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Abstract— The age of fossil species in samples recovered from
a well that penetrates an undisturbed sequence of sedimentary
rocks increases with depth. The results of biostratigraphic anal-
ysis of such a sequence consist of several age-depth values – both
known with interval (or fuzzy) uncertainty – and we would like
to find, for each possible depth, the interval of the possible values
of the corresponding age. A similar problem of bounding an in-
tervally (fuzzily) defined function under monotonicity constraint
occurs in many other application areas. In this paper, we provide
an efficient algorithm for solving this problem.

I. CASE STUDY: BIOSTRATIGRAPHY

A. Biostratigraphy is important

Biostratigraphy is concerned with the stratigraphic analysis
of rocks based on their paleontologic content. Generally speak-
ing, stratigraphy analyses the rock strata and is concerned with
their succession and age relationship. All aspects of rocks as
strata are, however, of concern for stratigraphy. The analysis
of fossil can also provide useful information regarding the
environment in which rocks have accumulated: for example,
a coral is an unambiguous indication of a warm ocean.

B. The notion of a stratigraphic map

One way of determining the age of a fossil is based on
the fact that in a normal sequence the age increases with the
depth in the well that penetrates that sequence. So, if the rock
accumulation rate is known, the depthx at which the fossil
species was found can be used to determine its agey.

The exact dependence between the depthx and the agey –
called astratigraphic map– is different for different locations,
because it depends on the geological history of this location.
The rates of rock accumulation depend of many factors. They
vary both in time and space. Thus, in complete geological
sequences, fossil taxa of different geologic and absolute ages
can be encountered at similar depths in different sections when
the section with the younger taxon was accumulated at a higher
rate than the one containing the older taxon.

C. Main ideas behind constructing a stratigraphic map

How is the stratigraphic map constructed now? In every
area, we have several fossils whose agey has been determined.

The last and the first stratigraphic occurrences of fossil
markers occurring in geologic sequences are used for deter-
mining the ages of the analyzed samples. Such paleobiological
events defined by the same fossil group (e.g., Foraminifera)
and indicating different ages may occur in one and the same
sample.
• First stratigraphic occurrences are more reliable because

such palebiologic events seem to better correlate over
extensive areas. They are commonly used when dealing
with samples retrieved from outcrops.

• In the analysis of well samples, however, last stratigraphic
occurrences are most commonly used because of potential
contamination of the deeper samples with material from
the overlying rocks.

In both cases, for the selected fossil, we know the depthxi at
which it was found, and we know the estimated ageyi. Based
on the points(xi, yi), we must find the desired dependence
y = f(x).

Since deeper layers are older, we should have a monotonic
(increasing) dependencey = f(x) for which yi = f(xi).
So, ideally, we should have a monotonic function that passes
through all the points.

D. The practical construction of a stratigraphic map is not
that easy

The conclusion about monotonicity is based on the idealized
assumption thatyi is the age of the oldest (for wells, youngest)
of many fossils of this type. For some types, we do have many
fossils, so the oldest of these fossils represents a reasonable
size sample and is, therefore, highly reliable. For other types
of fossils, however, we may have only a few sample fossils
of this type in a given area; for such types, the corresponding
ageyi and depthxi are not very accurate.



As a result of this inaccuracy, in practice, it is usually
impossible to have a monotonic dependence that passes exactly
through all the points(xi, yi): we may havexi < xj while
yi > yj .

E. Traditional approach

The traditional paleontological approach to this problem
is, crudely speaking, as follows (see, e.g., [8]). Since few-
sample data points do not fit to a monotonic curve, we select
a thresholdn0 and only consider points(xi, yi) which came
from samples of size≥ n0.

Ideally, we should select the smallest possiblen0 for which
the values can still fit into a monotonic curve, i.e., for which
xi < xj always impliesyi ≤ yj .

F. Room for improvement

In the traditional approach, after setting up a threshold, we:

• ignore all the points(xi, yi) with lower accuracy, and
• consider all the points with higher accuracy as exact,

ignoring the fact that these points are not absolutely
accurate.

In both cases, it is desirable to use the ignored information:

• if we take into consideration the inaccuracy of the data
(xi, yi) based on which we have built the stratigraphic
map, then we would be able to determine the accuracy
of this map;

• if, in addition to the data points that fit into a monotonic
curve, we take into consideration less accurate data points
as well, we will be hopefully able to construct a more
accurate stratigraphic map.

G. Interval uncertainty

How can we describe the data accuracy? Inaccuracy means
that, e.g., for the age, the actual (unknown) ageyi of all
the (yet uncovered) fossils of the given type is, in general,
somewhat different from the estimate oldest ageỹi.

Similarly, because of the additional chaotic rock move-
ments, the ideal depthxi at which a fossil should be if there
were no such movements may be somewhat different from the
depthx̃i at which the fossil was actually found.

Ideally, we should know the set of possible values of the
estimation error∆yi

def= ỹi − yi, and we should know the
probabilities of different values from this set. However, to
be able to determine these probabilities, we need to have a
large number of data points, and when we have a lot of data
points, the estimate is pretty accurate anyway. Therefore, in
the important cases in which we want to know the accuracy,
we cannot experimentally determine these probabilities.

At best, we can find a confidence interval based on the
known properties of the extreme-value statistics (see, e.g., [9],
[30]), or just elicit these intervals from the experts.

So, if we take uncertainty into consideration, then, for each
fossil typei, instead of the exact valuesxi andyi, we know
the intervalsxi = [xi, xi] andyi = [y

i
, yi] that contain these

unknown values.

H. Fuzzy uncertainty

Often, in addition (or instead) the guaranteed bound for
∆yi, an expert can provide bounds that contain∆yi with
a certain degree of confidence. Usually, we know several
such bounding intervals corresponding to different degrees of
confidence. Such a nested family of intervals is also called
a fuzzy set, because it turns out to be equivalent to a more
traditional definition of fuzzy set [4], [13], [17], [18], [19] (if
a traditional fuzzy set is given, then different intervals from
the nested family can be viewed asα-cuts corresponding to
different levels of uncertaintyα).

I. Towards the precise formulation of the problem

In the case of interval uncertainty, based on all the fos-
sils found in a given area, we know then boxesxi × yi

corresponding to different types of fossils. We know that the
monotonic dependencey = f(x) is such thatyi = f(xi) for
some(xi, yi) ∈ xi × yi.

Our objective is to find, for every depthx, the bounds of
the possible values of agey = f(x) for all the dependencies
that are consistent with the given data.

In the case of fuzzy uncertainty, for each degree of con-
fidenceα, we must solve the problem corresponding to the
α-cut intervals; thus, for each depthx, instead of an interval
of possible values of the agey = f(x), we get a nested family
of intervals corresponding to differentα – i.e., a fuzzy value
for the agey = f(x).

These are the problem that we will solve in this paper.
Since technically, the fuzzy problem can be reduced to sev-

eral interval ones, we will be concentrating on the algorithms
for solving the interval problem.

J. Other practical applications of the resulting mathematical
problem

Before we find the bounds onf(x), we must first check
that our interval bounds are consistent, i.e., that there exists a
monotonic function that is consistent with all the boxes. This
subproblem has many applications outside paleontology.

Indeed, in many problems in science and engineering, we
know that a physical quantityy depends on the physical
quantity x, i.e., y = f(x) for some functionf(x), and we
want to check whether this dependence is monotonic.

In spectral analysis, chemical species are identified by
locating local maxima of the spectra; see, e.g., [24], [25]. Thus,
to identify the chemical species, we must identify intervals
between local extrema, i.e., intervals of monotonicity.

In radioastronomy, sources of celestial radio emission and
their subcomponents are identified by locating local maxima
of the measured brightness of the radio sky. In other words,
we are interested in the local maxima of thebrightness
distribution, i.e., of the functiony(x) that describes how the
intensityy of the signal depends on the positionx of the point
from which we receive this signal. Thus, in radioastronomy,
we must also identify the intervals of monotonicity.

Elementary particlesare identified by locating local maxima
of the experimental curves that describe (crudely speaking)



the scattering intensityy as a function of energyx. Thus, in
elementary particle physics, finding intervals of monotonicity
is also important.

In 1-D landscape analysis, e.g., different mountain slopes
are different monotonicity intervals; see, e.g., [1], [2], [5].

In financial analysis, it is also important to find intervals
of monotonicity because they correspond to growth or decline
periods; see, e.g., [7]

In clustering, different 1-D clusters correspond to a multi-
modal distribution, so clusters can be naturally described
as combinations of monotonicity intervals separating local
minima of the probability density function; see, e.g., [15], [21],
[22].

Local maxima and minima are also used in the methods that
accelerate the convergence of the measurement result to the
real value of a physical variable, and thus allow the user to
estimate this value without waiting for the oscillations to stop
[20]. Thus, to accelerate convergence, we must also be able
to efficiently find intervals of monotonicity.

Although checking monotonicity is only a subproblem of
the larger problem of locating local extrema, once we know
how to efficiently solve this subproblem, we can also effi-
ciently solve the larger problem as well. Indeed, we can find
the first interval of monotonicity[1, k] by bisection:
• we originally know thatk ∈ [k−, k+], wherek− = 1 and

k+ = n;
• once we know an interval that containsk, we take its

midpointkm and check whether[1, km] is the interval of
monotonicity.

– If it is, then k ≥ km, so we can replacek− with km.
– If it is not, thenk ≤ km, so we can replacek+ with

km.
In both cases, we have a half-size interval that is still
guaranteed to containk.

In l iterations, we reduce the original widthn of this interval
to 2−l · n, so in log(n) iterations, we findk. After that, we
find the second interval of monotonicity, etc.

K. Additional complexity

Algorithms for solving the subproblem of checking
motonoticity have been previously described in [16], [26],
[27], [28], [29].

The additional complexity that we face in the biostratigra-
phy problem comes from the fact that, as we have mentioned, it
is possible to have several different ages for the same depth. In
mathematical terms, this means that the dependencey = f(x)
is not necessarily a monotonic function, it may be alimit of
the graphs of monotonic functions in the sense of Hausdorff
metric (see, e.g., [23]).

We are now ready for the exact definitions and for the
formulation of the result.

II. PRECISEFORMULATION OF THE PROBLEM AND THE

MAIN RESULT

Definition 1: By a monotonic dependencef , we mean the
graph of a continuous mappingm(s) = (m1(s),m2(s)) from

the real lineIR to the planeIR2 for which t < s implies that
m1(t) ≤ m1(s) andm2(t) ≤ m2(s).

It is easy to see that if the graphf is the graph of a func-
tion, then this definition is equivalent to this function being
(non-strictly) monotonically increasing. Not every monotonic
dependence is a function: e.g., a “step-function” for which
y = 0 for x < 0, y = 1 for x = 1, andy ∈ [0, 1] for x = 0,
is a monotonic dependence but not a function.

Definition 2: By a box, we mean a Cartesian product of two
intervals. We say that a monotonic dependencef is consistent
with a box x × y if the graphf contains a point from this
box, i.e., if f ∩ (x× y) 6= ∅.

Definition 3: By data d, we mean a finite collection of
boxes. We say that a monotonic dependencef is consistent
with the datad – and denote itCon(f, d) – if f is consistent
with each of the corresponding boxes. We say that the datad
is consistentif there exists a monotonic dependencef that is
consistent with this data.

Theorem 1:The datad is consistent if and only if for every
i and j, xi < xj implies y

i
≤ yj .

For consistent data, our objective is, given the data[xi, xi]×
[y

i
, yi] (1 ≤ i ≤ n) and a real numberx, to find the exact

lower and upper bounds of the correspondingy over all the
monotonic dependences that are consistent with this data:

f(x) def= inf{y | ∃f ((x, y) ∈ f & Con(f, d))}. (1)

f(x) def= sup{y | ∃f ((x, y) ∈ f & Con(f, d))}. (2)

Theorem 2:

f(x) = max
i:xi<x

y
i
; f(x) = min

j:x<xj

yj . (3)

Proof: Let us denote

F (x) def= max
i:xi<x

y
i
; F (x) def= min

j:x<xj

yj . (4)

Let us first show that for every monotonic dependencef that
is consistent with the given datad and for everyy for which
(x, y) ∈ f , the valuey is located betweenF (x) andF (x).

Indeed, for everyi, sincef is consistent withd, there exists
a pair(xi, yi) ∈ f ∩ (xi×yi). For this pair,xi ≤ xi ≤ xi, so
xi < x implies thatxi < x. Since(x, y) ∈ f and(xi, yi) ∈ f ,
by definition of a monotonic dependence, the inequalityxi <
x implies thatyi ≤ y. Sincey

i
≤ yi, we thus conclude that

y ≥ y
i
.

Sincey is greater than or equal toy
i

for all i for which
xi < x, it is therefore greater than or equal to the largest
of suchy

i
, i.e., thaty ≥ F (x). We can similarly prove that

y ≤ F (x).
If xi < xj , then, for anyx from the open interval(xi, xj),

we have xi < x < xj . We have proven that for every
monotonic dependence that is consistent with the datad, we



havey
i
≤ y ≤ yj . So, if the datad is consistent, thenxi < xj

indeed impliesy
i
≤ yj – this is exactly the condition from

Theorem 1.
Vice versa, if this condition is satisfied, then we always have

F (x) ≤ F (x).
To complete the proof of Theorems 1 and 2, it is therefore

sufficient to prove that both piecewise constant monotonic
functionsF (x) andF (x), when extended to step-wise mono-
tonic continuous dependences, are consistent with the datad,
i.e., that for everyk, each of these functions is consistent with
the k-th box xk × yk. Without losing generality, let us prove
it for F (x).

Indeed, for a piecewise-constant step dependence likeF (x),
at each pointx, the range of possible values ofy goes from
F (x−0) def= lim

ε>0,ε→0
F (x−ε) to F (x+0) def= lim

ε>0,ε→0
F (x+ε).

Due to monotonicity, whenx goes fromxk to xk, possible
values ofy go fromF (xk−0) to F (xk +0). (Since the graph
F is a graph of a continuous mapping from the real line, it is
connected, so all the values from the corresponding intervals
are possible.) Therefore, to prove that this graph intersects
with the box, it is sufficient to prove that one of the possible
values ofy also belongs to they-interval [y

k
, yk], i.e., that

[F (xk − 0), F (xk + 0)] ∩ [y
k
, yk] 6= ∅. (5)

The formula for the intersection of the two intervals is
well known: [a, b] ∩ [a′, b′] = [max(a, a′), min(b, b′)]. Thus,
the two intervals have a non-empty intersection if and only
if max(a, a′) ≤ min(b, b′), i.e., if and only if a ≤ b′ and
a′ ≤ b. In our case, we must prove thatF (xk − 0) ≤ yk and
y

k
≤ F (xk + 0).

By definition of F (x) (formula (4), we have:

F (xk + ε) = max
i:xi<xk+ε

y
i
. (6)

Sinceε > 0, the inequalityxi < xk +ε holds fori = k. Thus,
F (xk +ε) is the largest of several values includingy

k
. Hence,

F (xk + ε) ≥ y
k
, and in the limitε → 0, we get the desired

inequalityF (xk + 0) ≥ y
k
.

Similarly,
F (xk − ε) = max

i:xi<xk−ε
y

i
. (7)

The inequalityxi < xk − ε implies thatxi < xk. We already
know that this new inequality, in its turn, implies thaty

i
≤ yk.

Since all the maximized valuesy
i

do not exceedyk, the largest
of these values, i.e.,F (xk − ε), also cannot exceedyk. In the
limit, we get F (xk − 0) ≤ yk.

Both inequalities have been proven, and so are Theorems 1
and 2.

III. R ESULTING EFFECTIVE ALGORITHMS

A. Algorithms for checking consistency

For checking consistency, Theorem 1 leads to exactly the
same condition as emerged, for a slightly different problem,
in [26], [27]. We can therefore use algorithms from [26], [27]
to check consistency of our data as well.

If we simply check the condition from Theorem 1 for all
i = 1, . . . , n and allj = 1, . . . , n, then checking this condition
would requireO(n2) comparisons – i.e.,O(n2) computational
steps.

We can check this condition faster if we use the fact that
this condition is equivalent to the following auxiliary property:

For everyi, we havey
i
≤ min

j:xj≥xi

yj . (8)

To check this condition, we can perform the following four-
stage algorithm:

• First, we sort the valuesxi into an increasing sequence
– this requiresO(n · log(n)) steps. We correspondingly
re-order the valuesxi, y

i
, and yi. After this stage, we

can assume that the valuesxi are sorted:

x1 ≤ x2 ≤ . . . ≤ xn.

• Then, for everyi from 1 to n, we compute the value
Mi

def= min(yn, yn−1, . . . , yi). Here, Mn = yn. If
we already knowMi, then we can compute the previ-
ous valueMi−1 by using a single operationMi−1 =
min(Mi, yi−1). Thus, computing alln values requiresn
computational steps.

• For eachi from 1 ton, we can now use binary search (see,
e.g., [6]) to find the integerm(i) for which xm(i)−1 <
xi ≤ xm(i) (if such a value exists). Each binary search re-
quireslog(n) computational steps; thus,n such searches
requireO(n · log(n)) steps.

• Finally, for everyi from 1 to n for which m(i) exists,
we check whethery

i
≤ Mm(i):

– if this inequality holds for all suchi, then the
measurement data is consistent with monotonicity;

– otherwise, the functionf(x) cannot be monotonic.

Each checking requires one comparison, so to check that
this inequality holds for alli from 1 to n, we needn
comparisons.

Overall, we thus needO(n · log(n))+O(n · log(n))+O(n)+
O(n) = O(n · log(n)) steps.

For largen, we may want to further speed up computations
if we have several processors working in parallel. This may not
be that important for biostratigraphy, but it may be important
for other applications of this algorithm. All fours stages of the
above algorithm can be parallelized by known techniques. In
particular, Stage 2 is a particular case of a generalprefix-sum
problem, in which we must compute the valuesan, an ∗an−1,
an ∗an−1 ∗an−2, . . . , for some associative operation∗ (in our
case,∗ = min).

If we have a potentially unlimited number of processors,
then we can do the following (see, e.g., [11], for the informa-
tion on how to parallelize the corresponding stages):

• on Stage 1, we can sort the valuesxi in time O(log(n));
• on Stage 2, we can compute the valuesMi (i.e., solve

the prefix-sum problem) in timeO(log(n));
• on Stage 3, we can usen processors, each of which com-

pute the corresponding valuem(i) in time O(log(n));



• finally, on Stage 4, we can usen processors, each of
which checks the corresponding inequality in timeO(1).

As a result, we can check monotonicity in time

O(log(n)) + O(log(n)) + O(log(n)) + O(1) = O(log(n)).

If we havep < n processors, then we can:

• on Stage 1, sortn values in time
O((n · log(n))/p + log(n)) [11];

• on Stage 2, compute the valuesMi in time
O(n/p + log(p)) [3];

• on Stage 3, we subdividen indicesi betweenp proces-
sors, so each processor computesm(i) for n/p indicesi;
computing each index requireslog(n) time, so the overall
time is (n/p) · log(n) = O((n · log(n))/p);

• finally, on Stage 4, each ofp processors checks the
desired inequality for itsn/p indices; this requires time
O(n/p).

Overall, we thus need timeO

(
n · log(n)

p
+ log(p)

)
.

B. Algorithms for constructing lower and upper bounds

The function f(x) as described by the formula (3) is
piecewise constant; whenx increases, the value off(x) can
only change if whenx = xi for somei.

Thus, to compute the corresponding values off(x), it is
sufficient to sort the upper endpointsxi into the increasing
sequencex1 ≤ x2 ≤ . . . ≤ xn, and then to compute the
corresponding valuesmi

def= max(y
1
, . . . , y

i
).

Similarly to the previous algorithm, sorting requires
O(n · log(n)) steps and computingmi requires n steps,
so overall, we needO(n · log(n)) steps to computef(x).
Similarly, we needO(n · log(n)) steps to computef(x), so
the overall computational complexity isO(n · log(n)).

If we have a potentially unlimited number of processors
working in parallel, then sorting requires timeO(log(n)) and
computingmi also requires timeO(log(n)), so overall, we
need timeO(log(n)). If we havep < n processors, then we

need timeO

(
n · log(n)

p
+ log(p)

)
.

Overall, the computation time for computing the bounds is
asymptotically the same as the time for checking consistency.

IV. FROM MONOTONICITY TO MORE COMPLEX

CONSTRAINTS

In some practical problems, we know not only that the
unknown dependence is monotonic, we also know that its rate
of increase cannot be smaller than a certain valuec > 0. For
example, in paleontology, we may know that the accumulation

rate cannot exceed a certain valuea; then
dy

dx
≥ c

def= 1/a.

In such situations, we face a slightly different problem:
given the datad, check whether there is a dependencey(x)

that is consistent with the data and for which,
dy

dx
≥ c for all

pointsx.

The condition
dy

dx
≥ c is equivalent to

dz

dx
≥ 0 for a

new auxiliary variablez
def= y − c · x. In terms of(x, z), the

original boxes becomes parallelograms: forxi = xi, we have

an interval[z−i , z−i ] def= [y
i
− c ·xi, yi− c ·xi]; for xi = xi, we

have an interval[z+
i , z+

i ] def= [y
i
−c ·xi, yi−c ·xi]. So, we can

reformulate the original problem as follows: check whether
there exists a monotonic dependenceg(x) (= f(x) − c · x)
that is consistent with all the resulting parallelograms.

Here, for every monotonic dependenceg that is consistent
with the parallelograms, there exists a point(xi, zi) ∈ g that is
inside the parallelogram. Thus, for(x, z) ∈ g, x < xi implies
x < xi, hencez ≤ zi ≤ z−i . Similarly,xi < x impliesz ≥ z+

i .
Thus,g(x) ≤ y ≤ g(x), where

g(x) = max
i:xi<x

z+
i ; g(x) = min

j:x<xj

z−j . (9)

Consistency means thatg(x) ≤ g(x) for everyx, i.e., thatxi <

xj implies that z+
i ≤ z−i , i.e., substituting the expressions

for z in terms of y that x, that y
i
− c · xi ≤ yj − c · xj ,

henceyj − y
i
≥ c · (xj − xi), which is equivalent toc ≤

(yj − y
i
)/(xj −xi). Similarly to the monotonic case, one can

prove that the above expressionsg(x) and g(x) are indeed
the exact bounds on possible values ofz = y − c · x; thus,
g(x) + c · x andg(x) + c · x are the exact bounds fory.

A natural next question is: what are the possible values of
dy/dx? For every data, we can consider all the “differentiable”
functions (in the limit-motivated generalized sense, to allow
step functions) that are consistent with all the boxes (i.e.,
whose graphs intersect with all the boxes). For a given interval
[a, b], for each of such functionsf , we can take a connected
interval hull co(f ′([a, b])) of the range of the derivative, and
consider the intersectionF ′([a, b]) of these ranges over all
suchf .

If this intersectionF ′([a, b]) contains negative values, this
means that every function that is consistent with the data is
sometimes decreasing, so no monotonically increasing func-
tion is consistent with the data.

In general, the above arguments show, in effect, that the
rangeF ′([a, b]) is equal to{x | p ≤ x ≤ q}, where

p
def= min

i,j:a≤xi≤xj≤b

y
j
− yi

xj − xi
, q

def= min
i,j:a≤xi≤xj≤b

yj − y
i

xj − xi
.

(So, if p > q, the range is empty.) This formula provides a
O(n2) time algorithm for computing the range.

Comment.A similar algorithm was proposed in [15], for the
special case when we know the exact values ofxi.

V. FUTURE WORK

In some cases, we know not only the boxesxi×yi, but also
the probabilities of different values(xi, yi) from these boxes.
For such cases, it is desirable to find not only the bounds on the
stratigraphic mapf(x), but also the probabilities of different
monotonic dependences within these bounds. In particular, it
is desirable to come up with the most probable dependence
among all dependences that are consistent with the given data.
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