as 2g(0)−∆+.

What is the computational complexity of this algorithm? How many
calls to the program f did we make?

− In the first stage, we made a single call to g, so this stage requires
2N calls to f .

− The second stage requires N calls to h. Each call to h means 2 calls
to f and 1 call to g; each call to g, as we have mentioned, requires
2N calls to f . Thus, overall, each call to h requires 2+2N calls to
f ; in total, the second stage requires N · (2 + 2N) calls to f .

− On the final stage, there are no calls to f .

So, overall, this algorithm requires 2N + n · (2 + 2N) = 2N · (N + 2)
calls to f .

For example, if we want the 20% accuracy on average, we need
N = 50, so this algorithm would require ≈ 5000 calls to f . Thus, when
we have n ¿ 5000 variables, it is faster to use the sensitivity analysis
method, but when we have n À 5000 variables, this Monte-Carlo-type
method is faster.

If we want 20% accuracy with certainty 95%, then we need N = 200.
In this case, the above quadratic method requires ≈ 80000 calls to f ,
so this method is faster only if we have n À 80000 variables.
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