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Abstract—The age of fossil species in samples recovered fromC. Main ideas behind constructing a stratigraphic map

a well that penetrates an undisturbed sequence of sedimentary : : . n
rocks increases with depth. The results of biostratigraphic analy- How is the stratigraphic map constructed now? In every

sis of such a sequence consist of several age-depth values — botA"€@, We have several fossils whose ag@s been determined. -
known with interval (or fuzzy) uncertainty — and we would like The last and the first stratigraphic occurrences of fossil

to find, for each possible depth, the interval of the possible values markers occurring in geologic sequences are used for deter-
of the corresponding age. A similar problem of bounding an in-  mjning the ages of the analyzed samples. Such paleabiological
tervallyl(fuzzny) defined fqnct.lon under monotonicity constraint i defined by the same fossil group (e.g., Foraminifera)
occurs in many other application areas. In this paper, we provide P . .
an efficient algorithm for solving this problem. and indicating different ages may occur in one and the same
sample.

|. CASE STUDY: BIOSTRATIGRAPHY « First stratigraphic occurrences are more reliable because
such palebiologic events seem to better correlate over
extensive areas. They are commonly used when dealing
with samples retrieved from outcrops.
In the analysis of well samples, however, last stratigraphic
occurrences are most commonly used because of potential
contamination of the deeper samples with material from

A. Biostratigraphy is important

Biostratigraphy is concerned with the stratigraphic analysis
of rocks based on their paleontologic content. Generally speak-,
ing, stratigraphy analyses the rock strata and is concerned with
their succession and age relationship. All aspects of rocks as
strata are, however, of concern for stratigraphy. The analysis the overlying rocks.

of fossil can also provide useful information regarding thﬁt1 both cases, for the selected fossil, we know the deptht

environment in which rocks have accumulated: for exampl\s—%’,niCh it was found, and we know the estimated ggeBased
a coral is an unambiguous indication of a warm ocean. on the points(z:, y:), we must find the desired dependence

B. The notion of a stratigraphic map y = f(x). .
Since deeper layers are older, we should have a monotonic

One way of determining the age of a fossil is based ﬂwcreasing) dependence = f(z) for which y; = f(z,).

the fact that in a normal sequence the age increases with > ideally, we should have a monotonic function that passes
depth in the well that penetrates that sequence. So, if the “Eﬁl‘ough all the points

accumulation rate is known, the depthat which the fossil
Species was found can be used to determine itsyage D. The pl’aCtical ConStrUCtion Of a Stratigraphic map iS not
The exact dependence between the depéind the agey — that easy
called astratigraphic map- is different for different locations, = The conclusion about monotonicity is based on the idealized
because it depends on the geological history of this locatiassumption thag; is the age of the oldest (for wells, youngest)
The rates of rock accumulation depend of many factors. Thefymany fossils of this type. For some types, we do have many
vary both in time and space. Thus, in complete geologicfssils, so the oldest of these fossils represents a reasonable
sequences, fossil taxa of different geologic and absolute ageése sample and is, therefore, highly reliable. For other types
can be encountered at similar depths in different sections whainfossils, however, we may have only a few sample fossils
the section with the younger taxon was accumulated at a higloétthis type in a given area; for such types, the corresponding
rate than the one containing the older taxon. agey; and depthr; are not very accurate.



As a result of this inaccuracy, in practice, it is usuallyd. Fuzzy uncertainty
impossible to have a monotonic dependence that passes exact@ften, in addition (or instead) the guaranteed bound for
through all the point{z;,y;): we may haver; < x; while A, an expert can provide bounds that contaiy, with
Yi > Yj- a certain degree of confidence. Usually, we know several
such bounding intervals corresponding to different degrees of
confidence. Such a nested family of intervals is also called
The traditional paleontological approach to this problem fuzzy setbecause it turns out to be equivalent to a more
is, crudely speaking, as follows (see, e.g., [8]). Since fewrnditional definition of fuzzy set [4], [13], [17], [18], [19] (if
sample data points do not fit to a monotonic curve, we selegtraditional fuzzy set is given, then different intervals from
a thresholdn, and only consider pointéz;, y;) which came the nested family can be viewed ascuts corresponding to

from samples of size> n,. . different levels of uncertainty).
Ideally, we should select the smallest possitjefor which

the values can still fit into a monotonic curve, i.e., for which Towards the precise formulation of the problem
x; < x; always impliesy; < y;. In the case of interval uncertainty, based on all the fos-
. sils found in a given area, we know the boxesx; x y;
F. Room for improvement corresponding to different types of fossils. We know that the
In the traditional approach, after setting up a threshold, wetonotonic dependencg= f(x) is such thaty; = f(z;) for

« ignore all the pointgz;, y;) with lower accuracy, and Some(ﬂii,yi) € Xi X¥i-
. consider all the points with higher accuracy as exact, Our objective is to find, for every depth, the bounds of

ignoring the fact that these points are not absolutetf)e possible values of age= f(x) for all the dependencies
accurate. that are consistent with the given data.

In both cases, it is desirable to use the ignored information; | the case of fuzzy uncertainty, for each degree of con-

. . . . . fidencea, we must solve the problem corresponding to the

. if we talge m(tjo consrll(_jer:atlonhthe |rk1)ac_:|cu:1acy of f[he dst(?—cut intervals; thus, for each depth instead of an interval
(xi’yi)h ased on V\Ildl(é) ng aved uilt the s’;lratlgrap '6t possible values of the age= f(x), we get a nested family
n}a[;,_ then \_Ne would be able to determine the accuragy inieryq|s corresponding to different — i.e., a fuzzy value
of this map; . - for the agey = f(x).

« if, in addition to the data points that fit into a monotonic These are the problem that we will solve in this paper
curve, we take.into consideration less accurate data pomt%ince technically, the fuzzy problem can be reduced to sev-
as well, we W'” beh_hopefully able to construct a MO ral interval ones, we will be concentrating on the algorithms
accurate stratigraphic map. for solving the interval problem.

E. Traditional approach

G. Interval uncertainty J. Other practical applications of the resulting mathematical
How can we describe the data accuracy? Inaccuracy megrgblem

that, e.g., for the age, the actual (unknown) ageof all ~ Before we find the bounds ofi(z), we must first check
the (yet uncovered) fossils of the given type is, in generahat our interval bounds are consistent, i.e., that there exists a
somewhat different from the estimate oldest gge monotonic function that is consistent with all the boxes. This
Similarly, because of the additional chaotic rock movesypproblem has many applications outside paleontology.
ments, the ideal depthi at which a fossil should be if there Indeed, in many problems in science and engineering, we
were no such movements may be somewhat different from tigow that a physical quantity depends on the physical
depthz; at which the fossil was actually found. quantity z, i.e., y = f(z) for some functionf(z), and we
Ideally, we should know the set of possible values of thgant to check whether this dependence is monotonic.
estimation errorAy; df ¥i — vi, and we should know the In spectral analysis chemical species are identified by
probabilities of different values from this set. However, téocating local maxima of the spectra; see, e.g., [24], [25]. Thus,
be able to determine these probabilities, we need to haveoaidentify the chemical species, we must identify intervals
large number of data points, and when we have a lot of ddietween local extrema, i.e., intervals of monotonicity.
points, the estimate is pretty accurate anyway. Therefore, inin radioastronomy sources of celestial radio emission and
the important cases in which we want to know the accuradieir subcomponents are identified by locating local maxima
we cannot experimentally determine these probabilities.  of the measured brightness of the radio sky. In other words,
At best, we can find a confidence interval based on tliee are interested in the local maxima of theightness
known properties of the extreme-value statistics (see, e.g., [@istribution i.e., of the functiony(x) that describes how the
[30]), or just elicit these intervals from the experts. intensityy of the signal depends on the positiorof the point
So, if we take uncertainty into consideration, then, for eadtom which we receive this signal. Thus, in radioastronomy,
fossil typei, instead of the exact values andy;, we know we must also identify the intervals of monotonicity.
the intervalsx; = [z,,Z;] andy; = [y.,7,] that contain these  Elementary particlesre identified by locating local maxima
unknown values. - of the experimental curves that describe (crudely speaking)



the scattering intensity as a function of energy. Thus, in the real linelR to the planelR? for which ¢ < s implies that
elementary particle physics, finding intervals of monotonicityr; (t) < mq(s) andma(t) < ma(s).
is also important.
In 1-D landscape analysis.g., different mountain slopes
are different monotonicity intervals; see, e.g., [1], [2], [5].
In financial analysisit is also important to find intervals

It is easy to see that if the graphis the graph of a func-
tion, then this definition is equivalent to this function being
(non-strictly) monotonically increasing. Not every monotonic
of monotonicity because they correspond to growth or decliﬁigpendence Is a function: e.g., a "step-function” for which
periods; see, e.g., [7] y=0 for = <0,y=1 forz =1, andy € [O_, 1] for x = 0,

In clustering different 1-D clusters correspond to a multiS & monotonic dependence but not a function.
modal distribution, so clusters can be naturally describedDefinition 2: By abox we mean a Cartesian product of two
as combinations of monotonicity intervals separating locaitervals. We say that a monotonic dependejiée consistent
minima of the probability density function; see, e.qg., [15], [21}with a boxx x y if the graph f contains a point from this
[22]. box, i.e., if fN(x xy) #0.

Local maxima and minima are also used in the methods that - .
accelerate the convergence of the measurement result to thgefinition 3: By data d, we mean a finite collection of
real value of a physical variable, and thus allow the user BYX€S: We say that a monotonic dependey‘iqe consistent
estimate this value without waiting for the oscillations to stoffith the datad —and denote iCon(f,d) - if f is consistent

[20]. Thus, to accelerate convergence, we must also be affd! €ach of the corresponding boxes. We say that the data
to efficiently find intervals of monotonicity. IS consistenif there exists a monotonic dependenté¢hat is

Although checking monotonicity is only a subproblem ofonsistent with this data.
the larger problem of locating local extrema, once we know Theorem 1:The datad is consistent if and only if for every
how to efficiently solve this subproblem, we can also effi-andj, z, < z; impliesy, < 7.
ciently solve the larger problem as well. Indeed, we can find -

the first interval of monotonicity1, k] by bisection: For consistent data, our objective is, given the dafar;] x
« we originally know that: € [k—, k*], wherek~ = 1 and l;,7:] (1 =i < n) and a real numbez, 1o find the exact
i — B lower and upper bounds of the correspondingver all the
. once vx;e know an interval that contaiits we take its monotonic dependences that are consistent with this data:
i i i i def .
mfr?;?r:ilzﬁyand check whethil, k,,] is the interval of f(z) = inf{y|3f ((v,y) € f&Con(f,d))}. (1)
~ Ifitis, thenk > ki, So we can replace_ with &,. F(z) ¥ sup{y|3f (z,y) € fF&Con(f,d)}.  (2)
— If itis not, thenk < k,,, so we can replacke™ with
K.

In both cases, we have a half-size interval that is still Theorem 2:

guaranteed to contaik. — o
In [ iterations, we reduce the original widthof this interval fl@)= i Y fl@) = jaa, N ®)
to 27! - n, so inlog(n) iterations, we findk. After that, we

find the second interval of monotonicity, etc. Proof. Let us denote

def - def P
K. Additional complexity F(z) = ax y; Fz) = Jmin 7. (4)
Algorithms for solving the subproblem of checking} ’

motonoticity have been previously described in [16], [26]; . _ : ;
[27], [28] [29] P y [16]. 1 s consistent with the given dataand for everyy for which

The additional complexity that we face in the biostratigra(x’y) € f, the valuey is located betweet'(x) and F'(z).
phy problem comes from the fact that, as we have mentioned, ifndeed. for every, sincef is consistent withi, there exists
is possible to have several different ages for the same depth®IR&Ir (Zi,¥i) € f N (xi X y;). For this pairz; < x; <;, so
mathematical terms, this means that the dependgnee’(z) 2 < % IMplies thatr; <. Since(x,y) € f and(z;, ;) € f,
is not necessarily a monotonic function, it may bénait of by. def!nmon ofa monot.onlc dependence, the inequality:
the graphs of monotonic functions in the sense of HausdoffimPlies thaty; < y. Sincey, < y;, we thus conclude that
metric (see, e.g., [23]). Y2y, , _

We are now ready for the exact definitions and for the SINC€ is greater than or equal tg, for all i for which
formulation of the result.

et us first show that for every monotonic dependelfidbat

T; < x, it is therefore greater than or equal to the largest
of suchyi, i.e., thaty > F(z). We can similarly prove that
Il. PRECISEFORMULATION OF THE PROBLEM AND THE < f(xj_
MAIN RESULT If ; < z;, then, for anyz from the open intervalz;, z;),
Definition 1: By a monotonic dependencg we mean the we haver; < z < z;. We have proven that for every
graph of a continuous mapping(s) = (m1(s), mz(s)) from monotonic dependence that is consistent with the datae



havey <y <7;,. So, if the datal is consistent, thel; < z; If we simply check the condition from Theorem 1 for all

indeed |mpI|eSy < y; — this is exactly the condition fromi =1,...,nandallj = 1,...,n, then checking this condition

Theorem 1. would requireO(n?) comparisons — i.e()(n?) computational
Vice versa, if this condition is satisfied, then we always hasteps.

F(x) < F(x). We can check this condition faster if we use the fact that

To complete the proof of Theorems 1 and 2, it ishis condition is equivalent to the following auxiliary property:
therefore sufficient to prove that both piecewise constant
monotonic functions?(z) and F(x), when extended to step- For every:, we havey, < it Lm>nm7 Yj- (®)
wise monotonic continuous dependences, are consistent with
the datad, i.e., that for everyk, each of these functions is To check this condition, we can perform the following four-

consistent with thé-th boxx;, x y;. Without losing generality, St2ge algorithm:

let us prove it forF(x). « First, we sort the values,; into an increasing sequence
Indeed, for a piecewise-constant step dependencelike, — this requiresO(n - log(n)) steps. We correspondingly

at each pointz, the range of possible values ofgoes from re-order the values;, y , andy;. After this stage, we

F(z—0) % 1lim F(x 0 F(z+0) Y lim F(arte). can assume that the valugs are sorted:

- e>0,e— e>0,e—0"

Due to monoton|C|ty, wherr goes fromg, to T, possible z, <zy<...<z,.

values ofy go from F(z;, —0) to F'(Z;, +0). (Since the graph

F is a graph of a continuous mapping from the real line, it is ® qep o - =
connected, so all the values from the corresponding intervals Mi = min(y,,¥, 1,---,¥;). Here, M, = 7,. If
are possible.) Therefore, to prove that this graph intersects We already know)/;, then we can compute the previ-
with the bo, it is sufficient to prove that one of the possible ~0us value)M;_, by using a single operation/; ; =

Then, for every: from 1 to n, we compute the value

values ofy also belongs to thg-interval [y, ,7,], i.e., that min(M;, ;). Thus, computing alh values requires,
- computational steps.
[F(z — 0), @k +0)] N [y, Ui) # 0. (5)  « Foreach from 1 ton, we can now use binary search (see,

e.g., [6]) to find the integem(i) for which z,,;)_; <
T < z,,(; (if such a value exists). Each binary search re-
quireslog(n) computational steps; thus, such searches
requireO(n - log(n)) steps.
« Finally, for everyi from 1 ton for which m(i) exists,
we check whethegi < M4y
— if this inequality holds for all suchi, then the
measurement data is consistent with monotonicity;

The formula for the intersection of the two intervals is
well known: [a,b] N [¢/,V'] = [max(a,a’), min(b,b’)]. Thus,
the two intervals have a non-empty intersection if and only
if max(a,a’) < min(b,?’), i.e., if and only ifa < ¥ and
a’ < b. In our case, we must prove thal(z, — 0) <7, and

< F(.’L‘k + 0)

By definition of F(x) (formula (4), we have:

F(Tr+e) = LA Y. (6) — otherwise, the functiorf(z) cannot be monotonic.
1T, <T =t . . .

) ) _ e , Each checking requires one comparison, so to check that
Sincee > 0, the inequalityz; < 7y +¢ holds fori = k. Thus, this inequality holds for alli from 1 to n, we needn
F(f;C +¢) is the Iargest of several values includig}g Hence, comparisons.
mequahtyF(x;C + 0) >y, O(n) = O(n log(n)) steps.

Similarly, For largen, we may want to further speed up computations

E(zy —¢) = m_ngx_ayy () " if we have several processors working in parallel. This may not
T be that important for biostratigraphy, but it may be important
The inequalityz; < z; — e implies thatz; < z;,. We already for other applications of this algorithm. All fours stages of the
know that this new inequality, in its turn, implies that<7,. apove algorithm can be parallelized by known techniques. In
Since all the maximized valug,s do not exceed,,, the largest particular, Stage 2 is a particular case of a gengrafix-sum
of these values, i.eE(z;, —¢), also cannot exceeg,. In the problem, in which we must compute the valugs a,, * a,_1,

limit, we getF'(z; —0) < gy, Qp % Qn_1 %an_2, ..., fOr some associative operatierin our
Both inequalities have been proven, and so are Theoremggke x = min).
and 2. u If we have a potentially unlimited number of processors,

then we can do the following (see, e.g., [11], for the informa-
tion on how to parallelize the corresponding stages):

» on Stage 1, we can sort the valugsin time O(log(n));
For checking consistency, Theorem 1 leads to exactly thee on Stage 2, we can compute the valugs (i.e., solve

same condition as emerged, for a slightly different problem, the prefix-sum problem) in tim&(log(n));

in [26], [27]. We can therefore use algorithms from [26], [27] « on Stage 3, we can useprocessors, each of which com-

to check consistency of our data as well. pute the corresponding value(i) in time O(log(n));

IIl. RESULTING EFFECTIVEALGORITHMS
A. Algorithms for checking consistency



« finally, on Stage 4, we can use processors, each of The condition@ > ¢ is equivalent to% > 0 for a
which checks the corresponding inequality in ti@€l). . OL dx
S new auxiliary variablez = y — ¢ - z. In terms of(z, z), the
As a result, we can check monotonicity in time

original boxes becomes parallelograms: igr= z;, we have

Ollog(n)) + Oog(n)) + Ollog(n)) +O(1) = Oflog(n)). ~ an intenvallzy =] ™ [y, —c-z, g — - for a, = 73, we

have an intervalz;, z; ] = [y. — ¢ 7, Y, —c-T;]. S0, we can
If we havep < n processors, then we can: reformulate the original praf)lem as follows: check whether
« on Stage 1, sork values in time there exists a monotonic dependende) (= f(z) — ¢ - z)
O((n - log(n))/p + log(n)) [11]; that is consistent with all the resulting parallelograms.
- on Stage 2, compute the valugs; in time Here, for every monotonic dependengehat is consistent
O(n/p +1log(p)) [3]; with the parallelograms, there exists a pdint, z;) € g that is

- on Stage 3, we subdivide indicesi betweenp proces- inside the parallelogram. Thus, fér, z) € g, z < z; implies
sors, so each processor computeS) for n/p indicesi; 5 < z;, hence: < z; < z; . Similarly, 7; < x impliesz > 2.
computing each index requirész(n) time, so the overall Thus, g(z) <y < g(z), where
time is (n/p) - log(n) = O((n - log(n))/p); B o o

« finally, on Stage 4, each op processors checks the g(x) = ax Zi s gla) = S Fi ©)
desired inequality for it3:/p indices; this requires time . o
O(n/p). Consistency means thatr) < g(x) for everyz, i.e., thatz; <

(n-log(n) z; implies thatz” < z;, i.e., substituting the expressions
p

Overall, we thus need time@ + log(p)> . for z in terms of y that z, that y,—c Ty <Y —c-x;

7.]1
hencey; —y. > c¢- (z; — ;), which is equivalent tor <
B. Algorithms for constructing lower and upper bounds  (¥; —¥,)/(z; — ;). Similarly to the monotonic case, one can
. . . prove that the above expressiopér) and g(x) are indeed
.The _functlon i(x.) ahs dgscnbed b%} the Iformula (3) 'Sthe exact bounds on possible valueszof= y — ¢ - x; thus,
piecewise constant; w en increases, the value of(z) can g(2) + ¢ x andg(z) + ¢ - = are the exact bounds far
only change if whenc = Z; for somei.

: _ . Anatural next question is: what are the possible values of
Thus, to compute the corresponding valuesf6f), it is dy/dx? For every data, we can consider all the “differentiable”

sufficient to sort the upper endpoirts into the increasing nctions (in the limit-motivated generalized sense, to allow
sequencer; = Tz < ... < o, and then to compute thegie fynctions) that are consistent with all the boxes (i.e.,
corresponding values); = max(y,, ..., y,)- whose graphs intersect with all the boxes). For a given interval
Similarly to the previous algorithm, sorting requires [a, b], for each of such functiong, we can take a connected
O(n - log(n)) steps and computingn; requiresn steps, interval hull co(f’([a,b])) of the range of the derivative, and
so overall, we need)(n - log(n)) steps to computef(z). consider the intersectio”([a,b]) of these ranges over all
Similarly, we needO(n - log(n)) steps to computef(x), SO suchf.
the overall computational complexity @(n - log(n)). If this intersectionF”’([a, b]) contains negative values, this
If we have a potentially unlimited number of processomneans that every function that is consistent with the data is
working in parallel, then sorting requires tini®log(n)) and sometimes decreasing, so no monotonically increasing func-
computingm; also requires timeD(log(n)), so overall, we tion is consistent with the data.
need timeO(log(n)). If we havep < n processors, then we In general, the above arguments show, in effect, that the
need timeo (7 108(m) +log(p) ) - rangeF”’ ([a, b)) is equal to{z|p < x < ¢}, where

. : Y — Y,
; . : . ~ min —, ¢=  min _———
asymptotically the same as the time for checking consistency.  @Jj:a<@i<z;<bZ; — Z; LyesSTSz;Sb Ly — T

(So, if p > q, the range is empty.) This formula provides a
O(n?) time algorithm for computing the range.

Overall, the computation time for computing the bounds isp def ¥ Y def

IV. FROM MONOTONICITY TO MORE COMPLEX
CONSTRAINTS
) CommentA similar algorithm was proposed in [15], for the
unknown dependence is monotonic, we also know that its rate

of increase cannot be smaller than a certain value0. For V. FUTURE WORK: ALGORITHMS
example, in paleontology, we may know that the accumulationIn some cases, we know not only the boxesx y;, but also
rate cannot exceed a certain valiethen dy > ¢ % 1/a. the probabilities of different values:;, y;) from these boxes.

In such situations, we face a slightly” different problemI_:or such cases, itis desirable to find not only the bounds on the

. . stratigraphic mapf (x), but also the probabilities of different
given the datad, check whether there is a dependente) monotonic dependences within these bounds. In particular, it

that is consistent with the data and for whic b forall is desirable to come up with the most probable dependence

points x. among all dependences that are consistent with the given data.



VI. FUTURE WORK: APPLICATIONS [9]

As of now, the paper is rather mathematical and abstraﬁb]
The study presented in the paper is motivated by applications
(Biostratigraphy and a lot of others), but so far, we only hav[(la1]
algorithms and their complexity analysis.

We are currently working on the actual applications of the$e]
algorithms to biostratigraphy.

Since, as we have mentioned, the corresponding probl?m
is relevant for many other application areas, we decided to

present our algorithms, to encourage researchers from otHét

application areas to apply these algorithms to their problems
as well.

In view of the typically fuzzy character of expert knowledge
we believe that the results from the fuzzy case should be %?]
special interest in various applications areas. 6

16

ACKNOWLEDGMENTS

This work was supported by NASA grant NCC5-209, by 7)
USAF grant F49620-00-1-0365, by NSF grants EAR-0112968,
EAR-0225670, and EIA-0321328, by Army Research Lal8l
oratories grant DATM-05-02-C-0046, and by the NIH grant
3T34GM008048-20S1.

The authors are thankful to Luc Longp(El Paso, Texas), [1°]
to all the participants of the Geoinformatics meeting at thegy
San Diego Supercomputer Center (August 13-15, 2004), and

to the anonymous referees for valuable discussions. [21]

REFERENCES

M. S. Aguiar, A. C. R. Costa, and G. P. Dimuro, ICTM: an interval
tessellation-based model for reliable topographic segmentatiomer-

ical Algorithms(to appear). [22]
M. S. Aguiar, G. P. Dimuro, A. C. R. Costa, R. K. S. Silva, and

V. Kreinovich, HPC-ICTM: the interval categorizer tesselation-based
model for high performance computinBroceedings of the Workshop [23]
on State-of-the-Art in Scientific Computing PARA'D¥ngby, Denmark, [24]
June 20-23, 2004.

G. E. Blelloch, Prefix sums and their applications, In: J. H. R&jfthe-
sis of Parallel AlgorithmsMorgan Kaufmann, San Mateo, California,
1993, pp. 35-60.

G. Bojadziev and M. Bojadziekuzzy Sets, Fuzzy Logic, Applicatipns
World Scientific, Singapore, 1995. [26
D. D. Coblentz, V. Kreinovich, B. S. Penn, and S. A. Starks, Towards
Reliable Sub-Division of Geological Areas: Interval Approach, In: L.
Reznik and V. Kreinovich (eds.)Soft Computing in Measurements[27]
and Information AcquisitionSpringer-Verlag, Berlin-Heidelberg, 2003,
pp. 223-233.

Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Steitipduction
to Algorithms MIT Press, Cambridge, MA, 2001.

G. J. Deboeck, K. Villaverde, and V. Kreinovich, Interval Methods for
Presenting Performance of Financial Trading Systévetiable Comput- [29]
ing, 1995, Supplement (Extended Abstracts of APIC'95: International
Workshop on Applications of Interval Computations, El Paso, TX, Febr.
23-25, 1995), pp. 67-70.

T. D. Demchuk, E. Platon, R. J. Fitzimmons, and R. F. Waszczaak, Quan-
titative analyses of palynological data with correlation to deposition&80]
paleoenvironments and sequence stratigraphy, ofshore West Africa. In:
Proceedings of the 31st International Geological CongreR® de
Janeiro, Brazil, August 2000.

(1]

(2]

(3]

(4]
(3]

[6] [28]

(7]

(8]

J. GalambosThe asymptotic Theory of Extreme Order Statistitley,

New York, 1987.

I. J. Good and R. A. Gaskins, Density Estimation and Bump-Hunting
by the Penalized Likelihood Method Exemplified by Scattering and
Meteorite Data,J. Amer. Stat. Soc1980, Vol. 75, pp. 42-56.

J. Aja, An Introduction to Parallel AlgorithmsAddison-Wesley, Read-
ing, MA, 1992.

L. Jaulin, M. Kieffer, O. Didrit, and E. WalteApplied Interval Analysis:
With Examples in Parameter and State Estimation, Robust Control and
Robotics Springer, London, 2001.

G. Klir and B. Yuan,Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions Prentice Hall, Upper Saddle River, New Jersey, 1995.

V. Kreinovich, H. T. Nguyen, G. P. Dimuro, A. C. R. Costa, and
B. R. C. Bedregal, A New Differential Formalism for Interval-Valued
Functions and Its Potential Use in Detecting 1-D Landscape Features,
Proceedings of the International Conference on Information Technology
InTech’03 Chiang Mai, Thailand, December 17-19, 2003, pp. 491-498.
V. Kreinovich, E. J. Pauwels, S. Ferson, and L. Ginzburg, A Feasible
Algorithm for Locating Concave and Convex Zones of Interval Data and
Its Use in Statistics-Based Clusteriidiimerical Algorithmgto appear).

J. Lorkowski and V. Kreinovich, If we measure a number, we get
an interval. What if we measure a function or an operat®éljable
Computing 1996, Vol. 2, No. 3, pp. 287-298.

R. E. Moore and W. A. Lodwick, “Interval Analysis and Fuzzy Set
Theory”, Fuzzy Sets and Systen2§03, Vol. 135, No. 1, pp. 5-9.

H. T. Nguyen and V. Kreinovich, “Nested Intervals and Sets: Concepts,
Relations to Fuzzy Sets, and Applications”, In: R. B. Kearfott et al.
(eds.),Applications of Interval Computation&luwer, Dordrecht, 1996,

pp. 245-290

H. T. Nguyen and E. A. Walkerfirst Course in Fuzzy LogjcCRC
Press, Boca Raton, FL, 1999.

K. Nickel, Interval Acceleration of Convergence, in: R. E. Moore
(editor), Reliability in ComputingAcademic Press, N.Y., 1988, pp. 151—
169.

E. J. Pauwels and G. Frederix, Image Segmentation by Nonparametric
Clustering Based on the Kolmogorov-Smirnov Distance, In: D. Vernon
(ed.),Proceedings of the 6th European Conference on Computer Vision
ECCV’2000, Dublin, Ireland, June 26-July 1, 2000, Part Springer
Lecture Notes in Computer Science, Vol. 1843, 2000, pp. 85-99.

E. J. Pauwels, G. Frederix, and G. Caenaen, Image segmentation based
on statistically principled clusterindg@roc. of 2001 International IEEE
Conference on Image processjrgp01, Vol. 3, pp. 66—69.

B. SendovHausdorff ApproximationsKluwer, Dordrecht, 1990.

D. J. Thompson, Spectrum Estimation Techniques for Characterization
and Development of WT4 WaveguidBell Syst. Technical JourngPart

1, November 1977, Vol. 56, p. 1769; Part 2, December 1977, \ol. 57,
p. 1983.

25] D.J. Thompson, Spectrum Estimation and Harmonic Analy&isceed-

ings IEEE 1982, Vol. 70, pp. 1055-1096.

] K. Tupelly, Checking if There Exists a Monotonic Function that is

Consistent with the Measurement Resullaister’s Thesis, Department
of Computer Science, University of Texas at El Paso, 2004.

K. Tupelly, V. Kreinovich, and K. Villaverde, Checking if There Exists
a Monotonic Function That Is Consistent with the Measurements: An
Efficient Algorithm, Reliable Computindto appear).

K. Villaverde and V. Kreinovich, A linear-time algorithm that locates
local extrema of a function of one variable from interval measurement
results,Interval Computations1993, No. 4, pp. 176-194.

K. Villaverde and V. Kreinovich, Parallel algorithm that locates local
extrema of a function of one variable from interval measurement
results,Reliable Computing1995, Supplement (Extended Abstracts of
APIC’95: International Workshop on Applications of Interval Compu-
tations, El Paso, TX, Febr. 23-25, 1995), pp. 212-219.

H. M. Wadsworth (ed.)Handbook of Statistical Methods for Engineers
and ScientistsMcGraw-Hill Publishing Co., New York, 1990.



