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Abstract—In traditional security systems, for each task, we C. What Needs to Be Done

either trust an agent or we don't. If we trust an agent, we . .
allow this agent full access to this particular task. This agent Itis desirable to keep track of trust probab!lltles, so that We.
can usually allow his trusted sub-agents the same access, etcshould only delegate to agents whose trust is above a certain

If a trust management system only uses “trust” and “no trust” thresholdp.
options, then a person should trust everyone in this potentially
long chain. The problem is that trust is rarely a complete trust, Il. PROBABILISTIC APPROACH IDEA

there is a certain probability of distrust. So, when the chain . . .

becomes long, the probability of a security leak increases. It is To !mplement Fhe above idea, we can W”te down the rl_“es
desirable to keep track of trust probabilities, so that we should descrlb!ng YVhO directly trusts Whom_anq with what probability.
only delegate to agents whose trust is above a certain threshold. The objective of the resulting Qualitative Trust Management
In this paper, we present efficient algorithms for handling such  System is, given such rules and the two agefitand s, to
probabilities. determine the probability, (f, s) with which the first agenf

should trust the second agent
|. PROBABILISTIC APPROACH ISNEEDED Such systems exist:

A. Traditional Approach to Trust Management: Brief Idea ¢ @ System in which, crudely speaking, all direct trusts are
assumed to be of the same probability is described in [7];

In traditional security systems (see, e.g., [21]), for each task,, 3 more complex system in which direct trusts may have
we either trust an agent or we don’t. If we trust an agent, we jifferent probabilities is described in [12].

allow this agent full access to this particular task. For example, . . . .. .
In this talk, we will describe new efficient algorithms for

| trust a bank, where | keep my money, to handle my account. . ) -

) . computing the corresponding probabilitiegf, s).
This agent can usually allow his trusted sub-agents the
same access, etc. For example, the bank can outsource some [II. | NDEPENDENTCASE: TOWARDS PRECISE
money operations to another company and trust this company FORMULATION OF THE PROBLEM
to handle its accounts. Since | trust the bank, and bank trUStiet us formulate the problem in precise terms.
the company, | therefore have to trust the company that handles
my account. A. Input Data: Formal Description

N ] We have a finite sefl; it elements are calledgents
B. Traditional Approach to Trust Management: Main Problem kg some pairs(a,b) of agents, we are given a number

The problem with the traditional approach is that trust ig(a,b) > 0 from the interval(0, 1]. This number is called a
rarely a complete trust. For example, | trust a bank, wherd?fobability with which agenta directly trusts agens.
keep my money, to handle my account. | know that there haﬁe
been cases when banks cheated on clients, but overall, my
trust is pretty high, say = 99.9% (i.e., distrust isl = 0.1%). Informally, our objective is to describe, for given two agents

The bank, in its turn, trusts a company in India — to whictj @nds, the probabilityp; (f, s) with which the agens trusts
this bank has outsourced to handle my account — with a certf§§ agent.
high probability. That company trusts its own employees, etg. Graphs: A Natural Description of Input Data

If a trust management system only uses “trust” and “no i i o
trust” options, then | should trust everyone in this potentially From the mathematical viewpoint, it is reasonable to de-
long chain. However, when the chain becomes long, tRS"IP€ this input as a directed gragh= (4, £), in which:
probability of a security leak increases, and the resultinge the agents are vertices, and

probability of distrust may get much higher than my original + an edge(a,b) € E connects those pairs of verticesand
0.1%. b for which we know the probability of direct trust.

Desired Output: Informal Description



D. Independence: Reasonable Assumption Since the random variablg is uniformly distributed on the

All we know is the probabilities of direct trust. Since wenterval [0,1], the probability that¢ belongs to any interval
have no information on the dependence between differefit] is €qual to the widthy — = of this interval. In particular,
direct trust links, it makes sense to assume that the corf€ probability that < po(a,b), i.e., that{ belongs to the

sponding events are independent; see, e.g., [24]. interval [0, po(a, b)], is equal topy(a, b).
Under this independence assumption, we can formulate thé\S @ result of this process, we get different subgraphs
problem in precise terms. with probability that is described by the formula (1). Thus,
_ o the desired probability;(f, s) is equal to the probability that
E. Desired Output: Formal Description in thus generated random gragh, there is a directed path

We have a grapty = (4, F), in which there is a probability from f to s.
po(a,b) assigned to every node. We can now describe aWe can therefore estimate this probabilityf, s) as the
random subgrapi{A, E,.) (E. C E) of the original graph frequency of this event. In other words:

as follows: « we select a number of iteratiaN’;
« for every edge(a,b) € E, the probability that this edge o then, N times, we generate the corresponding random
is present inE,. is equal topy(a, b); graph E,. and check whether in this graph, there is a
« for two different edges, the events describing their pres- path from f ands;
ence isk, are statistically independent. — there are known algorithms for efficiently checking
In other words, for each edde,b) € E: the existence of such a path; see, e.g., [6];
« this edge belongs t&, with probability p(a,b), and . we then estimatg f,s) as the ratiof “' M/N, where
« this edge does not belong tb, with probability 1 — M is the number of generated graphs in whittand s
po(a,b). were connected.

Since edges are statistically independent, we can provide |a{% well known that afterN’ simulations, the frequency =

explicit formula for the probabilityp(E’) that the resulting M/N estimates the desired probabilipywith the accuracy
random graph®, coincides with a given subgraph’ C E: p-(1—p)

, (see, e.g., [24]). Specifically, the standard
p(E') =

deviation of the differencg — p is equal to this value, and for

large N, the distribution of this difference is approximately
IT potav)|-{ JI (t—=polab))]. (1) normal. Thus, e.g.
(a,b)eB’ (a,b)ZE’ « With certainty 95% (corresponding tebounds), we can

These valueg(E’) form a probability distribution on the set ~ conclude that

of all subsetst’ C E. Based on this probability distribution, p-(1—p)

we can then determine the desired probabilityf, s) as the p=fls2\ —F—

probability that in the random graph,., there is a directed ) ) )

path from f to s. If we denote the existence of such a path by * With certainty 99.9% (corresponding t@ 3ounds), we

f B s, we can then describe the desired probabiityf, s) can conclude that

as follows: (1 -
pfs)= Y pE). 2) R
B2 « with certainty1 — 10~® (corresponding to & bounds),
IV. ALGORITHM FOR THEINDEPENDENTCASE we can conclude that
A. Monte-Carlo Simulation: Main Idea \/m
Since the edges are assumed to be statistically independent, p=sl=6: N '

we can use the following Monte-Carlo simulation algorithng, Monte-Carlo Simulation: Implementation
to generate a random gra).:

We loop over all edge&s, b) € E, and for each edgé:, b),
we keep it inE, with probability po(a,b). Specifically, for
each edge, we do the following: C. Monte-Carlo Simulation: Problem

« we run a standard random number generator that genery, many applications of trust, the desired level of triisé

ates numbers uniformly distributed on the interi@all]; \ery high. For example, for a bank with a thousand employees

as a result, we get a valugec [0, 1]; around the country, trust probability 99.9% may sound very

« then, we comparg with po(a, b): reasonable, but it means that at any given moment of time, at

— if £ <po(a,b), we keep the edgn,d) in E; least one of the employees is stealing money — this is clearly

— otherwise, we delete the edgg:,b) from the not an acceptable situation. For problems related to national
graphE,. security, the desired level of trust must be even higher.

We implemented the above Monte-Carlo methods in Java,
and got an efficient algorithm for the independent case.



Since we want to check whether the actual probabilityhere:
p(f,s) is above the threshold level of trugt the estimation . 1 is a constant;

error [p — f| of our estimatef of the probabilityp = p;(f,s) ~ « mj is the sum of all the terms that are linearin (a, b);
must be much smaller than the difference- p between the o m, is the sum of all the terms that are quadratic in
ideal trust 1 and the desired thresh@ld- otherwise, even in mo(a,b);

the ideal case wherf = 1, we would still not be able to , etc.

guarantee that the actual probabilgyexceeds the threshold. The valuem, corresponds to the case when all the mistrust
Thus, for trust problems, we must estimate the probabilif¥yels are 0s 1io(a,b) = 0), so all the trusts are absolute:

;gt(f,S) with the accuracy - (1 — D), wheree < landl — pola,b) = 1 —mg(a,b) = 1 — 0 = 1. In this case, every

p < 10*%”. In qther words, we .would like to find the Va|Ueedge(a,b) from the original graphf is present inE’ with

f for which, with a given certainty, we can guarantee thatpropapility 1. Thus, if in the original graph, we have a path

lp—fl<e-(1-p). from f to s, then, with probability 1, this same path leads
If the given certainty corresponds to thes bounds for the fom ftosin B, = E. (And if in E, there is no path from

normal distribution, then, afte¥ iterations, we can guaranteef g 5 then there is no such path in a subgrdpheither, so

the accuracy p:(f,s) = 0 anyway.)
p-(1—p) So, with the exception of the degenerate (and easy-to-detect)
lp—fl<k- \/ N case whenf and s are not even originally connected, for

mo(a,b) = 0, we havep;(a,b) = 1 — hencem(f,s) = 0.
So, to guarantee thab — f| < e- (1 —p), we must guarantee Since in this casey (f, s) = mo, we conclude thatng = 0.

thatk - 1 [p-(-p) <e-(1-p), ie., that ~ Let d denote the ordinal number of the first non-zero term
N in the formula (3); then, (3) takes the following form:

2
(1 —
NZkQ-p(l( ~)€). me(f,s) =mg+map1 + ... (4)
€ -p
Forn~ 1 and1 o1 510 Since the valuesng(a,b) are very small, alki-th order terms
orp~landl—p~1-—p~ 107, we get are much larger than all the/+ 1)-th order terms, i.ez; >
N >10%- (k?/?) =~ 10*. may1, and with a good accuracyy; (£, s) ~ myq.
If we use the valuesnfﬁ)(mb) = X\ -mg(a,b) instead of

For more accurate estimations, we need even larger num eeé' original valuesmo(a, b), then we similarly get

of simulations. These simulations take time. How can w

. . : : A A A

decrease the time that is needed for these simulations? mM(f,5) =m + mEH)I +... (5)

D. How to Solve the Problem: An Idea When we replaceng(a,b) by A - mg(a,b), then eachp-th
The main problem with the Monte-Carlo simulation comegrder term — the sum of thg)productspfvalueSmo(a,b) -

from the fact that in the trust problems, the probabilitiels multiplied by A. Thus,m;™ = A? - m,,, hence:

b) of direct trust are close to 1 — or, equivalently, that
Po(a b) o dir et quivalently m®(f.5) = Xma £ X g b (6)
the probabilitiesmg(a,b) = 1 — po(a,b) of direct mistrust
are very small. When the value of\ is not too large, we still have
Since the method does not work well when the values!" (f,s) ~ m{ hencem;”(f,s) ~ A? - my. Since, as we
mo(a,b) are small, a reasonable idea is: have mentionedy; ~ m;(f, s), we thus conclude that:
« to compute the valuep?)(f,s) (or, equivalently, m(A)(f s) ~ A my(f, s). (7)
m(A)(f s) def g —p(A) (f,s)) for larger original mistrust _ . ' 7 ’ . .
tl e . dﬁtf N ’ b f | diff This formula enables us to perform the desired extrapolation.
values;no 1(a’ ) 4t ~mo(a,b), for several different 400 it we know the values:,{*") (£, s) corresponding to
valuesa > 1 — and then different factorshy, ..., A, (m > 2), then, from the formula

e use extrapolation to reconstruct the desired val
A 1
mi(f,5) = mi"(f.5). o ,
How can we do this? my"(f,s) = AL - me(f, 5).
The formula (2) describes(f, s) as a sum of terms(E’),  Tyming to logarithms of both sides, we conclude that
and, according to the formula (1), each of these tep(fs)
is a polynomial in terms of the variablegy(a,b). Thus, d-ay+x =, (8)
when we substitute the expressionga,b) = 1 — mg(a,b) def def def
into the formulas (1) and (2), we conclude that,(f, s) ;’V?s;&;v(f S—)) In(me(a, b)), @ = 1In(\) and b =
's a polynomial in terms ofno(a, b). Each polynomial can Wé can7use. the Least Square Method to estimaadmd =
be represented as a sum of O-th order terms, linear erms, e knowr — In(my(a, b)), We can now reconstruct the
H H H . - t ’
guadratic terms, etc., i.e., as the following sum: desired valuen,(a, b) asexp(x) andp(a, b) = 1 — ms(a, b)
me(f,s) =mo+mi+...+mp+..., (3) asl—exp(x). Thus, we arrive at the following algorithm.

lﬁ), we conclude that



E. New Algorithm: Description and Implementation We consider all possible probability distributiop&E’) on

Suppose that we are given the graph E), two nodesf Fhe set Qf aII_ subgraphS’ C FE that are consistent with this
and s, and the valuegy(a,b) — or, equivalently, the values information, i.e., for which, for everya,b) € E, we have
mo(a,b) = 1—po(a,b). Our objective is to estimate the value ,
p+(f,s) with a given accuracy. Z P(E') = po(a,b).

To solve this problem, we do the following. We select a E7:(a.b)ER!
reasonable valuév — the number of iterations used in th
Monte-Carlo approach; e.g., we sele€t= 25 or N = 50
or N = 100. First, we try the above Monte-Carlo metho
with the original valuesny(a,b). The original Monte-Carlo

%For every two edgeg and s and for each such probability
istribution p(E’), we can definep,(f,s) as the overall
robability that there is a path frorf to s:

simulation technique does not work well whegp(f,s) ~ 1 _ B
and the corresponding accurasyl/v/N is much larger than pilfss) = Z P(E).
e. In this case, we do the following: B

o We try increasing values ok, e.g., A\ = 2,4,8, etc.,,
and apply the Monte-Carlo method to the correspondi
mistrust valuesm((ﬁ) (a,b) = XA - mg(a,b). We continue
this process until we reach a validor which m?)(f, s) p.(f,5) def
is reliably different from 0 — i.e., for whiclm?) (a,b) > =
1/v/N. We will denote this value\ by \;.

« Once we reach this valug;, we try several ifp > 2)
larger values\; < Ay < ... < \,,. For each of these T .
vaI?Jes, we apply the Monte-Carlo method and get aOnur objective is to compute this valyg(f, s).
estimate formgm (f,s).

« Based on these estimates, we:

— compute the valuess; = In()\;) and b = In the dependence case, we knew the exact distribution
ln(mg/\l)(f, s)); p(E’), so we could use the Monte-Carlo simulation tech-
— apply the Least Squares Method to solve the systemques and estimate the desired vajuyéf,s). In the more
of linear equations (8) with unknowrisandz, and general case when there is a possible dependence we may
— estimatep;(a,b) as1 — exp(x). have several different probability distributiop&Z’) consistent
with the given information. For each of these distributions,
CommentWe have implemented this algorithm in Java as wellye can still use the Monte-Carlo simulation and compute
and we have checked that it works fine. the corresponding probability, (£, s). However, there are, in
general, infinitely many such distributions; so, we cannot find
the smallest possible valyg(f, s) of the probabilityp;(f, s)
by simply simulating all such distributions.

We can now define the desired worst-case probahility’, s)
& the exact lower bound of all such valygsf, s):

inf{p:(f, s)|p is consistent with the given informati¢n

C. This Problem Is Difficult to Solve

V. PossiBLY DEPENDENTCASE:
FORMULATION OF THE PROBLEM

A. Motivation

In the above text, we assumed that all the trusts afe This Problem is a Part of a General Problem
statistically independent. In reality, however, different trusts

may be dependent (correlated) — e.g., if these trusts come froniow can we efficiently solve the problem of computing
the assurances of the same third party. p,(f.8)?

In this more realistic situation, depending on the degree of The difficulty of solving this problem comes from the fact
correlation, we may get different values of the resulting truéftat instead of a single probability distribution, our knowledge
p:(f,s). In critical systems, it is reasonable to guarantee thg consistent with several different probability distributions. In
trust only we are guaranteed that f, s) exceeds the thresholdother words, instead of a single distributipnwe have alass
P, i.e., if we know that all possible values pf( , s) are greater P of possible probability distributions, and our objective is to
than or equal to the threshold. find the smallest possible value of a statistical characteristic

To check this requirement, it is, of course, necessary afftgemely, the probabilityp; (f,s)) over all the distributions
sufficient to check the smallest possible valuga,b) of from this class.

pe(f,s) exceeds the thresholg; (f,s) > p. Problem of this type — and their potential applications —
Thus, we must be able to compute this “worst-case” trusave been described, in a general context, in the monographs
probabilitypf(f, s). [18], [25]; for further developments, see, e.g., [1], [2], [3], [4],
o : [5], [8], [9], [10], [11], [13], [14], [15], [16], [17], [19], [20],
B. Precise Formulation of the Problem [22], [23], [26] and references therein.
Similarly to the dependent case, we have a graphFE); In this paper, we will use ideas from these monographs and

for each edgéa, b) € E, we are given the probability,(a,b). papers. As a result, we arrive at the following algorithm.



V1. PossiBLY DEPENDENTCASE: ALGORITHM AND Therefore, the probability; (f, s) of the eventV,(f, s) cannot

JUSTIFICATION exceed the probability of the disjunction:
A. Preliminary Definitions di(f,s) < P(No(ag,a1) V...V No(an—1,a)).
In a graph (4, F), we say that a sequence = 5 vell known that the probability of a disjunction
(ag,a1,...,a,) is apath from ag to a, if for every i, the

pair (a;,a;+1) is an edge. SiV...VS,
Thelength ¢(+) of the pathy is defined as the sum of the

lengthsdo (as, a:11) of the corresponding edges: of arbitrary n events Sy, ..., S, cannot exceed the sum of

the corresponding probabilitig(S1) + ... + p(Sy). In our
case, this means tha(f,s) cannot exceed the sum of the

Uy) & Z do(ai, aiv1). probabilitiesp(Noy(ag, a1)) + . .. + p(No(an_1,ay)), i.e., that
i di(f,s) < do(ao7_a1) +...+do(an—1,an).
B. Algorithm: Idea Due to (9), this means thak (f, s) < d,(f, s).

The desired valug (f, s) is equal tomax(1 —d,(f,s),0), 2°. From di(f,s) = 1 —pe(f,s) < d,(f,s), it follow that
whered, (f, s) is the Iength of the shortest path frofto s, p(f,s) > 1 —d,(f,s). Sincep,(f,s) is a probability, it is a
ie., non-negative number, so

d,(f,s) % min{¢(y) | is a path fromf to s}. pi(f,s) =2 max(1 —dy(f, s),0).

In other words, for every distribution( E’) that is consistent

with the given information, the correspondmg probability
There exists efficient algorithms for finding the length of, (¢ ) is larger than or equal tmax(1 — d,(f, s),0). Thus,

the shortest path; see, e.g., [6]. the |nf|mump (f,s) of all such valueg;(f, s) is also smaller
The efficient shortest path algorithm was originally proghan or equal to this number, i.e.,

posed by Dijkstra.
Bt(f’ S) 2 max(l - dt(fa 5)70)'

C. Algorithm: Implementation

D. Algorithm: justification

1°. Let us first show that for every distributiop(E’) that . _

is consistent with the given information, we havgf, s) < 3f- To Cgmtf_:_ete dt_he_bpr(_mfv ENe/)V\?” pf(r)](_jurfe ?}1 ?Xﬁmme

d whered def | ' of a probability distributionp(E’) for which p.(f,s) <

,t(fa 3) where t(f75) pt(fa 3) max(l _dt(fv 8),0) Then, for]zt(f7s) < pt(f,s)y we will
Let o = (ag,a1,...,a,) be the shortest path fromy = f getgt(f, s) <max(1 —d,(f,s),0), hence

to a, = s. Then, by definition of the functiow,(f,s), we
have ' p,(f,s) = max(1l — dy(f,s),0).

dy(f,s) =do(ag,a1) + ... + do(an—1,an), (9)
. ) To describe the corresponding distribution, we will use the
where(a;, a;+1) € E for all i. If all the connectionga;, ai+1)  standard projectiom of the real linelR onto the interval0, 1)
are in the random grapl’, then in E’, there exists a path hat . t h real numbeits fractional partr (z def
from f = ag t0 a,, = s — namely, the pathy. So, if there that assigns to eac P ) =
is no path froms to f, then at least one of the connectlons — L. This projection has a simple geometric interpretation:
we interpret the interval, 1) as a circle of circumference 1,

(ai, ai41) is not Present in the random graph. and we “wrap up” the real line around this circle.

Let us denote: It is easy to see that in this wrapping, the length of an

« the event that there is no path frofnto s by Ni(f,s), interval is preserved as long as it does not exceed 1. Thus,

and _ _ _ for any intervall = [z,y] C IR of lengthy — = < 1, its
« the event that there is no direct connection fremto projectionr (1) is either an interval, or a pair of intervals, and
ai+1 by No(a;, aiy1). the total length of the set(I) is equal to the lengtly — z: of
Then: the original interval.
« the probability of N, (£, s) is equal tod,(f, s), while The corresponding distribution is located on the graphs

« the probability of each eveniNy(a;,a;.1) is equal to E(w) corresponding to different real numbers= [0, 1); these
do(a;, ait1). graphs will be describe below. The probability of different

In these terms, the above logical conclusion takes the followif] raphsE( ) is described by the uniform distribution on the

. imerval [0,1).
form: if th N, h I f th :
orm: if the eventNy(f, s) occurs, then at least one of t ¢ The graphsE(w) are described as follows. For every two
eventsNy(a;, a;+1) must have occurred:

nodesa andb for which (a,b) € E, we consider the interval
N(f,5) > (No(ao,a1) V...V No(an-1,a0)). I(a,b) “ [d,(f,a).d,(f.a) +do(a, b)] of lengthds (a, b). For



everyw € [0, 1), the edg€(a, b) belongs to the grapf(w) if Since w > d,(f,a,) and w cannot belong to this
and only ifw & 7(I(a,b)). projection, we conclude that

3.1°. Let us prove that thus defined distribution is indeed w > d,(f,an) + do(an, any1).

consistent with the original information, i.e., with all the given ) ] o
valuespy(a, b). Let us continue the analysis of the second case. By definition,

) o ) . _ di(f,an41) is the length of the shortest path frofnto a,,41.

_ Indeed, since the distribution anis uniform, the probabil- |5 particular, when we add the edge,, a,.1) to the shortest
ity thatw € w(I(a,b)) is equal to the total length of the setyath from f to a,,, we conclude that
m(I(a,b)). Due to the above property of the projection, this to-
tal length is equal to the length of the original interviéd, b), di(fyany1) < dy(f,an) + do(an, ant1).
i.e., tody(a,b). Thus, the probability thatr € 7 (I(a,b)) is : : N
equal tody(a,b). Therefore, the probability of the oppositetha':inie;lt?}a ;neqL)Jahtgo = dy(f, an) +do(an, any1) implies
eventw ¢ w(I(a,b)) is equal tol — dy(a,b). By definition of = S Bl e . . :
do(a, b), the valuel — do(a, b) is exactlypo(a, b). In both cases, the induction step is proven, and so is the

So, the probability that the edde, b) belongs to the graph result.
E(w) is exactlypo(a, b). 3.3°. Due to Part 3.2 of this proof, if there is a path frgfmn
to s in a graphE(w), thenw > p (f, s). Thus, the probability
pt(f,s) that there exists such a path does not exceed the
probability that a uniformly distributed number € [0,1) is
> p,(f,s). In other words,

We will prove this statement by induction over the length
n of the path. pe(f;s) <max(1l —p (f,s),0).

3.2°. Let us prove that for every path = (ao,...,a,) that
starts atzy = f, if all the edgeqag, a1), ..., (an—1,a,) from
this path belong to the grapf(w), thenw > d,(ag, an).

3.2.1°. Induction baseFor n = 0, we haved,(ag, ap) = 0,

so the desired inequality is clearly true. The statement is proven, so the algorithm has been justified.

3.2.2°. Induction stepLet us assume that the desired property
is true forn, and we have added one more edag, a,+1)

to the pathy. Let us prove that the desired property holds for This work was supported in part by NASA under co-
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