Computing the Cube of an Interval Matrix Is NP-Hard
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ABSTRACT

In many practical applications, we are interested in comput-
ing the product of given matrices and/or a power of a given
matrix. In some cases, the initial matrices are only known
with interval; uncertainty. We show that under this uncer-
tainty, the problems of computing the exact ranges for the
matrix product and for the power of a matrix are NP-hard.

Categories and Subject Descriptors

F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Numerical Algorithms and Prob-
lems; G.1.3 [Mathematics of Computing]: Numerical
Analysis—Numerical Linear Algebra: Error analysis

General Terms
Theory

1. WHY INTERVAL MATRICES

In many real-life situations, we do not know the exact value
of a physical quantity x, we only know the interval x of
possible values of x. This happens, e.g., if our information
about x comes from measurement, and the only informa-
tion that we have about the possible error of the measuring
instrument is that this error is guaranteed not to exceed a
certain bound A. In this case, if the measurement result
is Z, then from the fact that |z — z| < A, where z is the
(unknown) actual value of the measured quantity, we can

conclude that 2 belongs to the interval x < z— AT+ Al

In some physical situations, quantities form a matrix

all aij A1n
A= a;1 Qij Qin . (1)
Am1 oo Qmy Amn
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A typical example of when matrices emerge is when we de-
scribe the system’s dynamics, i.e., how it transforms from a
state s(t) = (s1(t),...,sn(t)) at a given moment of time ¢
to the state s(t+1) = (s1(¢ +1),...,8,(t + 1)) at the next
moment of time ¢t + 1. In general, we have a dependence
Si(t + 1) = fi(81(t), e Sn(t)).

In many practical situations, e.g., in control, we have a
stable state s that does not change in time, and we
are interested in small deviations from this stable state
s(t) = s, ie., the situations when As;(t) Lef si(t) — SEO)
is small. In terms of As;, the dynamic equation can be
written as follows: As;(t + 1) = Fi(Asi(t),...,Asn(t)).
Since the values As;(t) are small, we can often safely ig-
nore the quadratic and higher order terms in the depen-
dence F;, and assume that the function Fj; is linear. Since
Asi(t) = ... = Asy(t) = 0 leads to As;(t + 1) = 0, this
linear dependence has no free term, i.e.:

Asi(t + 1) = zn: ;g Asi(t), (2)

for some coefficients a;;. These coefficients form a matrix
A, and in terms of this matrix, the dynamic equations take
the form of a matrix product: As(t + 1) = A As(t).

In many real-life situations, we do not know the exact values
of the quantities a;;; for each ¢ and j, we only know the
interval a;; of possible values of a;;; see, e.g., [2, 3]. These
intervals form an interval matriz

all - aly e aln
A= a;1 N aij e Ain . (3)
am1 cee Qmy ... Amn

We say that a matrix A with entries a;; is consistent with the
information described by an interval matrix — and denote it
by A€ A —if a;; € a;; for all 4 and j.

2. WHY PRODUCTS OF INTERVAL MA-
TRICES

In many application problems, it is important to find the
product of two or more matrices. For example, if the transi-
tion (2) from the moment ¢ to the moment ¢+ 1 is described
by a matrix A, and the transition from the moment ¢ 4 1



to the moment ¢ + 2 is described by a matrix B, then the
transition from the moment ¢ to the moment ¢ 4+ 1 can be
described by the product matrix C = BA, with entries

Cij = Z Qik - brj. (4)
k=1

So, in the situations when the only information that we have
about A is that A € A, and the only information that we
have about B is that B € B, we would like to know the
resulting bounds on ¢;;, i.e., we would like to know, for
every 7 and 7, the set (interval) of possible values:

def
(AB);; = {(4B)i;|A€ A,B € B}. (5)
Similar, for a transition from t to ¢t 4+ 3, we are interested in
the “product” of three interval matrices:

def

(ABC)” = {(ABC)” ‘A S A,B < B7C S C} (6)

How can we compute these products?

3. COMPUTING PRODUCTS OF INTER-
VAL MATRICES: TRADITIONAL AP-
PROACH

The problem of computing the product of two or three ma-
trices is a particular case of the following general problem:
we have a function f(x1,...,xy) of n variables, we know the
interval x; of possible values of each of these variables, and
we must find the range

def

f(x1,.x0) = {f(21,... ,Tn € Xn}
(7)

of this function when z; € x;. This general problem is called
the problem of interval computations; see, e.g., [5, 6, 13].

,Zn) |1 € %1, ..

It is known that this range estimation problem is, in general,
NP-hard [7]. Interval computations techniques enable us to
either compute this range exactly, or at least to provide an
enclosure for this range. For the case when n = 2 and the
function f(z1,z2) is one of the standard arithmetic opera-

tions (4, —, multiplication, etc.), there are known explicit
formulas for the range of f. For example,
[0, T1] + 25, 2] = [z, + 25, 71 + T2]; (®)
[Zlafl} ’ [§27f2] = [min(gl "Zg, Ty - T2, T1 " Ty, T1 " T2),
max(z; - Ty, T, * T2, T1 * Ty, T1 * T2)]. 9)

These formulas form interval arithmetic; see, e.g., [5, 6, 13].

One way to compute the range for more complex functions
f is to use straightforward (“naive”) interval computations,
i.e., replace each operation forming the algorithm f with
the corresponding operation from interval arithmetic. This
technique leads to an interval that is guaranteed to be an
enclosure, i.e., to contain the desired range; it is known,
however, that sometimes, this interval contains excess width,
e., it is wider than the desired range [5, 6, 13].

An important case when straightforward interval computa-
tions lead to the exact range is the case of single-use expres-
stons (SUE), when each variable z; occurs only once; see,

, [4, 5]. For example, the formula (4) is a SUE, so for

the product AB = (c;;)i,; of two interval matrices, we can
compute c;; as follows:

Cij = Z aik * bkj. (10)
k=1

4. COMPUTING
THE PRODUCT OF THREE INTERVAL
MATRICES IS NP-HARD

For the product D = ABC of three matrices, the expression

dij = Z Z aik-bii-cij is not SUE, so we can only guarantee
k=11=1
that the straightforward interval computation leads to an

enclosure. Actually, we can prove not only that it is not
always exact, but that the problem of computing the exact
product (6) of three interval matrices is NP-hard.

Indeed, it is known [7, 14] that the following problem is NP-
hard: given a square matrix B = (b;;);,j, compute the range
n n
of the sum > x; -
i=1j=1
sum is a product of three matrices: 7 By. To extend this
result to n X n matrices A, B, and C, we can simply add Os
to 27 and y:

bij - y; when x; = y; = [—1,1]. This

X1 ... Xp yi 0o ... 0
A= o ... O . C= y2 0 ... O
0o ... O y. 0 ... O

For the product D = ABC, we have di1 = 7 By. So, since
computing the range of 7 By is NP-hard, computing the
range ABC is also an NP-hard problem.

5. WHY POWER OF A MATRIX

In many practical situations, we know that the system is
stationary, i.e., that the transition from each moment of
time to the next is described by the same matrix A. In this
case, the transition from the moment ¢ to the moment ¢+2 is
described by the matrix A2, the transition from the moment
t to the moment ¢ + 3 is described by the matrix A3, etc

When we only know A with interval uncertainty, i.e., when
we only know that A € A for a given interval matrix A, then
we would like to know, for every ¢ and j, the set (interval)
of possible values of A? and/or A%:

(A?);; (A% | A€ A); (A% & {(4%);;]|Ac A).

6. FEASIBLE ALGORITHM FOR COM-
PUTING THE SQUARE OF AN INTER-
VAL MATRIX

For B = A?, the expression b;; = > a;i - ax; is not SUE.

k=1

For example, for ¢ # j, we have two occurrences of a;;:

aij - aj; (when k = j) and a;; - a;; (when k = 7). However,

all other terms occur only once, and this occurrence can be
reformulated into the following SUE expression:

b= Y

kik#i, k]

@i - agj + aij - (@i +aj5) (E#7).  (11)



Similarly, the expression for b;; can be reformulated in the
SUE form:

bii = Z @ik - Qi + g (12)
k:k#1

By applying straightforward interval computations to these
expressions, we get a feasible algorithm for computing the
exact bounds for AZ:

b= Y

kiki k£

aig - ag; +ay; - (au +ay;) (0#7); (13)

by = Z ak - ak; +ag. (14)
k:k#1

7. COMPUTING THE CUBE OF AN IN-
TERVAL MATRIX: INTERVAL MATRIX
PRODUCT IS NOT ASSOCIATIVE

For A2, we can, in principle, also use straightforward inter-
val computations and compute the enclosure. It is worth
mentioning that not only the resulting enclosure is not ex-
act, but we get different results depending on the order in
which we apply the matrix multiplication.

Namely, let us denote the straightforward product (10) of
two interval matrices by A s B. Then, this operation is not
even associative: in general, (A *; A)xs A # A *; (A xg A).
Such an example was first given in [10, 11, 12]; in this paper,
we give the simplest possible example of a 2 X 2 matrix A
in which only one entry is known with interval uncertainty
and all the values and endpoints of the intervals are equal
to 0, 1, or —1:

- » . then A, A= 12 71 ;
A (1 [01]> hen A <. A ([2] [11]>

Lo 0 2
seinem= (1 40
aeemreas (08 G La ana)
mmA:(}aﬁ),<ﬁ7(1%m Him)

3 [ 14a2 a2 +ai, .
A° = < l4+ai —(L+an) )’ hence

A* = < [162] [1?2] ); A’ = ( [[1122]] [—[(2):2—]1] )

Comment. It should not be surprising that if we take un-
certainty into consideration, then a previously associative
operation becomes non-associative. For example, in con-
structive mathematics, a computable real number z is usu-
ally defined as an algorithm that maps a natural number k
into a 2~ *-approximation r(k) to the number z, i.e., into
the rational number for which |z — r(k)| < 27F; see, e.g.,
[1] for the general introduction and [8, 9] for the software
implementation.

If we know such algorithms r and s for two real numbers z
and y, then we can construct the algorithm & s for approxi-
mating the sum z+y: namely, (rds)(k) = r(k+1)+s(k+1);

from |z —r(k +1)] < 27* D and |y — s(k + 1)] < 27*FD]
we can conclude that

l(z+y)—(r(k+1)+s(k+1)) <
e —r(k+ D]+ |ly—s(k+1) <
g—(k+1) | g=(h+1) _ gk

If we have three numbers z, y, and x to add, with the algo-
rithms r, s, and ¢, then we can construct the algorithm for
approximating the sum = + y + z as either (r & s) @t or as
r@ (s ®t). One can see that these two algorithms are, in
general, different, i.e., that & is not associative.

Non-associativity also naturally emerges if we consider prob-
abilistic uncertainty; see, e.g., [15].

8. COMPUTING THE CUBE OF AN IN-

TERVAL MATRIX IS NP-HARD

Let us prove that, in general, computing A® is NP-hard. For
this, we will use the same result from [7, 14] as we used to
prove that computing the product of three interval matrices
is NP-hard: that, given a square matrix B = (bs;)s,j, it is
NP-hard to compute the range of the product =¥ By, where
xi =y; =[-1,1].

Specifically, for each n x n matrix B, we will consider the
following (2n + 2) X (2n + 2) interval matrix:

A:<2g)7 (15)

where
0‘ 0 0 ‘xl Xn
_ _ Y1
L= 0 B » U= 0
Yn
For every matrix
0 U 0 U
A:(L 0)eA:(L 0), (16)
we have
2 (0 U 0O U\ _ (UL 0
A_(L O>(L 0>—< 0 LU>’ (17)
hence

Here,




hence

where z = T By. So, (ULU)11 = (A3)17n+2 = 2T By. Since
computing the range of 7 By is NP-hard, computing the
range A? is also an NP-hard problem.

9. ACKNOWLEDGMENTS

This work was supported by by the German Research
Council DFG, by NASA grant NCC5-209, by USAF grant
F49620-00-1-0365, by NSF grants EAR-0112968, EAR-
0225670, and EIA-0321328, by Army Research Labora-
tories grant DATM-05-02-C-0046, and by the NIH grant
3T34GMO008048-20S1.

The authors are thankful to all the participants of the In-
ternational Dagstuhl Seminar “Numerical Software with Re-
sult Verification” (Dagstuhl Castle, Germany, January 19—
24, 2003) for valuable discussions.

10. REFERENCES

[1] O. Aberth, Precise Numerical Analysis Using C++,
Academic Press, New York, 1998.

[2] B. R. Barmish, New tools for robustness of linear
systems, McMillan, N.Y., 1994.

[3] S. P. Bhattacharyya, H. Chapellat, and L. Keel,
Robust Control: The Parametric Approach,
Prentice-Hall, Upper Saddle River, NJ, 1995.

[4] E. Hansen, Sharpness in interval computations,
Reliable Computing, 1997, Vol. 3, pp. 7-29.

[5] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter,
Applied Interval Analysis: With Examples in
Parameter and State Estimation, Robust Control and
Robotics, Springer, London, 2001.

[6] R. B. Kearfott, Rigorous Global Search: Continuous
Problems, Kluwer, Dordrecht, 1996.

[7] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl,
Computational complexity and feasibility of data
processing and interval computations, Kluwer,
Dordrecht, 1997.

[8] D. Lester, Using PVS to validate the inverse
trigonometric functions of an exact arithmetic, In:
R. Alt, A. Frommer, R. B. Kearfott, and W. Luther
(eds.), Numerical Software with Result Verification,
(International Dagstuhl Seminar, Dagstuhl Castle,
Germany, January 19-24, 2003), Springer Lectures
Notes in Computer Science, 2004, Vol. 2991,
pp. 274-305.

[9] D. Lester and P. Gowland, Using PVS to validate the
algorithms of an exact arithmetic, Theoretical
Computer Science, 2001, Vol. 291, pp. 203-218.

[10] G. Mayer, On the convergence of powers of interval
matrices, Linear Algebra and its Applications, 1984,
Vol. 58, pp. 201-216.

[11] G. Mayer, On the convergence of powers of interval
matrices, Part II, Numerische Mathematik, 1985,
Vol. 46, pp. 69-83.

[12] G. Mayer, Grundbegriffe der Intervallrechnung, In:
U. Kulisch (ed.), Wissenschaftlisches Rechnen mit
Einfihrung, Vieweg, Braunschweig, 1989, pp. 101-117.

[13] R. E. Moore, Methods and Applications of Interval
Analysis, STAM, Philadelphia, 1979.

[14] J. Rohn, Computing the Norm || A||; is NP-Hard,
Linear and Multilinear Algebra, 2000, Vol. 47,
pp. 195-204.

[15] R. Trejo, V. Kreinovich, I. R. Goodman, J. Martinez,
and R. Gonzalez, A Realistic (Non-Associative) Logic
And a Possible Explanations of 7 + 2 Law,
International Journal of Approximate Reasoning,
2002, Vol. 29, pp. 235-266.



