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Abstract

For independent events A and B, the probability P (A & B) is equal to
the product of the corresponding probabilities: P (A&B) = P (A) · P (B).
It is well known that the product f(a, b) = a ·b has the following property:

once
n∑

i=1

P (Ai) = 1 and
m∑

j=1

P (Bj) = 1, the probabilities P (Ai & Bj) =

f(P (Ai), P (Bj)) also add to 1:
n∑

i=1

m∑
j=1

f(P (Ai), P (Bj)) = 1. We prove

that the product is the only function that satisfies this property, i.e., that
if, vice versa, this property holds for some function f(a, b), then this func-
tion f is the product. Thus, we provide an additional explanation of why
for independent events, we multiply probabilities (or, in the Dempster-
Shafer case, masses).

Product is normally used as a combination rule for independent
events. For independent events A and B, the probability P (A &B) is equal
to the product of the corresponding probabilities: P (A&B) = f(P (A), P (B)),
where the combination function is the product f(a, b) = a · b; see, e.g., [5].

Similarly, in Dempster-Shafer theory (see, e.g., [2, 6]) one of the ways to
combine the masses from two independent knowledge bases is to multiply them.

A reasonable property of the combination rule. Due to the additivity
property of probability, if the events A1, . . . , An form a partition of the universal
set, i.e., if one of these events always occurs and no two can occur at the same

time, then
n∑

i=1

P (Ai) = 1. If the events Ai form a partition and the events Bj
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form a partition, then their combinations Ai & Bj also form a partition; indeed:

• since Ai and Bj form a partition, any situation belongs to one of Ai and to
one of Bj , thus, for this situation, the corresponding event Ai &Bj holds;

• similarly, since the events Ai are mutually exclusive and the events Bj are
mutually exclusive, the combinations Ai & Bj are also mutually exclusive.

It is therefore reasonable to expect that if the events Ai form a partition, i.e.,
n∑

i=1

P (Ai) = 1, and if events Bj form a partition, i.e.,
m∑

j=1

P (Bj) = 1, then the

events Ai & Bj should also form a partition, i.e.,
n∑

i=1

m∑
j=1

f(P (Ai), P (Bj)) = 1.

In formal terms, the function f : [0, 1] × [0, 1] → [0, 1] that describes the
combination rule should satisfy the following property:

For every two finite sequences

of non-negative real numbers (a1, . . . , an) and (b1, . . . , bm), (1)

if
n∑

i=1

ai = 1 and
m∑

j=1

bj = 1, then
n∑

i=1

m∑

j=1

f(ai, bj) = 1.

What is known. It is well known that the product function f(a, b) = a · b
satisfies the property (1). It is also known that many other possible combination
functions, e.g., many t-norms that are different from the product (see, e.g.,
[3, 4]), do not satisfy this property.

What we will prove. In this paper, we prove that the product function is
the only function that satisfies the above property. We will also prove a similar
result for the case when we combine more than two events.

Theorem 1. If a function f : [0, 1] × [0, 1] → [0, 1] satisfies the property (1),
then this function is the product: f(a, b) = a · b for all a and b.

Conclusion. Thus, we provide an additional explanation of why for indepen-
dent events, we multiply probabilities (or, in the Dempster-Shafer case, masses).

Case of several events. Let k ≥ 2 be an integer, and let f : [0, 1]k → [0, 1]
be a function of k variables. For such functions, we will consider the following
property:
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For every k finite sequences

of non-negative real numbers (a(1)
1 , . . . , a(1)

n1
), . . . , (a(k)

1 , . . . , a(k)
nk

),

if
n1∑

i1=1

a
(1)
i1

= 1 and . . . and
nk∑

ik=1

a
(k)
ik

= 1, (2)

then
n1∑

i1=1

. . .

nk∑

ik=1

f(a(1)
i1

, . . . , a
(k)
ik

) = 1.

Theorem 2. If a function f : [0, 1]k → [0, 1] satisfies the property (2), then
this function is the product: f(a1, . . . , ak) = a1 · . . . · ak for all a1, . . . , ak.

Proof of the Theorems. The proof of Theorems 1 and 2 is based on the
following Lemma:

Lemma. Let a function g : [0, 1] → R+
0

def= [0,∞) satisfy the following prop-
erty:

For every finite sequence of non-negative real numbers (a1, . . . , an),

if
n∑

i=1

ai = 1, then
n∑

i=1

g(ai) = 1. (3)

Then, g(a) = a for every real number a.

Proof of the Lemma. Let us first consider the case when n = 2. In this case,
the condition of the Lemma means that a1 + a2 = 1 implies g(a1) + g(a2) = 1,
i.e., that g(a2) = 1 − g(a1). The equality a1 + a2 = 1 means that a2 = 1 − a1,
so the condition of the Lemma means that

g(1− a1) = 1− g(a1) (4)

for all a1 ∈ [0, 1].
For n = 3, we similarly conclude that g(a1) + g(a2) + g(1 − (a1 + a2)) = 1

for all a1 ≥ 0 and a2 ≥ 0 for which a1 + a2 ≤ 1. Therefore, g(a1) + g(a2) =
1 − g(1 − (a1 + a2)). Due to (4), we have 1 − g(1 − (a1 + a2)) = g(a1 + a2),
so the above property reads g(a1 + a2) = g(a1) + g(a2). It is known (see, e.g.,
[1]) that every function g whose values are non-negative and which satisfies
the above additivity property is linear, i.e., g(a) = k · a for some real number
k. Substituting this expression for g(a) into both sides of the formula (4), we
conclude that k = 1, i.e., that g(a) = a. The Lemma is proven.
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Completing the proof. Let us first prove Theorem 1. Let bj be a sequence

for which
m∑

j=1

bj = 1. For this sequence, let us introduce an auxiliary function

g(a) def=
m∑

j=1

f(a, bj). In terms of this function, the double sum in (1) takes the

form
n∑

i=1

g(ai), so the property (1) takes the form (3).

Since the values of the function f are non-negative, the new auxiliary func-
tion g(a) has non-negative values as well. Due to Lemma, we now conclude that
g(a) = a, i.e., that for every a, we have

m∑

j=1

f(a, bj) = a. (5)

When a = 0, then, from the fact that f(a, b) ≥ 0 for all b, we conclude that
f(a, bj) = 0 for all j – since the only way for a sum of non-negative numbers
to be 0 is when each of these numbers is equal to 0. Thus, we conclude that
f(0, b) = 0 for all b, i.e., that f(a, b) = a · b for a = 0.

When a > 0, then we can divide both sides of the formula (5) by a and get
the following formula:

m∑

j=1

f(a, bj)
a

= 1.

So, for every a > 0, the new auxiliary function g(b) def=
f(a, b)

a
satisfies the

following property:

For every finite sequence of non-negative real numbers (b1, . . . , bm),

if
m∑

j=1

bj = 1, then
m∑

j=1

g(bj) = 1.

This is exactly the property (3), so, due to Lemma, g(b) = b for every real
number b. Since g(a) = f(a, b)/a, we conclude that f(a, b) = a ·b for all a and b.

Theorem 2 can be now proved by induction over k. We have already proven
this theorem for k = 2 – this case corresponds exactly to Theorem 1. Let us
now assume that we have proved this result for k− 1, let us show how to prove
it for k. For that, we first fix k−1 sequences (a(2)

1 , . . . , a
(2)
n2 ), . . . , (a(k)

1 , . . . , a
(k)
nk ),

and consider an auxiliary function g(a) def=
n2∑

i2=1

. . .
nk∑

ik=1

f(a, a
(2)
i2

, . . . , a
(k)
ik

). For

this function, the condition (2) turns into (3), so, due to Lemma, we conclude

that g(a) =
n2∑

i2=1

. . .
nk∑

ik=1

f(a, a
(2)
i2

, . . . , a
(k)
ik

) = a for all a. Thus, for every a, the
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new function f ′(a2, . . . , ak) def= f(a, a2, . . . , ak)a of k − 1 variables satisfies the
following property:

For every k − 1 finite sequences

of non-negative real numbers (a(2)
1 , . . . , a(2)

n2
), . . . , (a(k)

1 , . . . , a(k)
nk

),

if
n2∑

i2=1

a
(2)
i1

= 1 and . . . and
nk∑

ik=1

a
(k)
ik

= 1,

then
n2∑

i2=1

. . .

nk∑

ik=1

f ′(a(2)
i2

, . . . , a
(k)
ik

) = 1.

This is exactly the property (2) for k − 1, so, due to induction assump-
tion, we conclude that f ′(a2, . . . , ak) = a2 · . . . · ak. Since f ′(a2, . . . , ak) =
f(a, a2, . . . , ak)/a, we thus conclude that f(a, a2, . . . , an) = a · f ′(a2, . . . , ak) =
a · a2 · . . . · ak. The induction step is proven, and so is the theorem.
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