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ABSTRACT
In paleontology, we know that in each area, the age of a fossil
monotonically increases with depth. We have several obser-
vations of age and depth – both known with interval uncer-
tainty – and we would like to find, for each possible depth,
the interval of the possible values of the corresponding age.
A similar problem of bounding an intervally defined function
under monotonicity constraint occurs in many other appli-
cation areas. In this paper, we provide an efficient algorithm
for solving this problem.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering—Earth and atmospheric sciences ; F.2.1 [Theory
of Computation]: Analysis of Algorithms and Problem
Complexity—Numerical Algorithms and Problems

General Terms
Algorithms, Theory

1. CASE STUDY: PALEONTOLOGY

1.1 Paleontology is important
Crudely speaking, paleontology is a study of fossils. Such a
study is extremely important for evolutionary biology, and
it is also very important for other geological sciences: a fos-
sil found in a geological stratum provides additional useful
information for dating that stratum. A fossil also often gives
us a good understanding of what was happening at this lo-
cation at the corresponding time: for example, a coral is an
unambiguous indication of a warm ocean.

1.2 The notion of a stratigraphic map
One way of determining the age of a fossil is based on the
fact that as we go deeper and deeper, we find older and older
fossils. So, in principle, we can use the depth x at which the
fossil has been found to determine its age y.

The exact dependence between the depth x and the age y
– called a stratigraphic map – is different for different loca-
tions, because it depends on the geological history of this
location. At some past epochs, sediments were forming at
a higher accumulation rate; for such epochs, the depth in-
creases with time. At other epochs, the rate of accumulation
was much slower, so we may have fossils of different ages at
approximately the same depth.

1.3 Main ideas behind constructing a strati-
graphic map

How is the stratigraphic map constructed now? In every
area, we have several fossils whose age y has been deter-
mined. For each fossil type, we may have several fossils of
this type, with different age. In this case, we select one of
these fossils:

• in field studies, we select the oldest fossil as the most
reliable, because the deepest fossils are the least dis-
turbed by the consequent geological processes;

• in the wells results, we select the youngest fossil as the
most reliable, because the fossils that are the closest
to the surface are the least disturbed by drilling.

In both cases, for the selected fossil, we know the depth
xi at which it was found, and we know the estimated age
yi. Based on the points (xi, yi), we must find the desired
dependence y = f(x).

Since deeper layers are older, we should have a monotonic
(increasing) dependence y = f(x) for which yi = f(xi). So,
ideally, we should have a monotonic function that passes
through all the points.



1.4 The practical construction of a strati-
graphic map is not that easy

The conclusion about monotonicity is based on the ideal-
ized assumption that yi is the age of the oldest (for wells,
youngest) of many fossils of this type. For some types, we
do have many fossils, so the oldest of these fossils represents
a reasonable size sample and is, therefore, highly reliable.
For other types of fossils, however, we may have only a few
sample fossils of this type in a given area; for such types, the
corresponding age yi and depth xi are not very accurate.

As a result of this inaccuracy, in practice, it is usually im-
possible to have a monotonic dependence that passes exactly
through all the points (xi, yi): we may have xi < xj while
yi > yj .

1.5 Traditional approach
The traditional paleontological approach to this problem is,
crudely speaking, as follows (see, e.g., [7]). Since few-sample
data points do not fit to a monotonic curve, we select a
threshold n0 and only consider points (xi, yi) which came
from samples of size 6= n0.

Ideally, we should select the smallest possible n0 for which
the values can still fit into a monotonic curve, i.e., for which
xi < xj always implies yi ≤ yj .

1.6 Room for improvement
In the traditional approach, after setting up a threshold, we:

• ignore all the points (xi, yi) with lower accuracy, and

• consider all the points with higher accuracy as exact,
ignoring the fact that these points are not absolutely
accurate.

In both cases, it is desirable to use the ignored information
instead of simply ignoring it:

• if we take into consideration the inaccuracy of the data
(xi, yi) based on which we have built the stratigraphic
map, then we would be able to determine the accuracy
of this map;

• if, in addition to the data points that fit into a mono-
tonic curve, we take into consideration less accurate
data points as well, we will be hopefully able to con-
struct a more accurate stratigraphic map.

1.7 Interval uncertainty
How can we describe the data accuracy? Inaccuracy means
that, e.g., for the age, the actual (unknown) age yi of all
the (yet uncovered) fossils of the given type is, in general,
somewhat different from the estimate oldest age ỹi.

Ideally, we should know the set of possible values of the

estimation error ∆yi
def
= ỹi − yi, and we should know the

probabilities of different values from this set. However, to
be able to determine these probabilities, we need to have a
large number of data points, and when we have a lot of data

points, the estimate is pretty accurate anyway. Therefore, in
the important cases in which we want to know the accuracy,
we cannot experimentally determine these probabilities.

At best, we can find a confidence interval based on the
known properties of the extreme-value statistics (see, e.g.,
[8, 23]), or just elicit these intervals from the experts.

So, if we take uncertainty into consideration, then, for each
fossil type i, instead of the exact values xi and yi, we know
the intervals xi = [xi, xi] and yi = [y

i
, yi] that contain these

unknown values.

1.8 Towards the precise formulation of the
problem

Based on all the fossils found in a given area, we know the
n boxes xi × yi corresponding to different types of fossils.
We know that the monotonic dependence y = f(x) is such
that yi = f(xi) for some (xi, yi) ∈ xi × yi.

Our objective is to find, for every depth x, the bounds of
the possible values of age y = f(x) for all the dependencies
that are consistent with the given data. This is the problem
that we will solve in this paper.

1.9 Other practical applications of the result-
ing mathematical problem

Before we find the bounds on f(x), we must first check that
our interval bounds are consistent, i.e., that there exists a
monotonic function that is consistent with all the boxes.
This subproblem has many applications outside paleontol-
ogy.

Indeed, in many problems in science and engineering, we
know that a physical quantity y depends on the physical
quantity x, i.e., y = f(x) for some function f(x), and we
want to check whether this dependence is monotonic.

In spectral analysis, chemical species are identified by locat-
ing local maxima of the spectra; see, e.g., [18, 19]. Thus,
to identify the chemical species, we must identify intervals
between local extrema, i.e., intervals of monotonicity.

In radioastronomy, sources of celestial radio emission and
their subcomponents are identified by locating local max-
ima of the measured brightness of the radio sky. In other
words, we are interested in the local maxima of the bright-
ness distribution, i.e., of the function y(x) that describes
how the intensity y of the signal depends on the position
x of the point from which we receive this signal. Thus, in
radioastronomy, we must also identify the intervals of mono-
tonicity.

Elementary particles are identified by locating local maxima
of the experimental curves that describe (crudely speaking)
the scattering intensity y as a function of energy x. Thus, in
elementary particle physics, finding intervals of monotonic-
ity is also important.

In 1-D landscape analysis, e.g., different mountain slopes are
different monotonicity intervals; see, e.g., [1, 2, 4].



In financial analysis, it is also important to find intervals of
monotonicity because they correspond to growth or decline
periods; see, e.g., [6]

In clustering, different 1-D clusters correspond to a multi-
modal distribution, so clusters can be naturally described
as combinations of monotonicity intervals separating local
minima of the probability density function; see, e.g., [12,
15, 16].

Local maxima and minima are also used in the methods that
accelerate the convergence of the measurement result to the
real value of a physical variable, and thus allow the user to
estimate this value without waiting for the oscillations to
stop [14]. Thus, to accelerate convergence, we must also be
able to efficiently find intervals of monotonicity.

Algorithms for solving this (sub)problem have been previ-
ously described in [13, 20, 21, 22].

1.10 Additional complexity
The additional complexity comes from the fact that, as we
have mentioned, it is possible to have several different ages
for the same depth. In mathematical terms, this means
that the dependence y = f(x) is not necessarily a mono-
tonic function, it may be a limit of the graphs of monotonic
functions in the sense of Hausdorff metric (see, e.g., [17]).

We are now ready for the exact definitions and for the for-
mulation of the result.

2. PRECISE FORMULATION OF THE
PROBLEM AND THE MAIN RESULT

Definition 1. By a monotonic dependence f , we mean the
graph of a continuous mapping m(s) = (m1(s), m2(s)) from
the real line IR to the plane IR2 for which t < s implies that
m1(t) ≤ m1(s) and m2(t) ≤ m2(s).

It is easy to see that if the graph f is the graph of a func-
tion, then this definition is equivalent to this function being
(non-strictly) monotonically increasing. Not every mono-
tonic dependence is a function: e.g., a “step-function” for
which y = 0 for x < 0, y = 1 for x = 1, and y ∈ [0, 1] for
x = 0, is a monotonic dependence but not a function.

Definition 2. By a box, we mean a Cartesian product of
two intervals. We say that a monotonic dependence f is
consistent with a box x× y if the graph f contains a point
from this box, i.e., if f ∩ (x× y) 6= ∅.

Definition 3. By data d, we mean a finite collection of
boxes. We say that a monotonic dependence f is consistent
with the data d – and denote it Con(f, d) – if f is consistent
with each of the corresponding boxes. We say that the data
d is consistent if there exists a monotonic dependence f that
is consistent with this data.

Theorem 1. The data d is consistent if and only if for
every i and j, xi < xj implies y

i
≤ yj.

For consistent data, our objective is, given the data [xi, xi]×
[y

i
, yi] (1 ≤ i ≤ n) and a real number x, to find the exact

lower and upper bounds of the corresponding y over all the
monotonic dependences that are consistent with this data:

f(x)
def
= inf{y | ∃f ((x, y) ∈ f & Con(f, d))}. (1)

f(x)
def
= inf{y | ∃f ((x, y) ∈ f & Con(f, d))}. (2)

Theorem 2.

f(x) = max
i:xi<x

y
i
; f(x) = min

j:x<xj

yj . (3)

Proof. Let us denote

F (x)
def
= max

i:xi<x
y

i
; F (x)

def
= min

j:x<xj

yj . (4)

Let us first show that for every monotonic dependence f
that is consistent with the given data d and for every y for
which (x, y) ∈ f , the value y is located between F (x) and
F (x).

Indeed, for every i, since f is consistent with d, there exists
a pair (xi, yi) ∈ f ∩ (xi×yi). For this pair, xi ≤ xi ≤ xi, so
xi < x implies that xi < x. Since (x, y) ∈ f and (xi, yi) ∈
f , by definition of a monotonic dependence, the inequality
xi < x implies that yi ≤ y. Since y

i
≤ yi, we thus conclude

that y ≥ y
i
.

Since y is larger than or equal to y
i
for all i for which xi < x,

it is therefore larger than or equal to the largest of such y
i
,

i.e., that y ≥ F (x). We can similarly prove that y ≤ F (x).

If xi < xj , then, for any x from the open interval (xi, xj),
we have xi < x < xj . We have proven that for every mono-
tonic dependence that is consistent with the data d, we have
y

i
≤ y ≤ yj . So, if the data d is consistent, then xi < xj

indeed implies y
i
≤ yj – this is exactly the condition from

Theorem 1.

Vice versa, if this condition is satisfied, then we always have
F (x) ≤ F (x).

To complete the proof of Theorems 1 and 2, it is therefore
sufficient to prove that both piece-wise constant monotonic
functions F (x) and F (x), when extended to step-wise mono-
tonic continuous dependences, are consistent with the data
d, i.e., that for every k, each of these functions is consistent
with the k-th box xk ×yk. Without losing generality, let us
prove it for F (x).

Indeed, for a piecewise-constant step dependence like F (x),
at each point x, the range of possible values of y goes from

F (x−0)
def
= lim

ε>0,ε→0
F (x−ε) to F (x+0)

def
= lim

ε>0,ε→0
F (x+ε).

Due to monotonicity, when x goes from xk to xk, possible
values of y go from F (xk−0) to F (xk +0). (Since the graph
F is a graph of a continuous mapping from the real line, it is
connected, so all the values from the corresponding intervals
are possible.) Therefore, to prove that this graph intersects
with the box, it is sufficient to prove that one of the possible



values of y also belongs to the y-interval [y
k
, yk], i.e., that

[F (xk − 0), F (xk + 0)] ∩ [y
k
, yk] 6= ∅. (5)

The formula for the intersection of the two intervals is well
known: [a, b] ∩ [a′, b′] = [max(a, a′), min(b, b′)]. Thus, the
two intervals have a non-empty intersection if and only if
max(a, a′) ≤ min(b.b′), i.e., if and only if a ≤ b′ and a′ ≤ b.
In our case, we must prove that F (xk − 0) ≤ yk and y

k
≤

F (xk + 0).

By definition of F (x) (formula (4), we have:

F (xk + ε) = max
i:xi<xk+ε

y
i
. (6)

Since ε > 0, the inequality xi < xk + ε holds for i = k.
Thus, F (xk + ε) is the largest of several values including y

k
.

Hence, F (xk + ε) ≥ y
k
, and in the limit ε → 0, we get the

desired inequality F (xk + 0) ≥ y
k
.

Similarly,

F (xk − ε) = max
i:xi<xk−ε

y
i
. (7)

The inequality xi < xk−ε implies that xi < xk. We already
know that this new inequality, in its turn, implies that y

i
≤

yk. Since all the maximized values y
i

do not exceed yk, the

largest of these values, i.e., F (xk − ε), also cannot exceed
yk. In the limit, we get F (xk − 0) ≤ yk.

Both inequalities have been proven, and so are Theorems 1
and 2.

3. RESULTING EFFECTIVE
ALGORITHMS

3.1 Algorithms for checking consistency
For checking consistency, Theorem 1 leads to exactly the
same condition as emerged, for a slightly different problem,
in [20]. We can therefore use algorithms from [20] to check
consistency of our data as well.

If we simply check the condition from Theorem 1 for all
i = 1, . . . , n and all j = 1, . . . , n, then checking this condi-
tion would require O(n2) comparisons – i.e., O(n2) compu-
tational steps.

We can check this condition faster if we use the fact that this
condition is equivalent to the following auxiliary property:

For every i, we have y
i
≤ min

j:xj≥xi

yj . (8)

To check this condition, we can perform the following four-
stage algorithm:

• First, we sort the values xi into an increasing sequence
– this requires O(n · log(n)) steps. We correspondingly
re-order the values xi, y

i
, and yi. After this stage, we

can assume that the values xi are sorted:

x1 ≤ x2 ≤ . . . ≤ xn.

• Then, for every i from 1 to n, we compute the value

Mi
def
= min(yn, yn−1, . . . , yi). Here, Mn = yn. If we

already know Mi, then we can compute the previ-
ous value Mi−1 by using a single operation Mi−1 =
min(Mi, yi−1). Thus, computing all n values requires
n computational steps.

• For each i from 1 to n, we can now use binary search
(see, e.g., [5]) to find the integer m(i) for which
xm(i)−1 < xi ≤ xm(i) (if such a value exists). Each bi-

nary search requires log(n) computational steps; thus,
n such searches require O(n · log(n)) steps.

• Finally, for every i from 1 to n for which m(i) exists,
we check whether y

i
≤ Mm(i):

– if this inequality holds for all such i, then the mea-
surement data is consistent with monotonicity;

– otherwise, the function f(x) cannot be mono-
tonic.

Each checking requires one comparison, so to check
that this inequality holds for all i from 1 to n, we need
n comparisons.

Overall, we thus need O(n · log(n)) + O(n · log(n)) + O(n) +
O(n) = O(n · log(n)) steps.

For large n, we may want to further speed up computations
if we have several processors working in parallel. All fours
stages of the above algorithm can be parallelized by known
techniques. In particular, Stage 1 is a particular case of a
general prefix-sum problem, in which we must compute the
values an, an∗an−1, an∗an−1∗an−2, . . . , for some associative
operation ∗ (in our case, ∗ = min).

If we have a potentially unlimited number of processors, then
we can do the following (see, e.g., [10], for the information
on how to parallelize the corresponding stages):

• on Stage 1, we can sort the values xi in time O(log(n));

• on Stage 2, we can compute the values Mi (i.e., solve
the prefix-sum problem) in time O(log(n));

• on Stage 3, we can use n processors, each of which com-
pute the corresponding value m(i) in time O(log(n));

• finally, on Stage 4, we can use n processors, each
of which checks the corresponding inequality in time
O(1).

As a result, we can check monotonicity in time

O(log(n)) + O(log(n)) + O(log(n)) + O(1) = O(log(n)).

If we have p < n processors, then we can:

• on Stage 1, sort n values in time
O((n · log(n))/p + log(n)) [10];

• on Stage 2, compute the values Mi in time
O(n/p + log(p)) [3];

• on Stage 3, we subdivide n indices i between p proces-
sors, so each processor computes m(i) for n/p indices
i; computing each index requires log(n) time, so the
overall time is (n/p) · log(n) = O((n · log(n))/p);



• finally, on Stage 4, each of p processors checks the de-
sired inequality for its n/p indices; this requires time
O(n/p).

Overall, we thus need time O

(
n · log(n)

p
+ log(p)

)
.

3.2 Algorithms for constructing lower and up-
per bounds

The function f(x) as described by the formula (3) is piece-
wise constant; when x increases, the value of f(x) can only
change if when x = xi for some i.

Thus, the compute the corresponding values of f(x), it is
sufficient to sort the upper endpoints xi into the increasing
sequence x1 ≤ x2 ≤ . . . ≤ xn, and then to compute the

corresponding values mi
def
= max(y

1
, . . . , y

i
).

Similarly to the previous algorithm, sorting requires
O(n · log(n)) steps and computing mi requires n steps, so
overall, we need O(n · log(n)) steps to compute f(x). Sim-

ilarly, we need O(n · log(n)) steps to compute f(x), so the
overall computational complexity is O(n · log(n)).

If we have a potentially unlimited number of processors
working in parallel, then sorting requires time O(log(n)) and
computing mi also requires time O(log(n)), so overall, we
need time O(log(n)). If we have p < n processors, then we

need time O

(
n · log(n)

p
+ log(p)

)
.

Overall, the computation time for computing the bounds
is asymptotically the same as the time for checking consis-
tency.

4. FROM MONOTONICITY TO MORE
COMPLEX CONSTRAINTS

In some practical problems, we know not only that the
unknown dependence is monotonic, we also know that its
rate of increase cannot be smaller than a certain value
c > 0. For example, in paleontology, we may know that
the accumulation rate cannot exceed a certain value a; then
dy

dx
≥ c

def
= 1/a.

In such situations, we face a slightly different problem: given
the data d, check whether there is a dependence y(x) that

is consistent with the data and for which,
dy

dx
≥ c for all

points x.

The condition
dy

dx
≥ c is equivalent to

dz

dx
≥ 0 for a new

auxiliary variable z
def
= y − c · x. In terms of (x, z), the

original boxes becomes parallelograms: for xi = xi, we have

an interval [z−i , z−i ]
def
= [y

i
− c · xi, yi − c · xi]; for xi = xi, we

have an interval [z+
i , z+

i ]
def
= [y

i
−c ·xi, yi−c ·xi]. So, we can

reformulate the original problem as follows: check whether
there exists a monotonic dependence g(x) (= f(x) − c · x)
that is consistent with all the resulting parallelograms.

Here, for every monotonic dependence g that is consistent
with the parallelograms, there exists a point (xi, zi) ∈ g
that is inside the parallelogram. Thus, for (x, z) ∈ g, x < xi

implies x < xi, hence z ≤ zi ≤ z−i . Similarly, xi < x implies
z ≥ z+

i . Thus, g(x) ≤ y ≤ g(x), where

g(x) = max
i:xi<x

z+
i ; g(x) = min

j:x<xj

z−j . (9)

Consistency means that g(x) ≤ g(x) for every x, i.e., that

xi < xj implies that z+
i ≤ z−i , i.e., substituting the expres-

sions for z in terms of y that x, that y
i
− c · xi ≤ yj − c · xj ,

hence yj − y
i
≥ c · (xj − xi), which is equivalent to c ≤

(yj − y
i
)/(xj − xi). Similarly to the monotonic case, one

can prove that the above expressions g(x) and g(x) are in-
deed the exact bounds on possible values of z = y − c · x;
thus, g(x) + c · x and g(x) + c · x are the exact bounds for y.

A natural next question is: what are the possible values of
dy/dx? For every data, we can consider all the “differen-
tiable” functions (in the limit-motivated generalized sense,
to allow step functions) that are consistent with all the boxes
(i.e., whose graphs intersect with all the boxes). For a given
interval [a, b], for each of such functions f , we can take a con-
nected interval hull co(f ′([a, b])) of the range of the deriva-
tive, and consider the intersection F ′([a, b]) of these ranges
over all such f .

If this intersection F ′([a, b]) contains negative values, this
means that every function that is consistent with the data is
sometimes decreasing, so no monotonically increasing func-
tion is consistent with the data.

In general, the above arguments show, in effect, that the
range F ′([a, b]) is equal to {x | p ≤ x ≤ q}, where

p
def
= min

i,j:a≤xi≤xj≤b

y
j
− yi

xj − xi
, q

def
= min

i,j:a≤xi≤xj≤b

yj − y
i

xj − xi
.

(So, if p > q, the range is empty.) This formula provides a
O(n2) time algorithm for computing the range.

Comment. A similar algorithm was proposed in [12], for the
special case when we know the exact values of xi.

5. FUTURE WORK
In some cases, we know not only the boxes xi×yi, but also
the probabilities of different values (xi, yi) from these boxes.
For such cases, it is desirable to find not only the bounds
on the stratigraphic map f(x), but also the probabilities
of different monotonic dependences within these bounds. In
particular, it is desirable to come up with the most probable
dependence among all dependences that are consistent with
the given data.
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