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Abstract—In traditional security systems, for each task, we C. What Needs to Be Done

either trust an agent or we don't. If we trust an agent, we : :
allow this agent full access to this particular task. This agent Itis desirable to keep track of trust probab!lltles, so that We.
can usually allow his trusted sub-agents the same access, etcShould only delegate to agents whose trust is above a certain

If a trust management system only uses “trust” and “no trust’ thresholdp.
options, then a person should trust everyone in this potentially
long chain. The problem is that trust is rarely a complete trust, [l. PROBABILISTIC APPROACH IDEA

becomes long, the probability of a security leak increases. It is e : ; I
desirable to keep track of trust probabilities, so that we should describing who directly trusts whom and with what probabiliy.

only delegate to agents whose trust is above a certain threshold. 1N€ objgctivg of the resulting Qualitative Trust Management
In this paper, we present efficient algorithms for handling such System is, given such rules and the two agefitand s, to
probabilities. determine the probability; ( f, s) with which the first agenf

should trust the second agent
|. PROBABILISTIC APPROACH ISNEEDED Such systems exist:

A. Traditional Approach to Trust Management: Brief Idea « a system in which, crudely speaking, all direct trusts are
assumed to be of the same probability is described in [7];

« a more complex system in which direct trusts may have
different probabilities is described in [12].

In traditional security systems (see, e.g., [23]), for each task,
we either trust an agent or we don't. If we trust an agent, we
allow this agent full access to this particular task. For example, ] i ) o )
| trust a bank, where | keep my money, to handle my account.n thl§ talk, we will desc_:rlbe new _e_ff_|C|ent algorithms for

This agent can usually allow his trusted sub-agents tR@MPUting the corresponding probabilitigs f, ).
same access, etc. For example, the bank can outsource some ||| | NDEPENDENTCASE: TOWARDS PRECISE
money operations to another company and trust this company FORMULATION OF THE PROBLEM
to handle its accounts. Since | trust the bank, and bank trusti
the company, | therefore have to trust the company that handles
my account. A. Input Data: Formal Description

We have a finite sefl; it elements are calledgents
For some pairs(a,b) of agents, we are given a number
The problem with the traditional approach is that trust igy(a,b) > 0 from the interval(0, 1]. This number is called a
rarely a complete trust. For example, | trust a bank, wherepfobability with which agenta directly trusts agen.
keep my money, to handle my account. | know that there have ) o
been cases when banks cheated on clients, but overall, hyDesired Output: Informal Description
trust is pretty high, say = 99.9% (i.e., distrust isd = 0.1%). Informally, our objective is to describe, for given two agents
The bank, in its turn, trusts a company in India — to whiclf ands, the probabilityp; (f, s) with which the agenyf trusts
this bank has outsourced to handle my account — with a certéi¢ agents.
high probability. That company trusts its own employees, ete. Graphs: A Natural Description of Input Data
If a trust management system only uses “trust” and “no ] ) o
trust” options, then | should trust everyone in this potentially Fom the mathematical viewpoint, it is reasonable to de-
long chain. However, when the chain becomes long, tR&"Pe this input as a directed gragh= (A, E), in which:
probability of a security leak increases, and the resultinge the agents are vertices, and

probability of distrust may get much higher than my original + an edge(a,b) € E connects those pairs of verticesand
0.1%. b for which we know the probability of direct trust.

et us formulate the problem in precise terms.

B. Traditional Approach to Trust Management: Main Problem



D. Independence: Reasonable Assumption Since the random variablg is uniformly distributed on the

All we know is the probabilities of direct trust. Since wdnterval [0,1], the probability that{ belongs to any interval
have no information on the dependence between differefit¥) IS €qual to the widthy —z of this interval. In particular,
direct trust links, it makes sense to assume that the corf€ Probability thats < po(a,b), i.e., that{ belongs to the

sponding events are independent; see, e.g., [26]. interval [0, po(a, b)), is equal topg(a,b).
Under this independence assumption, we can formulate th'S @ result of this process, we get different subgraphs
problem in precise terms. with prqbablllty tha.t' is descr'lbed by the formula (.1'). Thus,
the desired probability;(f, s) is equal to the probability that
E. Desired Output: Formal Description in thus generated random graj), there is a directed path

We have a grapli = (4, E), in which there is a probability oM f 10 s. _ _ N
po(a, b) assigned to every edge. We can now describe arandomyVe can thergfore estimate this prob.abn;iy(f,s) as the
subgraph(A4, E,) (E, C E) of the original graph as follows: frequency of this event. In other words:

. for every edge(a, b) € E, the probability that this edge * W€ Select a number of iteratial; ,
is present in&, is equal topo(a, b); « then, N times, we generate the corresponding random
« for two different edges, the events describing their pres- graph £, and check whether in this graph, there is a

ence isE, are statistically independent. path from f ands;
In other words, for each edda, b) € E: — there are known algorithms for efficiently checking
’ ' ' the existence of such a path; see, e.g., [6];

« this edge belongs t&, with probability py(a,b), and i C def
« this edge does not belong tB, with probability 1 — - we then estimatg, (/,s) as the ratiof = M/N, where
pola, b). M is the number of generated graphs in whijttand s

. - . . were connected.
Since edges are statistically independent, we can provide an _ )
explicit formula for the probabilityp(E’) that the resulting 't 'S Well known that afterV simulations, the frequency =
random graphE, coincides with a given subgraph’ C E: M/N estimates the desired probabilitywith the accuracy

p(E') = ~ \/M (see, e.g., [26]). Specifically, the standard

deviation of the differencg — p is equal to this value, and for
large NV, the distribution of this difference is approximately
( 11 Po(ayb)> : ( IT a —PO(aab))> : normal. Thus, e.g.:
(a,b)€E (a,b)¢E" « with certainty 95% (corresponding tedounds), we can
These valuep(E’) form a probability distribution on the set conclude that
of all subsetst’ C E. Based on this probability distribution, [p- (1—p)
we can then determine the desired probabilityf, s) as the lp—fl<2- N
probability that in the random grapET, there is a directed . with certainty 99.9% (corresponding tedounds), we
path fromf to s. If we denote the existence of such a path by can conclude that
f B s, we can then describe the desired probabilityf, s)

as follows: . ZM;
nho= Y oE) o p- <3208

« with certaintyl — 10~2 (corresponding to & bounds),

we can conclude that
IV. ALGORITHM FOR THEINDEPENDENTCASE

(1 —
A. Monte-Carlo Simulation: Main Idea lp—f1<6- MLNP)'

Since the edges are assumed to be statistically independgntyionte-Carlo Simulation: Problem
we can use the following Monte-Carlo simulation algorithm
to generate a random grai)..

We loop over all edge&s, b) € E, and for each edgé:, b),

’
E’:fE—>s

In many applications of trust, the desired level of trass
very high. For example, for a bank with a thousand employees
we keep it inE, with probability po(a,b). Specifically, for around the Country, trust probability 9_9.9% may sounql very
each edge, we do the following: reasonable, but it means that at any given momen_t qf time, at
least one of the employees is stealing money — this is clearly
« we run a standard random number generator that gengfy o acceptable situation. For problems related to national
ates numbers uniformly distributed on the interl@1];  gocyrity, the desired level of trust must be even higher.
as a result, we get a valiec [0, 1]; Since we want to check whether the actual probability
« then, we comparg with po(a, b): pe(f, s) is above the threshold level of trugt the estimation
— if £ <po(a,b), we keep the edgn,d) in E; error |p — f| of our estimatef of the probabilityp = p;(f, s)
— otherwise, we delete the edgé,b) from the must be much smaller than the difference- 5 between the
graphk,. ideal trust 1 and the desired threshgld- otherwise, even in



the ideal case wherf = 1, we would still not be able to py(a,b) of direct trust are close to 1 — or, equivalently, that

guarantee that the actual probabilityexceeds the threshold. the probabilitiesmg(a, b) def po(a,b) of direct mistrust
Thus, for trust problems, we must estimate the probabiliste very small.

pe(f,s) with the accuracy - (1 — p), wheree < 1 and1 — Since the method does not work well when the values
p < 1073, In other words, we would like to find the valuemo(a,b) are small, a reasonable idea is:

f for which, with a given certainty), we can guarantee that
p—fl<e-(1-p).

If the given certainty corresponds to thes bounds for the

« to compute the valuep?)(f,s) (or, equivalently,
mg’\)(f, s) defy p?)(ﬁ s)) for larger original mistrust

normal distribution, then, aftel iterations, we can guarantee  Valuesmg™ (a,b) “ X mo(a,), for several different
the accuracy values\ > 1 — and then
e Use extrapolation to reconstruct the desired value
|p_f‘§k p.(l_p). mgk)(fvs):mi(tl)(f»s)'
N How can we do this?
So, to guarantee thp — f| < - (1 —p), we must guarantee  The formula (2) describes(f, s) as a sum of termp(E’),
p-(1—p) ) and, according to the formula (1), each of these tep(is')
thatk -/ =—+—— <e-(1-p) ie., that is a polynomial in terms of the variablegy(a,b). Thus,
9 when we substitute the expressiomga,b) = 1 — mo(a,b)
N > K . M, into the formulas (1) and (2), we conclude that(f,s)
— e (1-p)p is a polynomial in terms ofng(a,b). Each polynomial can
Forp~1andl—p~1—p~ 107, we get be represented as a sum of 0-th order terms, linear terms,

guadratic terms, etc., i.e., as the following sum:
N >10% - (k*/<?) =~ 10*.
me(fys) =mo+mi+...+mp+..., (3)
For more accurate estimations, we need even larger number
of simulations. These simulations take time. How can wihere:

decrease the time that is needed for these simulations? « my is a constant;

. « my is the sum of all the terms that are lineariny(a, b);
Comment.Our problem can be reformulated in terms of | ms is the sum of all the terms that are quadratic in

propositional formulas. Indeed, to every edgeb) € F, we mo(a, b);
can assign a propositional variahlg, that is true if and only | a¢c.

if the nodesa and b are connected in the resulting rando
graph E,.. The condition that there is a path frofnto s can
be described as a propositional formulain terms of these
variablesc, ;. In these terms, the desired probability( f, s)
can be described as a probability that the formalas true

Trhe valuemg corresponds to the case when all the mistrust
levels are 0sio(a,b) = 0), so all the trusts are absolute:
po(a,b) = 1 —mg(a,b) = 1 —0 = 1. In this case, every
edge(a,b) from the original graphE is present inE’ with

. . . i probability 1. Thus, if in the original graph, we have a path
when each variable, ;, is true with probabilitypo(a, b) and from f to s, then, with probability 1, this same path leads

the corresponding random variables are independent. fr?m ftosin E, = E. (And if in B, there is no path from

Thus, our problem can be viewed as a particular case . . :
the general Stochastic Satisfiability problem SSAT: given Jgto s, then there is no such path in a subgrapheither, so

i . VRS (f.5) = 0 anyway.)
propositional fOT'T”.“'aF(% -y Zn) With 1 rgndom vgnables So, with the exception of the degenerate (and easy-to-detect)
and the probabilities, ..., p, of these variables being true, -
! o . - 'case whenf and s are not even originally connected, for
find the probability P that F' is true under the assumption
) X . mo(a,b) = 0, we havep,(a,b) = 1 — hencem(f,s) = 0.
that x; are independent random variables. It is known thg, . .
) . . ince in this caseny(f, s) = mo, we conclude thatny = 0.
in general, the problem of computing exactly is NP-hard, : .
: . Let d denote the ordinal number of the first non-zero term
and the problem of computing the small valiewith a good . ) ; )
. e in the formula (3); then, (3) takes the following form:
relative accuracy is difficult.
There have been many good algorithms for solving this me(f,8) =mag+ mgp1 + ... (4)
general problem (see, e.g., [14], [15]), but the problem remains
very difficult even for the case when all the probabilities "€ the valuesug(a,b) are very small, alli-th order terms
are equal to 0.5. Our case is different because in our case, #fe Much larger than all th@+1)-th order terms, i.exnq >
difficulty comes not from NP-hardness but from the fact that'd+1: and with a good a(g)curacmt(f, §) & Mma. _
the original probabilities are very small. It turns out that in If We use the valuesn;™ (a,b) = A - mo(a, b) instead of

this particular case, a simple efficient algorithm is possible th€ original valuesn(a, b), then we similarly get
(M) —_ M) (N
C. How to Solve the Problem: An Idea my(fos) =mg +mgly + . (5)

The main problem with the Monte-Carlo simulation come¥/hen we replaceng(a,b) by X - mg(a,b), then eachp-th
from the fact that in the trust problems, the probabilitiesrder term — the sum of the products pivaluesmg(a,b) —



is multiplied by AP, Thus, m( b=, my, hence:

N(f,8) = AL mg + AT+ (6)

When the value of\ is not too large, we still have
mM(f,s) ~ m$> hencem))(f,s) ~ A4 - mq. Since, as we
have mentlonedmd ~ my(f,s), we thus conclude that:

V(f,s) = AL my(f, 5).

This formula enables us to perform the desired extrapolati

Indeed, if we know the valuerszt (f, s) corresponding to
different factorsAy, ..., A\, (m > 2), then, from the formula
(7), we conclude that

m (f,8) = AL ma(f, 9).

Turning to logarithms of both sides, we conclude that

'md+1+...

d-a;+x = b, (8)
where = % In(mi(f.s), @@ < In(\) and b X
m(m™ (£, ).

We can use the Least Square Method to estiragé@d .
Once we knowr = In(m.(f, s)), we can now reconstruct the
desired valuen,(f, s) asexp(xz) andp:(f,s) =1 —mq(f,s)
as1 — exp(x). Thus, we arrive at the following algorithm.

D. New Algorithm: Description and Implementation

Suppose that we are given the graph E), two nodesf
and s, and the valuegy(a,b) — or, equivalently, the values

V. CASEWHEN TRUSTSDEPEND
ON INDEPENDENTFACTORS

A. Formulation of the Problem

The same approach can be applied when trusts are, in
general, not independent, but they depend on several common
factors which are independent random variables. For example,
for computer connections, our trust in a connection feota b
may come from third parties certifying that these connections

fye trustworthy. In this case, our trust in these connections

comes from our trust in these third parties.

If the same third party certifies two different connections
(a,b) and(d’,b’), then, of course, the variables; andc, 4
representing these connections a@ independent because
they depend on the same third party. We can, however, as-
sume that the third parties themselves are indeed independent
entities.

There are many different ways how our trust in a connection
depends on the their parties:

o In some cases, there is exactly one third party that
certifies the connection. In this case, our trust in this
connection is exactly equal to our trust in this third party.
It is also possible that several third parties certifies the
connection. In this case, we should trust this connection
if at least one of these certifiers is trustworthy: either the
first one, or the second one, etc.

It may also be that our trust is based on a joint statement
by two third parties, in which case, to trust the connec-
tion, we must trust both third parties.

mo(a,b) = 1—po(a,b). Our objective is to estimate the valuen general, we can have more general propositional formulas

p+(f,s) with a given accuracy.

To solve this problem, we do the following. We select
reasonable valueVv
Monte-Carlo approach; e.g., we selgét= 25 or N = 50
or N
with the original valuesny(a,b). The original Monte-Carlo
simulation technique does not work well whep(f,s) ~ 1
and the corresponding accurasyl/v/N is much larger than
e. In this case, we do the following:

o We try increasing values ok, e.g., A\ = 2,4,8, etc.,,

and apply the Monte-Carlo method to the correspondiﬁ%

mistrust valuesm((ﬁ) (a,b) = XA - mg(a,b). We continue
this process until we reach a validor which mi/\)(f, s)
is reliably different from 0 — i.e., for whiclm?) (a,b) >
1/v/N. We will denote this value\ by \;.

Once we reach this valug,, we try several fp > 2)
larger values\; < Ao < ... < Ap,. For each of these

values, we apply the Monte-Carlo method and get an

estimate formt ( f,5).
« Based on these estimates, we:

— compute the valuesy;

In(m{™(f, 5));

In(\;) and b

relating our trust in the connection with our trust in these
gifferent third parties.

— the number of iterations used in the In precise terms, in addition to the graph, £'), we have a

finite list of “third parties”t,...,t,. For each potential third

)

= 100. First, we try the above Monte-Carlo methodParty t;, we know the probability; ~ 1 with which we trust

this party; based on these probabilitigs we can compute
the probabilitiesm; = 1 — p; with which we mistrust the
corresponding parties.

For each connectiofia,b) € E, we have a propositional
formula F, ,(v1, . .., v,) that describes our trust in this con-
ction as a function of the Boolean variablgsdescribing
our trust in third partieg;. For example:

if a connection was certified by exactly one third party
t3, thenFa_’b(’Ul, Ce ,’Un) = V3,

« if each of the two third partieg; and t5 certifies this
connection, therF, ,(v1,...,v,) = v3 V vs;

if the connection is certified by a joint declaration of third
partiest, andtg, thenF, y(v1,...,v,) = v4 & ve.

B. Monte-Carlo Approach

Since the third parties are independent, we can use the
Monte-Carlo technique to estimate the desired probability
p:(f,s). Specifically, on each iteration, we do the following:

— apply the Least Squares Method to solve the system, First, for each third partyt;, we set the trusty; in

of linear equations (8) with unknowrisand z, and
— estimatep;(a,b) as1 — exp(x).

this party to be true with probability; and false with
probability 1 — p;.



« Then, for each connectiofu,b) € E, we place this B. Precise Formulation of the Problem

connection in the random graph. if the correspoqdiqg Similarly to the dependent case, we have a graphE):
formula F, ;(v1, . o Up) become true after substltutlngfOr each edgéa, b) € E, we are given the probability, (a, b).
the valuesy; obtained on the f|rst' stage. , We consider all possible probability distributiop&§E’) on

« Finally, we check whether there is a path frgftto s in the set of all subgraphg’ C F that are consistent with this

the resulting graple,. information, i.e., for which, for everya, b) € E, we have
We then estimate the desired probability f, s) as the ratio

M/N, whereN is the overall number of iteration, and is Z p(E") = po(a,b).
the number of iterations in which there was a path frérto E’:(a,b)EE’

s in the corresponding graph;. For every two edgeg and s and for each such probability

C. Problem distribution p(E’), we can definep.(f,s) as the overall

N ] ] probability that there is a path frorfi to s:
When the probability:(f, s) is small, we will need a large

number of iterations to get a good estimatepgff, s). pelfis)= > p(E).
’. E/
D. Solution Brf=s
To decrease the number of iterations, we can use the saf@ can now define the desired worst-case probahility’, s)
idea as above: as the exact lower bound of all such valygsf, s):

« We try increasing values ok, e.g., A = 2,4,8, etc., (f,5) def
and apply the Monte-Carlo method to the corresponding B\

mistrust valuesn{" = X - m;. We continue this process inf{p,(,s)|p is consistent with the given informatiyn
until we reach a value for which m?‘)(f, s) is reliably

different from 0 — i.e., for Whichng)\)(a,b) > 1/V/N. Our objective is to compute this valye(f, s).

We will denote this value\ by A;. . -
« Once we reach this valug;, we try several fp > 2) C. This Problem s Difficult to Solve

larger values\; < X\s < ... < \,,. For each of these In the dependence case, we knew the exact distribution
values, we apply the Monte-Carlo method and get atE’), so we could use the Monte-Carlo simulation techniques

estimate form{™ (f, s). and estimate the desired valpg(f, s). In the more general
. Based on these estimates, we: case when there is a possible dependence, we may have
_ compute the valuessy — In(\) and b = several different probability distributiong E’) consistent with

the given information. For each of these distributions, we

In(m{™(f, 5)); / of th
_ apply the Least Squares Method to solve the syste%awm still use the Monte-Carlo simulation and compute the

of linear equations (8) with unknowrisand z, and correspond!n_g probabilityp, (f, ‘.9)' .HOWe"_e“ there are, n
. general, infinitely many such distributions; so, we cannot find
— estimatep;(a,b) as1 — exp(x).

the smallest possible valqg(f, s) of the probabilityp:(f, s)
VI. POSSIBLY DEPENDENTCASE: by simply simulating all such distributions.

FORMULATION OF THE PROBLEM . .
ORMU ONO © D. This Problem is a Part of a General Problem

A. Motivation How can we efficiently solve the problem of computing

In the above text, we assumed that either all the trusts ar¢f, s)?
statistically independent or at least that the trusts depend orThe difficulty of solving this problem comes from the fact
statistically independent factors. In reality, however, differemiat instead of a single probability distribution, our knowledge
trusts may be dependent (correlated) — e.g., if these trusts cagmeonsistent with several different probability distributions. In
from the assurances of the same third party. other words, instead of a single distributipnwe have alass

In this more realistic situation, depending on the degree ®f of possible probability distributions, and our objective is to
correlation, we may get different values of the resulting trufind the smallest possible value of a statistical characteristic
pe(f, s). In critical systems, it is reasonable to guarantee tifgamely, the probabilityp;(f,s)) over all the distributions
trust only we are guaranteed that f, s) exceeds the thresholdfrom this class.
p, i.e., if we know that all possible values pf( f, s) are greater ~ Problem of this type — and their potential applications —
than or equal to the threshold. have been described, in a general context, in the monographs
To check this requirement, it is, of course, necessary afftD], [27]; for further developments, see, e.g., [1], [2], [3], [4],
sufficient to check the smallest possible valpda,b) of [5], [8], [9], [10], [11], [13], [16], [17], [18], [19], [21], [22],
pe(f, s) exceeds the thresholg; (f,s) > p. [24], [25], [28] and references therein.

Thus, we must be able to compute this “worst-case” trustIn this paper, we will use ideas from these monographs and
probability p (f, s). papers. As a result, we arrive at the following algorithm.



VII. PossiBLY DEPENDENTCASE: Therefore, the probability; (f, s) of the eventV,(f, s) cannot

ALGORITHM AND JUSTIFICATION exceed the probability of the disjunction:
A. Preliminary Definitions di(f,s) < P(No(ag,a1) V...V No(an—1,a)).
In a graph (4, F), we say that a sequence = 5 vell known that the probability of a disjunction
(ag,a1,...,a,) is apath from ag to a, if for every i, the

pair (a;,a;+1) is an edge. SiV...VS,
Thelength ¢(+) of the pathy is defined as the sum of the

lengthsdo (as, a:11) of the corresponding edges: of arbitrary n events Sy, ..., S, cannot exceed the sum of

the corresponding probabilitig(S1) + ... + p(Sy). In our
case, this means tha(f,s) cannot exceed the sum of the

Uy) & Z do(ai, aiv1). probabilitiesp(Noy(ag, a1)) + . .. + p(No(an_1,ay)), i.e., that
i di(f,s) < do(ao7_a1) +...+do(an—1,an).
B. Algorithm: Idea Due to (9), this means thak (f, s) < d,(f, s).

The desired valug (f, s) is equal tomax(1 —d,(f,s),0), 2°. From di(f,s) = 1 —pe(f,s) < d,(f,s), it follow that
whered, (f, s) is the Iength of the shortest path frofto s, p(f,s) > 1 —d,(f,s). Sincep,(f,s) is a probability, it is a
ie., non-negative number, so

d,(f,s) % min{¢(y) | is a path fromf to s}. pi(f,s) =2 max(1 —dy(f, s),0).

In other words, for every distribution( E’) that is consistent

with the given information, the correspondmg probability
There exists efficient algorithms for finding the length of, (¢ ) is larger than or equal tmax(1 — d,(f, s),0). Thus,

the shortest path; see, e.g., [6]. the |nf|mump (f,s) of all such valueg;(f, s) is also smaller
The efficient shortest path algorithm was originally proghan or equal to this number, i.e.,

posed by Dijkstra.
Bt(f’ S) 2 max(l - dt(fa 5)70)'

C. Algorithm: Implementation

D. Algorithm: justification

1°. Let us first show that for every distributiop(E’) that . _

is consistent with the given information, we havgf, s) < 3f- To Cgmtf_:_ete dt_he_bpr(_mfv ENe/)V\?” pf(r)](_jurfe ?}1 ?Xﬁmme

d whered def | ' of a probability distributionp(E’) for which p.(f,s) <

,t(fa 3) where t(f75) pt(fa 3) max(l _dt(fv 8),0) Then, for]zt(f7s) < pt(f,s)y we will
Let o = (ag,a1,...,a,) be the shortest path fromy = f getgt(f, s) <max(1 —d,(f,s),0), hence

to a, = s. Then, by definition of the functiow,(f,s), we
have ' p,(f,s) = max(1l — dy(f,s),0).

dy(f,s) =do(ag,a1) + ... + do(an—1,an), (9)
. ) To describe the corresponding distribution, we will use the
where(a;, a;+1) € E for all i. If all the connectionga;, ai+1)  standard projectiom of the real linelR onto the interval0, 1)
are in the random grapl’, then in E’, there exists a path hat . t h real numbeits fractional partr (z def
from f = ag t0 a,, = s — namely, the pathy. So, if there that assigns to eac P ) =
is no path froms to f, then at least one of the connectlons — L. This projection has a simple geometric interpretation:
we interpret the interval, 1) as a circle of circumference 1,

(ai, ai41) is not Present in the random graph. and we “wrap up” the real line around this circle.

Let us denote: It is easy to see that in this wrapping, the length of an

« the event that there is no path frofnto s by Ni(f,s), interval is preserved as long as it does not exceed 1. Thus,

and _ _ _ for any intervall = [z,y] C IR of lengthy — = < 1, its
« the event that there is no direct connection fremto projectionr (1) is either an interval, or a pair of intervals, and
ai+1 by No(a;, aiy1). the total length of the set(I) is equal to the lengtly — z: of
Then: the original interval.
« the probability of N, (£, s) is equal tod,(f, s), while The corresponding distribution is located on the graphs

« the probability of each eveniNy(a;,a;.1) is equal to E(w) corresponding to different real numbers= [0, 1); these
do(a;, ait1). graphs will be describe below. The probability of different

In these terms, the above logical conclusion takes the followif] raphsE( ) is described by the uniform distribution on the

. imerval [0,1).
form: if th N, h I f th :
orm: if the eventNy(f, s) occurs, then at least one of t ¢ The graphsE(w) are described as follows. For every two
eventsNy(a;, a;+1) must have occurred:

nodesa andb for which (a,b) € E, we consider the interval
Ni(f,s) D (No(ag,a1) V...V No(an_1,an)). I(a,b) € [d,(f, a),d,(f,a)+ do(a,b)] of lengthdy (a, b). For



everyw € [0, 1), the edg€(a, b) belongs to the grapf(w) if Since w > d,(f,a,) and w cannot belong to this
and only ifw & 7(I(a,b)). projection, we conclude that

3.1°. Let us prove that thus defined distribution is indeed w>d,(f,an) + do(an, ani1)-

consistent with the original information, i.e., with all the given ) ) _
valuespo(a, b). Let us continue the analysis of the second case. By definition,

di(f,an41) is the length of the shortest path frofnto a,,41.
Indeed, since the distribution anis uniform, the probabil- |n particular, when we add the edge,, a,.1) to the shortest
ity that w € 7(I(a,b)) is equal to the total length of the setpath from f to a.,,, we conclude that
m(I(a,b)). Due to the above property of the projection, this to-
tal length is equal to the length of the original intervé, b), dy(fs ans1) < dy(f, an) + doan, ansr)-
i.e., todo(a,b). Thus, the probability that € n(I(a,b)) is Hence, the inequality > d,(f, an)+do(an, ani1) implies
equal tody(a,b). Therefore, the probability of the oppositehatw > d,(f, a1 ).
eventw ¢ m(I(a,b)) is equal tol — dy(a, b). By definition of |5 poth cases, the induction step is proven, and so is the
do(a,b), the valuel — dy(a, b) is exactlypg(a,b). result.
So, the probability that the edde, b) belongs to the graph

E(w) is exactlyp(a, b). 3.3°. Due to Part 3.2 of this proof, if there is a path frofm

3 to s in a graphE(w), thenw > p (f, s). Thus, the probability
3.2°. Let us prove that for every path = (ao,...,an) that p, (r 5) that there exists such a path does not exceed the
starts alay = f, if all the edgegag, a1), .. ., (an—1,an) from  propapility that a uniformly distributed number € [0, 1) is
this path belong to the grapf(w), thenw > d,(ao, ay). > p (f,s). In other words

— 7t b . )

We will prove this statement by induction over the length pe(f, s) < max(1 _Bt(f’ 5),0).
n of the path.

3.2.1°. Induction baseFor n = 0, we haved,(ag, ap) = 0,
so the desired inequality is clearly true. The statement is proven, so the algorithm has been justified.

3.2.2°. Induction stepLet us assume that the desired property VIIl. A CKNOWLEDGMENTS
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