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Abstract—To check whether a new algorithm is better, re- Il. HYPOTHESESTESTING. HOW IT IS CURRENTLY DONE

searchers use traditional statistical techniques for hypotheses —_
testing. In particular, when the results are inconclusive, they There are many known statistical methods for hypotheses

run more and more simulations (2 > ni, n3 > 7o, ... testing; see, e.g., [5], [6]. One of these methods is as follows:
Tm > Nm—1) Until the results become conclusive. In this paper, we We compute the population average

point out that these results may be misleading: in the traditional Ty + +x

approach, we select a statistic and then choose a threshold for T = S N e 1
which the probability of this statistic “accidentally” exceeding n

this threshold is smaller than, say, 1%. It is very easy to run and the population standard deviation
additional simulations with ever-larger n. The probability of

error is still 1% for each n;, but the probability that we reach an 1 n
erroneous conclusion for at least one of the values; increases 5= . Z(gji —T)2,
ask increases. In this paper, we design new statistical techniques n—1 =1

oriented towards experiments on simulated data, techniques that )
would guarantee that the error stays under, say, 1% no matter and check whether the ratio

how many experiments we run. _
y exp tdﬁf\/ﬁ'(x_u)

S

(called ‘t statistic”) exceeds a certain threshald

According to the Central Limit Theorem, for large the

One of the main uses of statistics is to compare two (distribution of the difference — 1, is almost Gaussian, with O
more) hypotheses. For example, we would like to cheelerage and standard deviatioy/n, and the sample standard
whether a new medical treatment is better than the previouslgviation is almost equal te. Thus, if 4, = p (i.e., if the
known one. new method is not better than the existing one), then, for large

Let us describe this problem in more precise terms. n, the ¢ statistic is normally distributed with O average and

Usually, an efficiency of a method can be described by standard deviation 1. For a normal distribution, the probability
appropriate numerical quantity For example, an efficiency of Of exceedingo is ~ 2.5%. So, if the new method is not better,
an anti-cholesterol medicine can be described by the averde gett > 2 with probability ~ 2.5%.
amount to which its use lowers the patient’s originally high Thus, if ¢ > 2, we conclude that the new method is better
cholesterol level during a certain period of time. with certainty 100% — 2.5% = 97.5%. Similarly, if we ¢ >

So, we arrive at the following problem: 3, then we conclude that the new method is better with the
certainty~ 99.95%, etc.

I. HYPOTHESESTESTING. AN IMPORTANT APPLIED
PROBLEM

« we know the average amount corresponding to the
original hypothesis (e.g., the original treatment); [1l. THEORETICALLY, WE CAN ALWAYS DISTINGUISH
« we have the resultgy,...,x, of the experiments with BETWEEN TWO HYPOTHESES

the new method. Theoretically, if a new method is better, i.e., if the corre-

Based on these results, we would like to check whether teponding mean., is larger thanu, then we will eventually
new method is indeed better, i.e., whether for the new methdithd it out as long as we perform a sufficient number of
the mean valug:, is larger thanu. experiments. Indeed, jf, > p, then, taking into consideration



thats ~ o, we can describé as the sum of the following two VII. THE DIFFERENCEBETWEEN REAL AND SIMULATED

terms: ~ DATA AND THE RESULTING PROBLEM

Vi (@ = pa) Ve (e = )
g

a

t~

In real data, each data point requires a lot of effort to get.

As we have mentioned, the first term is, for largenormally As a result, there is a strong limitation on the amount of data

distributed with O average and standard deviation 1; thus, itt@at we can acquire.

bounded by 2 with a certainty 95%. On the other hand, when!n contrast, for simulated data, new data points are easy to
e > p, the second terms grows with: it tends tooco as generate. In many cases, we can easily get thousands, millions,
nm_> . and even billions of simulated data points.

So, e.g., whem is so large that the second termist, the ~ |f after many repeated experiments with < ny <

sum is greater than 2, and hence, the above method recognizes< " Simulated data points researchers finally arrive at a
that the new method is better. For the second term in the ab&@ulation for whicht > 2, they follow the recommendations

sum to be larger thas, it is sufficient to take of the traditional hypothesis testing techniques and conclude
) that the new algorithm is better with certainty97.5%.
n> < 4o ) ' However, as we will show, this is an erroneous conclusion.
T\ g — Specifically, we will show that even if the new method is of
IV. IN PRACTICE, WHAT |F RESULTSARE exactly the same quality as the previous one, eventually, after
INCONCLUSIVE? sufficiently many simulation, we will get > 2 (or ¢ > ¢, for

| i . ¢ . tal h dat whatever threshold, we select).
N practice, in most experimental areas, each data poin ndeed, for everyi, let ¢; describe the value of the

requires either a lot of investment (e.g., in theoretical physicgpatistiC corresponding ta; simulations. Wheny, =
and/or a lot of risk (as in medical testing). So, researchers Bn. as we have mentionled for Iarge.the corﬁeléponé?ﬁg

to perqforn:honly as many experiments as necessary to test § fue oft is normally distributed with 0 average and standard
NEW Nypotnesis. deviation 1. Whem,; < n;;1, then, as one can easily check,

With the small number of tests, the result of testing is Oﬂet'ﬂe corresponding random variablesand ¢;,, are almost
inconclusive (especially if a new medicine is expected to I?Fi i

. . dependent. So, when the sample sizegrow fast enough,
only marginally better than the previously used one). In th esulting values,. s, . ... 1, . .. are close to independent

. . e
case, if researchers have a reason to believe that a new me Sr(fLally distributed random variables with O average and
is indeed better, a reasonable approach is to perform MQIE \dard deviation 1

experiments — hoping that with more comparisons, we will be : . . .
; . Hence, in this sequence, the probability that> 2 is
able to detect the difference between the two techniques. . i .
approximately equal to the probability that a normally dis-

Since, as we have mentioned, there is a severe IimitatiP : . _
. ributed random variable with 0 average and standard deviation
on the amount of experimental data, we can usually make a .
. . T'exceeds 2 —i.e., ter 2.5% = 1/40. Thus, on average, one

most one or two more iterations. : .
out of 40 iterations leads to> 2.

V. HYPOTHESESTESTING FORSIMULATED DATA So, when the new method is not bettet, (= w), but we

In computer science, we have a similar task: checkirf peat the experiment 40 times, with larger and larger size

whether a new algorithm for solving a practical problem i€ simulated samples, we are guaranteed to encounter at least
better than the previously known algorithms. one case whety will be greater than 2 — and when, therefore,

A natural way to solve this task is to compare the perfthe traditional hypgthesis testing technique yviII lead us to an
mance of both algorithms on simulated data. Because of ffiéoneous conclusion that the new method is better.

similarity with the above situation, researchers use tradition@h,mentThe general fact that traditional statistical methods
statistical techniques for comparing angnthms. These methagds, hot always adequately applicable to the statistical process-
were pioneered in 1990s (see, e.g., [3]); for later developmeply o simulated data was emphasized in several papers (see,

see, e.g., [1], 2], [4]. e.g., [1]) and highlighted at several conferences, including the
VI. WHAT IF RESULTSARE INCONCLUSIVE? CASE OF major 2000 International Conference on Artificial Intelligence

SIMULATED DATA in Austin, Texas [2].

When the results are inconclusive, the computer sciengﬁ”
researchers currently follow the recommendations from the
traditional hypothesis testing. Namely, when aftgr simu- We have mentioned that if we perform a large number of
lations, the results are inconclusive, but the researchers haxperimentsn and in one of the experiments, the correspond-
reasons to believe that the new algorithm is better than timg value of thet statistic exceed the thresholt ¢ ), we
old one, researchers follow the recommendations develomdtuld not conclude that the new method is better, because
for hard-to-get experimental data: they run more and moesen when the new method is not bettgrwill eventually
simulations @2 > n1, n3 > no, ...) until the results become exceedt, — as long as sufficiently many experiments are
conclusive. performed.

SEEMINGLY NATURAL SOLUTION TO THIS PROBLEM



At first glance, it may look like all we have to do todistribution function (cdf) of a Gaussian distribution with 0
rectify this situation is to limit the number of experiments. Foaverage and standard deviation 1.
example, fort, = 2, if we only allow m < 40 experiments,  Thus, for a sample size;, if we select a threshold;, then
we should be able to avoid the above problem. the probability that foy.,, = p, accidentally, the corresponding
t-value t; exceeds this threshold, is equal ite- Fy(v;), and
IX. DOES THEABOVE SEEMINGLY NATURAL SOLUTION - .
the probability that; < v; is equal toFy(v;).

WORK? ADDITIONAL PROBLEM REVEALED : ; .
. ] If we repeat experiments with several sample sizes
Does the above seemingly natural solution work? If we

restrict ourselves to experiments with only < 40 iterations, ny < ... <K Ny,

will this make the conclusions of the traditional hypothesis ) o . .
testing technique justified? then the corresponding statisti¢s are practically indepen-

Let us analyze this question. According to the tradition&ent. Therefore, if we select the corresponding thresholds
techniques, if we encounter the case when> t,, we UL -+ Ums then the probabilityy that all the corresponding
conclude that the new method is better with certainty7.5%. tvValuésti,....t, do not exceed the selected thresholds

This conclusion makes sense if we performed a single ¢@n be estimated as the product of the of the corresponding
periment withn, data points. In this case, if; is sufficiently Probabilities: .
large, the distribution of; is normal, so the probability that g~ HFO(Ui)-
t1 > 2 is indeed~ 2.5% and the probability that; < 2 e
is =~ 97.5%. In other words, ifu, = u, then the probability »
that we accidentally get; > 2 is 2.5%. So, if we do observe 1hUS, the probability that for s, = u, one of thet values
thatt, > 2, we conclude that the new method is better with accidentally exceeds the corresponding threshpldan be

probability 100% — 2.5%. estimated as

Let us now consider what happens when we perform several m
(m) experiments. In each of the experiments, the probability p=1-gr1—-]]Fo(w).
thatt; > 2 is still 2.5%. However, in contrast to the traditional i=1

case of a single experiment, we now make a conclusion tisd, if thus computed probability is smaller than or equal to
the new method is better when at least one of thevalues the required probability of errgr, (p < po), we conclude that
of ¢ exceeds 2. What is the probabilipythat this accidentally the new method is better with certainty 1 — py.
happens when actually, = p? This probabilityp can be  As a result, we arrive at the following method:
estimated ag — ¢, whereq is the probability that none of the
valuest; exceeds 2, i.e., that < 2 for all s. XI. NEW METHOD: SUMMARY
_For eachi, the probability thatt; < 2 is equal t0 0.975. 14 yoqt whether a new method is better than the previously
Since the values; are almost independent, this probability used one, we do the following:

is approximately equal to the product of the corresponaing lect i . . .
probabilities, i.e., t@.975™. Hence,p ~ 1 — 0.975™: * We Select a SeqUENCE Ol INCreasing SIZEsS. ... < m;

« we select the certainty levelh < 1, and
« we select the corresponding threshold levels. . ., v,,
in such a way that

o for m =1, we getp = 2.5%;
« for m = 2, we getp =~ 5%;
« for still larger m, we getp ~ m - 2.5% — up to= 25%
for m = 10. m
So, if performm = 10 experiments and get; > 2, the 1= HFU(W) < Po;
probability of this accidentally happening when, = u =t
is not 2.5% as researchers may erroneously conclude, it is i.., equivalently, that
actually 25%, 10 times larger. Thus, if we ggt> 2, our m
confidence that the new method is better is not 97.5% — it is HFO(UZ') >1—po.
100% — 25% = 75%, much smaller and much less reliable =1
than one may think based on the uncritical application of t

. . . . hﬁ1en, we sequentially perform experiments with samples of
traditional hypothesis testing techniques. q yp P P

sizesni, no, ...
X. WHAT WE PROPOSE TODO: DERIVATION OF THE NEW After performing each experiment, we compute the corre-
METHOD sponding valug; of the ¢ statistic, and then:

We have already mentioned that when the new method ise If we gett; > v;, we stop the experiments and conclude
not better than the old one (i.e., whgp = ), then, for large that the new method is better, with certaintyl — po.
n, the distribution of the statisti¢ is, in effect, normal, with  « If we gett; < v; andi < m, we continue the experiment
0 average and standard deviation 1. Therefore, the probability Wwith the sample of size; ;.
that in one experiment, exceeds some value is equal to [f in all m experiments, we get < v;, then we conclude that
1 — Fy(t), where Fy(v) def Prob(t < v) is the cumulative the new method is not better than the previously used one.
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