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Abstract— To check whether a new algorithm is better, re-
searchers use traditional statistical techniques for hypotheses
testing. In particular, when the results are inconclusive, they run
more and more simulations (n2 > n1, n3 > n2, . . . , nm > nm−1)
until the results become conclusive. In this paper, we point out
that these results may be misleading. Indeed, in the traditional
approach, we select a statistic and then choose a threshold for
which the probability of this statistic “accidentally” exceeding
this threshold is smaller than, say, 1%. It is very easy to run
additional simulations with ever-larger n. The probability of
error is still 1% for each ni, but the probability that we reach an
erroneous conclusion for at least one of the valuesni increases as
m increases. In this paper, we design new statistical techniques
oriented towards experiments on simulated data, techniques that
would guarantee that the error stays under, say, 1% no matter
how many experiments we run.

I. HYPOTHESESTESTING: AN IMPORTANT APPLIED

PROBLEM

One of the main uses of statistics is to compare two (or
more) hypotheses. For example, we would like to check
whether a new medical treatment is better than the previously
known one.

Let us describe this problem in more precise terms.
Usually, an efficiency of a method can be described by an

appropriate numerical quantityx. For example, an efficiency of
an anti-cholesterol medicine can be described by the average
amount to which its use lowers the patient’s originally high
cholesterol level during a certain period of time.

So, we arrive at the following problem:

• we know the average amountµ corresponding to the
original hypothesis (e.g., the original treatment);

• we have the resultsx1, . . . , xn of the experiments with
the new method.

Based on these results, we would like to check whether the
new method is indeed better, i.e., whether for the new method,
the mean valueµx is larger thanµ.

II. H YPOTHESESTESTING: HOW IT IS CURRENTLY DONE

There are many known statistical methods for hypotheses
testing; see, e.g., [5], [6]. One of these methods is as follows:
we compute the population average

x̄ =
x1 + . . . + xn

n

and the population standard deviation

s̃ =

√√√√ 1
n− 1

·
n∑

i=1

(xi − x̄)2,

and check whether the ratio

t
def=

√
n · (x̄− µ)

s̃

(called “t statistic”) exceeds a certain thresholdt0.
According to the Central Limit Theorem, for largen, the

distribution of the differencēx − µx is almost Gaussian,
with 0 average and standard deviationσ/

√
n, whereσ is the

(unknown) standard deviation of the actual distribution, and
the sample standard deviation is almost equal toσ. Thus,
if µx = µ (i.e., if the new method is not better than the
existing one), then, for largen, the t statistic is normally
distributed with 0 average and standard deviation 1. For a
normal distribution, the probability of exceeding2σ is≈ 2.5%.
So, if the new method is not better, we gett > 2 with
probability≈ 2.5%.

Thus, if t > 2, we conclude that the new method is better
with certainty100% − 2.5% = 97.5%. Similarly, if we t >
3, then we conclude that the new method is better with the
certainty≈ 99.95%, etc.

III. T HEORETICALLY, WE CAN ALWAYS DISTINGUISH

BETWEEN TWO HYPOTHESES

Theoretically, if a new method is better, i.e., if the corre-
sponding meanµx is larger thanµ, then we will eventually



find it out as long as we perform a sufficient number of
experiments. Indeed, ifµx > µ, then, taking into consideration
that s̃ ≈ σ, we can describet as the sum of the following two
terms:

t ≈
√

n · (x̄− µx)
σ

+
√

n · (µx − µ)
σ

.

As we have mentioned, the first term is, for largen, normally
distributed with 0 average and standard deviation 1; thus, it is
bounded by 2 with a certainty 95%. On the other hand, when
µx > µ, the second terms grows withn: it tends to∞ as
n →∞.

So, e.g., whenn is so large that the second term is> 4, the
sum is greater than 2, and hence, the above method recognizes
that the new method is better. For the second term in the above
sum to be larger than4, it is sufficient to take

n ≥
(

4σ

µx − µ

)2

.

IV. I N PRACTICE, WHAT IF RESULTSARE

INCONCLUSIVE?

In practice, in most experimental areas, each data point
requires either a lot of work (as in foundational experiments
related to theoretical physics) and/or a lot of risk (as in
medical testing). So, researchers try to perform only as many
experiments as necessary to test the new hypothesis.

With the small number of tests, the result of testing is often
inconclusive (especially if a new medicine is expected to be
only marginally better than the previously used one). In this
case, if researchers have a reason to believe that a new method
is indeed better, a reasonable approach is to perform more
experiments – hoping that with more comparisons, we will be
able to detect the difference between the two techniques.

Since, as we have mentioned, there is a severe limitation
on the amount of experimental data, we can usually make at
most one or two more iterations of this process.

V. HYPOTHESESTESTING FORSIMULATED DATA

In computer science, we have a similar task: checking
whether a new algorithm for solving a practical problem is
better than the previously known algorithms.

A natural way to solve this task is to compare the perfor-
mance of both algorithms on simulated data. Because of the
similarity with the above situation, researchers use traditional
statistical techniques for comparing algorithms. This approach
was pioneered in 1990s (see, e.g., [3]); for later development,
see, e.g., [1], [2], [4].

VI. W HAT IF RESULTSARE INCONCLUSIVE?
CASE OFSIMULATED DATA

When the results are inconclusive, the computer science
researchers currently follow the recommendations from the
traditional hypothesis testing. Namely, if aftern1 simulations,
the results are inconclusive, but the researchers have reasons
to believe that the new algorithm is better than the old one, the
researchers follow the recommendations developed for hard-
to-get experimental data: they run more and more simulations
(n2 > n1, n3 > n2, . . . ) until the results become conclusive.

VII. T HE DIFFERENCEBETWEEN

REAL AND SIMULATED DATA

The main difference between real and simulated data is as
follows.

For real data, each data point requires a lot of effort to get.
As a result, there is a strong limitation on the amount of data
that we can acquire.

In contrast, for simulated data, new data points are easy to
generate. In many cases, we can easily get thousands, millions,
and even billions of simulated data points.

VIII. T HE RESULTING PROBLEM

If after many repeated experiments withn1 < n2 <
. . . < nm simulated data points, researchers finally arrive at a
simulation for whicht > 2, they follow the recommendations
of the traditional hypothesis testing techniques and conclude
that the new algorithm is better with certainty≥ 97.5%.

As we will show, this is an erroneous conclusion. Specif-
ically, we will show that even if the new method is of
exactly the same quality as the previous one, eventually, after
sufficiently many simulation, we will gett > 2 (or t > t0 for
whatever thresholdt0 we select).

Indeed, for everyi, let ti describe the value of thet
statistic corresponding toni simulations. Whenµx = µ,
then, as we have mentioned, for largen, the corresponding
value oft is normally distributed with 0 average and standard
deviation 1. Whenni ¿ ni+1, then, as one can easily check,
the corresponding random variablesti and ti+1 are almost
independent. So, when the sample sizesni grow fast enough,
the resulting valuest1, t2, . . . , tm, . . . are close to independent
normally distributed random variables with 0 average and
standard deviation 1.

Hence, in this sequence, for everyi, the probability that
ti > 2 is approximately equal to the probability that a normally
distributed random variable with 0 average and unit standard
deviation exceeds the value 2 – i.e., to≈ 2.5% = 1/40. Thus,
on average, one out of 40 iterations leads tot > 2.

So, when the new method is not better (µx = µ), but we
repeat the experimentÀ 40 times, with larger and larger size
of simulated samples, we are guaranteed to encounter at least
one case whenti will be greater than 2 – and when, therefore,
the traditional hypothesis testing technique will lead us to an
erroneous conclusion that the new method is better.

Comment.The general fact that traditional statistical methods
are not always adequately applicable to the statistical process-
ing of simulated data was emphasized in several papers (see,
e.g., [1]) and highlighted at several conferences, including the
major 2000 International Conference on Artificial Intelligence
in Austin, Texas [2].

IX. SEEMINGLY NATURAL SOLUTION TO THIS PROBLEM

We have mentioned that if we perform a large number of
experimentsm and in one of the experiments, the correspond-
ing value of thet statistic exceed the threshold (ti > t0), we
should not conclude that the new method is better, because



even when the new method is not better,ti will eventually
exceedt0 – as long as sufficiently many experimentsm are
performed.

At first glance, it may look like all we have to do to
rectify this situation is to limit the number of experiments. For
example, fort0 = 2, if we only allow m < 40 experiments,
we should be able to avoid the above problem.

X. DOES THEABOVE SEEMINGLY NATURAL SOLUTION

WORK? ADDITIONAL PROBLEM REVEALED

Does the above seemingly natural solution work? If we
restrict ourselves to experiments with onlym < 40 iterations,
will this make the conclusions of the traditional hypothesis
testing technique justified?

Let us analyze this question. According to the traditional
techniques, if we encounter the case whenti > t0, we
conclude that the new method is better with certainty≥ 97.5%.

This conclusion makes sense if we performed a single ex-
periment withn1 data points. In this case, ifn1 is sufficiently
large, the distribution oft1 is normal, so the probability that
t1 > 2 is indeed≈ 2.5% and the probability thatt1 ≤ 2
is ≈ 97.5%. In other words, ifµx = µ, then the probability
that we accidentally gett1 > 2 is 2.5%. So, if we do observe
that t1 > 2, we conclude that the new method is better with
probability 100%− 2.5%.

Let us now consider what happens when we perform several
(m) experiments. In each of the experiments, the probability
that ti > 2 is still 2.5%. However, in contrast to the traditional
case of a single experiment, we now make a conclusion that
the new method is better when at least one of them values
of t exceeds 2. What is the probabilityp that this accidentally
happens when actuallyµx = µ? This probabilityp can be
estimated as1− q, whereq is the probability that none of the
valuesti exceeds 2, i.e., thatti ≤ 2 for all i.

For eachi, the probability thatti ≤ 2 is equal to 0.975.
Since the valuesti are almost independent, this probabilityq
is approximately equal to the product of the correspondingm
probabilities, i.e., to0.975m. Hence,p ≈ 1− 0.975m:

• for m = 1, we getp = 2.5%;
• for m = 2, we getp ≈ 5%;
• for still larger m, we getp ≈ m · 2.5% – up to≈ 25%

for m = 10.

So, if perform m = 10 experiments and getti > 2, the
probability of this accidentally happening whenµx = µ is
not 2.5% (as researchers may erroneously conclude), it is
actually 25%, 10 times larger. Thus, if we getti > 2, our
confidence that the new method is better is not 97.5% – it is
100% − 25% = 75%, much smaller and much less reliable
than one may think based on the uncritical application of the
traditional hypothesis testing techniques.

XI. W HAT WE PROPOSE TODO:
DERIVATION OF THE NEW METHOD

We have already mentioned that when the new method is
not better than the old one (i.e., whenµx = µ), then, for large
n, the distribution of the statistict is, in effect, normal, with

0 average and standard deviation 1. Therefore, the probability
that in one experiment,t exceeds some valuev, is equal to
1 − F0(t), whereF0(v) def= Prob(t < v) is the cumulative
distribution function (cdf) of a Gaussian distribution with 0
average and standard deviation 1.

Thus, for a sample sizeni, if we select a thresholdvi, then
the probability that forµx = µ, accidentally, the corresponding
t-value ti exceeds this threshold, is equal to1 − F0(vi), and
the probability thatti ≤ vi is equal toF0(vi).

If we repeat experiments with several sample sizes

n1 ¿ . . . ¿ nm,

then the corresponding statisticsti are practically indepen-
dent. Therefore, if we select the corresponding thresholds
v1, . . . , vm, then the probabilityq that all the corresponding
t-values t1, . . . , tm do not exceed the selected thresholds
can be estimated as the product of the of the corresponding
probabilities:

q ≈
m∏

i=1

F0(vi).

Thus, the probabilityp that for µx = µ, one of thet values
ti accidentally exceeds the corresponding thresholdvi can be
estimated as

p = 1− q ≈ 1−
m∏

i=1

F0(vi).

So, if thus computed probabilityp is smaller than or equal to
the required probability of errorp0 (p ≤ p0), we conclude that
the new method is better with certainty≥ 1− p0.

As a result, we arrive at the following method:

XII. N EW METHOD: SUMMARY

To test whether a new method is better than the previously
used one, we do the following:
• we select a sequence of increasing sizesn1 ¿ . . . ¿ nm;
• we select the certainty levelp0 ¿ 1, and
• we select the corresponding threshold levelsv1, . . . , vm

in such a way that

1−
m∏

i=1

F0(vi) ≤ p0,

i.e., equivalently, that
m∏

i=1

F0(vi) ≥ 1− p0.

Then, we sequentially perform experiments with samples of
sizesn1, n2, . . .

After performing each experiment, we compute the corre-
sponding valueti of the t statistic, and then:
• If we get ti > vi, we stop the experiments and conclude

that the new method is better, with certainty≥ 1− p0.
• If we get ti ≤ vi andi < m, we continue the experiment

with the sample of sizeni+1.
If in all m experiments, we getti ≤ vi, then we conclude that
the new method is not better than the previously used one.
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