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Abstract— In traditional security systems, for each task, we
either trust an agent or we don’t. If we trust an agent, we
allow this agent full access to this particular task. This agent
can usually allow his trusted sub-agents the same access, etc.
If a trust management system only uses “trust” and “no trust”
options, then a person should trust everyone in this potentially
long chain. The problem is that trust is rarely a complete trust,
there is a certain probability of distrust. So, when the chain
becomes long, the probability of a security leak increases. It is
desirable to keep track of trust probabilities, so that we should
only delegate to agents whose trust is above a certain threshold.
In this paper, we present efficient algorithms for handling such
probabilities.

I. PROBABILISTIC APPROACH ISNEEDED

A. Traditional Approach to Trust Management: Brief Idea

In traditional security systems (see, e.g., [21]), for each task,
we either trust an agent or we don’t. If we trust an agent, we
allow this agent full access to this particular task. For example,
I trust a bank, where I keep my money, to handle my account.

This agent can usually allow his trusted sub-agents the
same access, etc. For example, the bank can outsource some
money operations to another company and trust this company
to handle its accounts. Since I trust the bank, and bank trusts
the company, I therefore have to trust the company that handles
my account.

B. Traditional Approach to Trust Management: Main Problem

The problem with the traditional approach is that trust is
rarely a complete trust. For example, I trust a bank, where I
keep my money, to handle my account. I know that there have
been cases when banks cheated on clients, but overall, my
trust is pretty high, sayp = 99.9% (i.e., distrust isd = 0.1%).

The bank, in its turn, trusts a company in India – to which
this bank has outsourced to handle my account – with a certain
high probability. That company trusts its own employees, etc.

If a trust management system only uses “trust” and “no
trust” options, then I should trust everyone in this potentially
long chain. However, when the chain becomes long, the
probability of a security leak increases, and the resulting
probability of distrust may get much higher than my original
0.1%.

C. What Needs to Be Done

It is desirable to keep track of trust probabilities, so that we
should only delegate to agents whose trust is above a certain
thresholdp̃.

II. PROBABILISTIC APPROACH: IDEA

To implement the above idea, we can write down the rules
describing who directly trusts whom and with what probability.
The objective of the resulting Qualitative Trust Management
System is, given such rules and the two agentsf and s, to
determine the probabilitypt(f, s) with which the first agentf
should trust the second agents.

Such systems exist:

• a system in which, crudely speaking, all direct trusts are
assumed to be of the same probability is described in [7];

• a more complex system in which direct trusts may have
different probabilities is described in [12].

In this talk, we will describe new efficient algorithms for
computing the corresponding probabilitiespt(f, s).

III. I NDEPENDENTCASE: TOWARDS PRECISE

FORMULATION OF THE PROBLEM

Let us formulate the problem in precise terms.

A. Input Data: Formal Description

We have a finite setA; it elements are calledagents.
For some pairs(a, b) of agents, we are given a number

p0(a, b) > 0 from the interval(0, 1]. This number is called a
probability with which agenta directly trusts agentb.

B. Desired Output: Informal Description

Informally, our objective is to describe, for given two agents
f ands, the probabilitypt(f, s) with which the agents trusts
the agents.

C. Graphs: A Natural Description of Input Data

From the mathematical viewpoint, it is reasonable to de-
scribe this input as a directed graphG = (A,E), in which:

• the agents are vertices, and
• an edge(a, b) ∈ E connects those pairs of verticesa and

b for which we know the probability of direct trust.



D. Independence: Reasonable Assumption

All we know is the probabilities of direct trust. Since we
have no information on the dependence between different
direct trust links, it makes sense to assume that the corre-
sponding events are independent; see, e.g., [24].

Under this independence assumption, we can formulate the
problem in precise terms.

E. Desired Output: Formal Description

We have a graphG = (A,E), in which there is a probability
p0(a, b) assigned to every node. We can now describe a
random subgraph(A,Er) (Er ⊆ E) of the original graph
as follows:
• for every edge(a, b) ∈ E, the probability that this edge

is present inEr is equal top0(a, b);
• for two different edges, the events describing their pres-

ence isEr are statistically independent.
In other words, for each edge(a, b) ∈ E:
• this edge belongs toEr with probability p0(a, b), and
• this edge does not belong toEr with probability 1 −

p0(a, b).
Since edges are statistically independent, we can provide an
explicit formula for the probabilityp(E′) that the resulting
random graphEr coincides with a given subgraphE′ ⊆ E:

p(E′) =

 ∏

(a,b)∈E′
p0(a, b)


 ·


 ∏

(a,b)6∈E′
(1− p0(a, b))


 . (1)

These valuesp(E′) form a probability distribution on the set
of all subsetsE′ ⊆ E. Based on this probability distribution,
we can then determine the desired probabilitypt(f, s) as the
probability that in the random graphEr, there is a directed
path fromf to s. If we denote the existence of such a path by
f

Er→ s, we can then describe the desired probabilitypt(f, s)
as follows:

pt(f, s) =
∑

E′:f
E′→s

p(E′). (2)

IV. A LGORITHM FOR THE INDEPENDENTCASE

A. Monte-Carlo Simulation: Main Idea

Since the edges are assumed to be statistically independent,
we can use the following Monte-Carlo simulation algorithm
to generate a random graphEr:

We loop over all edges(a, b) ∈ E, and for each edge(a, b),
we keep it inEr with probability p0(a, b). Specifically, for
each edge, we do the following:
• we run a standard random number generator that gener-

ates numbers uniformly distributed on the interval[0, 1];
as a result, we get a valueξ ∈ [0, 1];

• then, we compareξ with p0(a, b):
– if ξ ≤ p0(a, b), we keep the edge(a, b) in Er;
– otherwise, we delete the edge(a, b) from the

graphEr.

Since the random variableξ is uniformly distributed on the
interval [0, 1], the probability thatξ belongs to any interval
[x, y] is equal to the widthy−x of this interval. In particular,
the probability thatξ ≤ p0(a, b), i.e., thatξ belongs to the
interval [0, p0(a, b)], is equal top0(a, b).

As a result of this process, we get different subgraphsE′

with probability that is described by the formula (1). Thus,
the desired probabilitypt(f, s) is equal to the probability that
in thus generated random graphEr, there is a directed path
from f to s.

We can therefore estimate this probabilityp(f, s) as the
frequency of this event. In other words:

• we select a number of iterationN ;
• then, N times, we generate the corresponding random

graph Er and check whether in this graph, there is a
path fromf ands;

– there are known algorithms for efficiently checking
the existence of such a path; see, e.g., [6];

• we then estimatep(f, s) as the ratiof
def= M/N , where

M is the number of generated graphs in whichf and s
were connected.

It is well known that afterN simulations, the frequencyf =
M/N estimates the desired probabilityp with the accuracy

∼
√

p · (1− p)
N

(see, e.g., [24]). Specifically, the standard

deviation of the differencef−p is equal to this value, and for
large N , the distribution of this difference is approximately
normal. Thus, e.g.:

• with certainty 95% (corresponding to 2σ bounds), we can
conclude that

|p− f | ≤ 2 ·
√

p · (1− p)
N

;

• with certainty 99.9% (corresponding to 3σ bounds), we
can conclude that

|p− f | ≤ 3 ·
√

p · (1− p)
N

;

• with certainty 1 − 10−8 (corresponding to 6σ bounds),
we can conclude that

|p− f | ≤ 6 ·
√

p · (1− p)
N

.

B. Monte-Carlo Simulation: Implementation

We implemented the above Monte-Carlo methods in Java,
and got an efficient algorithm for the independent case.

C. Monte-Carlo Simulation: Problem

In many applications of trust, the desired level of trustp̃ is
very high. For example, for a bank with a thousand employees
around the country, trust probability 99.9% may sound very
reasonable, but it means that at any given moment of time, at
least one of the employees is stealing money – this is clearly
not an acceptable situation. For problems related to national
security, the desired level of trust must be even higher.



Since we want to check whether the actual probability
p(f, s) is above the threshold level of trust̃p, the estimation
error |p− f | of our estimatef of the probabilityp = pt(f, s)
must be much smaller than the difference1 − p̃ between the
ideal trust 1 and the desired thresholdp̃ – otherwise, even in
the ideal case whenf = 1, we would still not be able to
guarantee that the actual probabilityp exceeds the threshold.

Thus, for trust problems, we must estimate the probability
pt(f, s) with the accuracyε · (1 − p̃), whereε < 1 and 1 −
p̃ < 10−3. In other words, we would like to find the value
f for which, with a given certaintyδ, we can guarantee that
|p− f | ≤ ε · (1− p̃).

If the given certainty corresponds to thek ·σ bounds for the
normal distribution, then, afterN iterations, we can guarantee
the accuracy

|p− f | ≤ k ·
√

p · (1− p)
N

.

So, to guarantee that|p− f | ≤ ε · (1− p̃), we must guarantee

that k ·
√

p · (1− p)
N

≤ ε · (1− p̃), i.e., that

N ≥ k2

ε2
· p · (1− p)

(1− p̃)2
.

For p ≈ 1 and1− p ≈ 1− p̃ ≈ 103, we get

N ≥ 103 · (k2/ε2) ≈ 104.

For more accurate estimations, we need even larger number
of simulations. These simulations take time. How can we
decrease the time that is needed for these simulations?

D. How to Solve the Problem: An Idea

The main problem with the Monte-Carlo simulation comes
from the fact that in the trust problems, the probabilities
p0(a, b) of direct trust are close to 1 – or, equivalently, that

the probabilitiesm0(a, b) def= 1 − p0(a, b) of direct mistrust
are very small.

Since the method does not work well when the values
m0(a, b) are small, a reasonable idea is:

• to compute the valuep
(λ)
t (f, s) (or, equivalently,

m
(λ)
t (f, s) def= 1− p

(λ)
t (f, s)) for larger original mistrust

valuesm
(λ)
0 (a, b) def= λ · m0(a, b), for several different

valuesλ > 1 – and then
• use extrapolation to reconstruct the desired value

m
(λ)
t (f, s) = m

(1)
t (f, s).

How can we do this?
The formula (2) describesp(f, s) as a sum of termsp(E′),

and, according to the formula (1), each of these termsp(E′)
is a polynomial in terms of the variablesp0(a, b). Thus,
when we substitute the expressionsp0(a, b) = 1 − m0(a, b)
into the formulas (1) and (2), we conclude thatmt(f, s)
is a polynomial in terms ofm0(a, b). Each polynomial can
be represented as a sum of 0-th order terms, linear terms,
quadratic terms, etc., i.e., as the following sum:

mt(f, s) = m0 + m1 + . . . + mk + . . . , (3)

where:
• m0 is a constant;
• m1 is the sum of all the terms that are linear inm0(a, b);
• m2 is the sum of all the terms that are quadratic in

m0(a, b);
• etc.

The valuem0 corresponds to the case when all the mistrust
levels are 0s (m0(a, b) = 0), so all the trusts are absolute:
p0(a, b) = 1 − m0(a, b) = 1 − 0 = 1. In this case, every
edge(a, b) from the original graphE is present inE′ with
probability 1. Thus, if in the original graphE, we have a path
from f to s, then, with probability 1, this same path leads
from f to s in Er = E. (And if in E, there is no path from
f to s, then there is no such path in a subgraphEr either, so
pt(f, s) = 0 anyway.)

So, with the exception of the degenerate (and easy-to-detect)
case whenf and s are not even originally connected, for
m0(a, b) = 0, we havept(a, b) = 1 – hencemt(f, s) = 0.
Since in this case,m0(f, s) = m0, we conclude thatm0 = 0.

Let d denote the ordinal number of the first non-zero term
in the formula (3); then, (3) takes the following form:

mt(f, s) = md + md+1 + . . . (4)

Since the valuesm0(a, b) are very small, alld-th order terms
are much larger than all the(d+1)-th order terms, i.e.,md À
md+1, and with a good accuracy,mt(f, s) ≈ md.

If we use the valuesm(λ)
0 (a, b) = λ · m0(a, b) instead of

the original valuesm0(a, b), then we similarly get

m
(λ)
t (f, s) = m

(λ)
d + m

(λ)
d+1 + . . . (5)

When we replacem0(a, b) by λ · m0(a, b), then eachp-th
order term – the sum of the products ofp valuesm0(a, b) –
is multiplied byλp. Thus,m(λ)

p = λp ·mp, hence:

m
(λ)
t (f, s) = λd ·md + λd+1 ·md+1 + . . . (6)

When the value ofλ is not too large, we still have
m

(λ)
t (f, s) ≈ m

(λ)
d hencem

λ)
t (f, s) ≈ λd ·md. Since, as we

have mentioned,md ≈ mt(f, s), we thus conclude that:

m
(λ)
t (f, s) ≈ λd ·mt(f, s). (7)

This formula enables us to perform the desired extrapolation.
Indeed, if we know the valuesm(λl)

t (f, s) corresponding to
different factorsλ1, . . . , λm (m > 2), then, from the formula
(7), we conclude that

m
(λl)
t (f, s) ≈ λd

l ·mt(f, s).

Turning to logarithms of both sides, we conclude that

d · al + x ≈ bl, (8)

where x
def= ln(mt(a, b)), al

def= ln(λl) and bl
def=

ln(m(λl)
t (f, s)).

We can use the Least Square Method to estimated andx.
Once we knowx = ln(mt(a, b)), we can now reconstruct the
desired valuemt(a, b) asexp(x) andpt(a, b) = 1−mt(a, b)
as1− exp(x). Thus, we arrive at the following algorithm.



E. New Algorithm: Description and Implementation

Suppose that we are given the graph(A,E), two nodesf
and s, and the valuesp0(a, b) – or, equivalently, the values
m0(a, b) = 1−p0(a, b). Our objective is to estimate the value
pt(f, s) with a given accuracyε.

To solve this problem, we do the following. We select a
reasonable valueN – the number of iterations used in the
Monte-Carlo approach; e.g., we selectN = 25 or N = 50
or N = 100. First, we try the above Monte-Carlo method
with the original valuesm0(a, b). The original Monte-Carlo
simulation technique does not work well whenpt(f, s) ≈ 1
and the corresponding accuracy∼ 1/

√
N is much larger than

ε. In this case, we do the following:

• We try increasing values ofλ, e.g., λ = 2, 4, 8, etc.,
and apply the Monte-Carlo method to the corresponding
mistrust valuesm(λ)

0 (a, b) = λ · m0(a, b). We continue
this process until we reach a valueλ for whichm

(λ)
t (f, s)

is reliably different from 0 – i.e., for whichm(λ)
t (a, b) À

1/
√

N . We will denote this valueλ by λ1.
• Once we reach this valueλ1, we try several (m ≥ 2)

larger valuesλ1 < λ2 < . . . < λm. For each of these
values, we apply the Monte-Carlo method and get an
estimate form(λl)

t (f, s).
• Based on these estimates, we:

– compute the valuesal = ln(λl) and bl =
ln(m(λl)

t (f, s));
– apply the Least Squares Method to solve the system

of linear equations (8) with unknownsk andx, and
– estimatept(a, b) as1− exp(x).

Comment.We have implemented this algorithm in Java as well,
and we have checked that it works fine.

V. POSSIBLY DEPENDENTCASE:
FORMULATION OF THE PROBLEM

A. Motivation

In the above text, we assumed that all the trusts are
statistically independent. In reality, however, different trusts
may be dependent (correlated) – e.g., if these trusts come from
the assurances of the same third party.

In this more realistic situation, depending on the degree of
correlation, we may get different values of the resulting trust
pt(f, s). In critical systems, it is reasonable to guarantee the
trust only we are guaranteed thatpt(f, s) exceeds the threshold
p̃, i.e., if we know that all possible values ofpt(f, s) are greater
than or equal to the threshold.

To check this requirement, it is, of course, necessary and
sufficient to check the smallest possible valuep

t
(a, b) of

pt(f, s) exceeds the threshold:p
t
(f, s) ≥ p̃.

Thus, we must be able to compute this “worst-case” trust
probability p

t
(f, s).

B. Precise Formulation of the Problem

Similarly to the dependent case, we have a graph(A,E);
for each edge(a, b) ∈ E, we are given the probabilityp0(a, b).

We consider all possible probability distributionsp(E′) on
the set of all subgraphsE′ ⊆ E that are consistent with this
information, i.e., for which, for every(a, b) ∈ E, we have

∑

E′:(a,b)∈E′
p(E′) = p0(a, b).

For every two edgesf and s and for each such probability
distribution p(E′), we can definept(f, s) as the overall
probability that there is a path fromf to s:

pt(f, s) =
∑

E′:f
E′→s

p(E′).

We can now define the desired worst-case probabilityp
t
(f, s)

as the exact lower bound of all such valuespt(f, s):

p
t
(f, s) def=

inf{pt(f, s) | p is consistent with the given information}.

Our objective is to compute this valuep
t
(f, s).

C. This Problem Is Difficult to Solve

In the dependence case, we knew the exact distribution
p(E′), so we could use the Monte-Carlo simulation tech-
niques and estimate the desired valuept(f, s). In the more
general case when there is a possible dependence we may
have several different probability distributionsp(E′) consistent
with the given information. For each of these distributions,
we can still use the Monte-Carlo simulation and compute
the corresponding probabilitypt(f, s). However, there are, in
general, infinitely many such distributions; so, we cannot find
the smallest possible valuep

t
(f, s) of the probabilitypt(f, s)

by simply simulating all such distributions.

D. This Problem is a Part of a General Problem

How can we efficiently solve the problem of computing
p

t
(f, s)?
The difficulty of solving this problem comes from the fact

that instead of a single probability distribution, our knowledge
is consistent with several different probability distributions. In
other words, instead of a single distributionp, we have aclass
P of possible probability distributions, and our objective is to
find the smallest possible value of a statistical characteristic
(namely, the probabilitypt(f, s)) over all the distributions
from this class.

Problem of this type – and their potential applications –
have been described, in a general context, in the monographs
[18], [25]; for further developments, see, e.g., [1], [2], [3], [4],
[5], [8], [9], [10], [11], [13], [14], [15], [16], [17], [19], [20],
[22], [23], [26] and references therein.

In this paper, we will use ideas from these monographs and
papers. As a result, we arrive at the following algorithm.



VI. POSSIBLY DEPENDENTCASE: ALGORITHM AND

JUSTIFICATION

A. Preliminary Definitions

In a graph (A,E), we say that a sequenceγ =
(a0, a1, . . . , an) is a path from a0 to an if for every i, the
pair (ai, ai+1) is an edge.

The length `(γ) of the pathγ is defined as the sum of the
lengthsd0(ai, ai+1) of the corresponding edges:

`(γ) def=
n−1∑

i=0

d0(ai, ai+1).

B. Algorithm: Idea

The desired valuep
t
(f, s) is equal tomax(1− dt(f, s), 0),

wheredt(f, s) is the length of the shortest path fromf to s,
i.e.,

dt(f, s) def= min{`(γ) | γ is a path fromf to s}.
C. Algorithm: Implementation

There exists efficient algorithms for finding the length of
the shortest path; see, e.g., [6].

The efficient shortest path algorithm was originally pro-
posed by Dijkstra.

D. Algorithm: justification

1◦. Let us first show that for every distributionp(E′) that
is consistent with the given information, we havedt(f, s) ≤
dt(f, s), wheredt(f, s) def= 1− pt(f, s).

Let γ0 = (a0, a1, . . . , an) be the shortest path froma0 = f
to an = s. Then, by definition of the functiondt(f, s), we
have

dt(f, s) = d0(a0, a1) + . . . + d0(an−1, an), (9)

where(ai, ai+1) ∈ E for all i. If all the connections(ai, ai+1)
are in the random graphE′, then in E′, there exists a path
from f = a0 to an = s – namely, the pathγ0. So, if there
is no path froms to f , then at least one of the connections
(ai, ai+1) is not present in the random graph.

Let us denote:

• the event that there is no path fromf to s by Nt(f, s),
and

• the event that there is no direct connection fromai to
ai+1 by N0(ai, ai+1).

Then:

• the probability ofNt(f, s) is equal todt(f, s), while
• the probability of each eventN0(ai, ai+1) is equal to

d0(ai, ai+1).
In these terms, the above logical conclusion takes the following
form: if the eventNt(f, s) occurs, then at least one of the
eventsN0(ai, ai+1) must have occurred:

N(f, s) ⊃ (N0(a0, a1) ∨ . . . ∨N0(an−1, an)).

Therefore, the probabilitydt(f, s) of the eventNt(f, s) cannot
exceed the probability of the disjunction:

dt(f, s) ≤ P (N0(a0, a1) ∨ . . . ∨N0(an−1, an)).

It is well known that the probability of a disjunction

S1 ∨ . . . ∨ Sn

of arbitrary n eventsS1, . . . , Sn cannot exceed the sum of
the corresponding probabilitiesp(S1) + . . . + p(Sn). In our
case, this means thatdt(f, s) cannot exceed the sum of the
probabilitiesp(N0(a0, a1))+ . . .+ p(N0(an−1, an)), i.e., that
dt(f, s) ≤ d0(a0, a1) + . . . + d0(an−1, an).

Due to (9), this means thatdt(f, s) ≤ dt(f, s).

2◦. From dt(f, s) = 1 − pt(f, s) ≤ dt(f, s), it follow that
pt(f, s) ≥ 1 − dt(f, s). Sincept(f, s) is a probability, it is a
non-negative number, so

pt(f, s) ≥ max(1− dt(f, s), 0).

In other words, for every distributionp(E′) that is consistent
with the given information, the corresponding probability
pt(f, s) is larger than or equal tomax(1− dt(f, s), 0). Thus,
the infimump

t
(f, s) of all such valuespt(f, s) is also smaller

than or equal to this number, i.e.,

p
t
(f, s) ≥ max(1− dt(f, s), 0).

3◦. To complete the proof, we will produce an example
of a probability distributionp(E′) for which pt(f, s) ≤
max(1 − dt(f, s), 0). Then, for p

t
(f, s) ≤ pt(f, s), we will

get p
t
(f, s) ≤ max(1− dt(f, s), 0), hence

p
t
(f, s) = max(1− dt(f, s), 0).

To describe the corresponding distribution, we will use the
standard projectionπ of the real lineIR onto the interval[0, 1)
that assigns to each real numberx its fractional partπ(x) def=
x−bxc. This projection has a simple geometric interpretation:
we interpret the interval[0, 1) as a circle of circumference 1,
and we “wrap up” the real line around this circle.

It is easy to see that in this wrapping, the length of an
interval is preserved as long as it does not exceed 1. Thus,
for any intervalI = [x, y] ⊆ IR of length y − x ≤ 1, its
projectionπ(I) is either an interval, or a pair of intervals, and
the total length of the setπ(I) is equal to the lengthy− x of
the original interval.

The corresponding distribution is located on the graphs
E(ω) corresponding to different real numbersω ∈ [0, 1); these
graphs will be describe below. The probability of different
graphsE(ω) is described by the uniform distribution on the
interval [0, 1).

The graphsE(ω) are described as follows. For every two
nodesa and b for which (a, b) ∈ E, we consider the interval

I(a, b) def= [dt(f, a), dt(f, a)+d0(a, b)] of lengthd0(a, b). For



everyω ∈ [0, 1), the edge(a, b) belongs to the graphE(ω) if
and only if ω 6∈ π(I(a, b)).

3.1◦. Let us prove that thus defined distribution is indeed
consistent with the original information, i.e., with all the given
valuesp0(a, b).

Indeed, since the distribution onω is uniform, the probabil-
ity that ω ∈ π(I(a, b)) is equal to the total length of the set
π(I(a, b)). Due to the above property of the projection, this to-
tal length is equal to the length of the original intervalI(a, b),
i.e., to d0(a, b). Thus, the probability thatω ∈ π(I(a, b)) is
equal tod0(a, b). Therefore, the probability of the opposite
eventω 6∈ π(I(a, b)) is equal to1− d0(a, b). By definition of
d0(a, b), the value1− d0(a, b) is exactlyp0(a, b).

So, the probability that the edge(a, b) belongs to the graph
E(ω) is exactlyp0(a, b).

3.2◦. Let us prove that for every pathγ = (a0, . . . , an) that
starts ata0 = f , if all the edges(a0, a1), . . . , (an−1, an) from
this path belong to the graphE(ω), thenω ≥ dt(a0, an).

We will prove this statement by induction over the length
n of the path.

3.2.1◦. Induction base.For n = 0, we havedt(a0, a0) = 0,
so the desired inequality is clearly true.

3.2.2◦. Induction step.Let us assume that the desired property
is true for n, and we have added one more edge(an, an+1)
to the pathγ. Let us prove that the desired property holds for
the extended path.

If all n + 1 edges(a0, a1), . . . , (an−1, an), (an, an+1) be-
long to the graphE(ω), then the firstn edges also belong
to the graph. By the induction assumption, this means that
ω ≥ dt(f, an).

If dt(f, an) ≥ 1, then – sinceω is from the interval[0, 1)
– this inequality means that no suchω exists; so, the graph
E(ω) simply cannot contain all the edges from the pathγ. In
this case, the statement that we are trying to prove is trivially
true for an enlarged path – because false implies everything.

It is therefore sufficient to only consider the case when
dt(a0, an) < 1. In this case, by definition ofE(ω), the fact
that (an, an+1) ∈ E means that

ω 6∈ π([dt(f, an), dt(f, an) + d0(an, an+1)]).

Sincedt(f, an) < 1, the projectionpi(. . .) starts with the value
dt(f, an). Whether this projection is a single interval or two
intervals depends on whetherdt(f, an)+d0(an, an+1) < 1 or
not. Let us consider both possibilities:
• If dt(f, an) + d0(an, an+1) ≥ 1, then the projection

contains all the values fromdt(f, an) to 1. Sinceω ≥
dt(f, an) and ω cannot belong to this projection, we
conclude that no suchω is possible, so the desired
property is trivially true.

• If dt(f, an) + d0(an, an+1) < 1, then the projection
coincides with the original interval

[dt(f, an), dt(f, an) + d0(an, an+1)].

Since ω ≥ dt(f, an) and ω cannot belong to this
projection, we conclude that

ω ≥ dt(f, an) + d0(an, an+1).

Let us continue the analysis of the second case. By definition,
dt(f, an+1) is the length of the shortest path fromf to an+1.
In particular, when we add the edge(an, an+1) to the shortest
path fromf to an, we conclude that

dt(f, an+1) ≤ dt(f, an) + d0(an, an+1).

Hence, the inequalityω ≥ dt(f, an)+d0(an, an+1) implies
that ω ≥ dt(f, an+1).

In both cases, the induction step is proven, and so is the
result.

3.3◦. Due to Part 3.2 of this proof, if there is a path fromf
to s in a graphE(ω), thenω ≥ p

t
(f, s). Thus, the probability

pt(f, s) that there exists such a path does not exceed the
probability that a uniformly distributed numberω ∈ [0, 1) is
≥ p

t
(f, s). In other words,

pt(f, s) ≤ max(1− p
t
(f, s), 0).

The statement is proven, so the algorithm has been justified.
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