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To check whether a new algorithm is better, re-
searchers use traditional statistical techniques for hy-
potheses testing. In particular, when the results are in-
conclusive, they run more and more simulations (n2 >
n1, n3 > n2, . . . , nm > nm−1) until the results become
conclusive. In this paper, we point out that these re-
sults may be misleading. Indeed, in the traditional ap-
proach, we select a statistic and then choose a thresh-
old for which the probability of this statistic “acci-
dentally” exceeding this threshold is smaller than, say,
1%. It is very easy to run additional simulations with
ever-larger n. The probability of error is still 1% for
eachni , but the probability that we reach an erroneous
conclusion for at least one of the valuesni increases
as m increases. In this paper, we design new statisti-
cal techniques oriented towards experiments on sim-
ulated data, techniques that would guarantee that the
error stays under, say, 1% no matter how many exper-
iments we run.
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1. Hypotheses Testing: An Important Applied
Problem

One of the main uses of statistics is to compare two (or
more) hypotheses. For example, we would like to check
whether a new medical treatment is better than the previ-
ously known one.

Let us describe this problem in more precise terms.
Usually, the efficiency of a method can be described by

an appropriate numerical quantityx. For example, the ef-
ficiency of an anti-cholesterol medicine can be described
by the average amount to which its use lowers the patient’s
originally high cholesterol level during a certain period of
time.

So, we arrive at the following problem:

• we know the average amountµ corresponding to the

original hypothesis (e.g., the original treatment);

• we have the resultsx1, . . . ,xn of the experiments with
the new method.

Based on these results, we would like to check whether
the new method is indeed better, i.e., whether for the new
method, the mean valueµx is larger thanµ.

2. Hypotheses Testing: How It Is Currently
Done

There are many known statistical methods for hypothe-
ses testing; see, e.g., [5, 6]. One of these methods is as
follows: we compute the population average

x̄ =
x1 + . . .+xn

n

and the population standard deviation

s̃=

√
1

n−1
·

n

∑
i=1

(xi − x̄)2,

and check whether the ratio

t
def=
√

n· (x̄−µ)
s̃

(called “t statistic”) exceeds a certain thresholdt0.
According to the Central Limit Theorem, for large

n, the distribution of the differencēx− µx is almost
Gaussian, with 0 average and standard deviationσ/

√
n,

whereσ is the (unknown) standard deviation of the actual
distribution, and the sample standard deviation is almost
equal toσ . Thus, ifµx = µ (i.e., if the new method is not
better than the existing one), then, for largen, the t sta-
tistic is normally distributed with 0 average and standard
deviation 1. For a normal distribution, the probability of
exceeding2σ is ≈ 2.5%. So, if the new method is not
better, we gett > 2 with probability≈ 2.5%.
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Thus, ift > 2, we conclude that the new method is bet-
ter with certainty100%−2.5%= 97.5%. Similarly, if we
t > 3, then we conclude that the new method is better with
the certainty≈ 99.95%, etc.

3. Theoretically, We Can Always Distinguish
Between Two Hypotheses

Theoretically, if a new method is better, i.e., if the cor-
responding meanµx is larger thanµ, then we will eventu-
ally find it out as long as we perform a sufficient number
of experiments. Indeed, ifµx > µ , then, taking into con-
sideration that̃s≈ σ , we can describet as the sum of the
following two terms:

t ≈
√

n· (x̄−µx)
σ

+
√

n· (µx−µ)
σ

.

As we have mentioned, the first term is, for largen, nor-
mally distributed with 0 average and standard deviation
1; thus, it is bounded by 2 with a certainty 95%. On the
other hand, whenµx > µ, the second terms grows withn:
it tends to∞ asn→ ∞.

So, e.g., whenn is so large that the second term is> 4,
the sum is greater than 2, and hence, the above method
recognizes that the new method is better. For the second
term in the above sum to be larger than4, it is sufficient
to take

n≥
(

4σ
µx−µ

)2

.

4. In Practice, What If Results Are Inconclu-
sive?

In practice, in most experimental areas, each data point
requires either a lot of work (as in foundational exper-
iments related to theoretical physics) and/or a lot of risk
(as in medical testing). So, researchers try to perform only
as many experiments as necessary to test the new hypoth-
esis.

With the small number of tests, the result of testing is
often inconclusive (especially if a new medicine is ex-
pected to be only marginally better than the previously
used one). In this case, if researchers have a reason to
believe that a new method is indeed better, a reasonable
approach is to perform more experiments – hoping that
with more comparisons, we will be able to detect the dif-
ference between the two techniques.

Since, as we have mentioned, there is a severe limita-
tion on the amount of experimental data, we can usually
make at most one or two more iterations of this process.

5. Hypotheses Testing for Simulated Data

In computer science, we have a similar task: checking
whether a new algorithm for solving a practical problem
is better than the previously known algorithms.

A natural way to solve this task is to compare the per-
formance of both algorithms on simulated data. Because
of the similarity with the above situation, researchers
use traditional statistical techniques for comparing algo-
rithms. This approach was pioneered in 1990s (see, e.g.,
[3]); for later development, see, e.g., [1, 2, 4].

6. What If Results Are Inconclusive?
Case of Simulated Data

When the results are inconclusive, the computer sci-
ence researchers currently follow the recommendations
from the traditional hypothesis testing. Namely, if after
n1 simulations, the results are inconclusive, but the re-
searchers have reasons to believe that the new algorithm is
better than the old one, the researchers follow the recom-
mendations developed for hard-to-get experimental data:
they run more and more simulations (n2 > n1, n3 > n2,
. . . ) until the results become conclusive.

7. The Difference Between
Real and Simulated Data

The main difference between real and simulated data is
as follows.

For real data, each data point requires a lot of effort to
get. As a result, there is a strong limitation on the amount
of data that we can acquire.

In contrast, for simulated data, new data points are easy
to generate. In many cases, we can easily get thousands,
millions, and even billions of simulated data points.

8. The Resulting Problem

If after many repeated experiments withn1 < n2 < .. . <
nm simulated data points, researchers finally arrive at a
simulation for whicht > 2, they follow the recommenda-
tions of the traditional hypothesis testing techniques and
conclude that the new algorithm is better with certainty
≥ 97.5%.

As we will show, this is an erroneous conclusion.
Specifically, we will show that even if the new method
is of exactly the same quality as the previous one, eventu-
ally, after sufficiently many simulation, we will gett > 2
(or t > t0 for whatever thresholdt0 we select).

Indeed, for everyi, let ti describe the value of thet
statistic corresponding toni simulations. Whenµx = µ ,
then, as we have mentioned, for largen, the correspond-
ing value oft is normally distributed with 0 average and
standard deviation 1. Whenni ¿ ni+1, then, as one can
easily check, the corresponding random variablesti and
ti+1 are almost independent. So, when the sample sizesni
grow fast enough, the resulting valuest1, t2, . . . , tm, . . . are
close to independent normally distributed random vari-
ables with 0 average and standard deviation 1.
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Hence, in this sequence, for everyi, the probability
that ti > 2 is approximately equal to the probability that
a normally distributed random variable with 0 average
and unit standard deviation exceeds the value 2 – i.e., to
≈ 2.5%= 1/40. Thus, on average, one out of 40 iterations
leads tot > 2.

So, when the new method is not better (µx = µ), but we
repeat the experimentÀ 40 times, with larger and larger
size of simulated samples, we are guaranteed to encounter
at least one case whenti will be greater than 2 – and when,
therefore, the traditional hypothesis testing technique will
lead us to an erroneous conclusion that the new method is
better.

Comment. The general fact that traditional statistical
methods are not always adequately applicable to the sta-
tistical processing of simulated data was emphasized in
several papers (see, e.g., [1]) and highlighted at several
conferences, including the major 2000 International Con-
ference on Artificial Intelligence in Austin, Texas [2].

9. Seemingly Natural Solution to this Problem

We have mentioned that if we perform a large num-
ber of experimentsm and in one of the experiments, the
corresponding value of thet statistic exceed the threshold
(ti > t0), we should not conclude that the new method is
better, because even when the new method is not better,
ti will eventually exceedt0 – as long as sufficiently many
experimentsmare performed.

At first glance, it may look like all we have to do to rec-
tify this situation is to limit the number of experiments.
For example, fort0 = 2, if we only allow m< 40 experi-
ments, we should be able to avoid the above problem.

10. Does the Above Seemingly Natural Solution
Work? Additional Problem Revealed

Does the above seemingly natural solution work? If we
restrict ourselves to experiments with onlym < 40 iter-
ations, will this make the conclusions of the traditional
hypothesis testing technique justified?

Let us analyze this question. According to the tradi-
tional techniques, if we encounter the case whenti > t0,
we conclude that the new method is better with certainty
≥ 97.5%.

This conclusion makes sense if we performed a single
experiment withn1 data points. In this case, ifn1 is suffi-
ciently large, the distribution oft1 is normal, so the prob-
ability that t1 > 2 is indeed≈ 2.5% and the probability
thatt1≤ 2 is≈ 97.5%. In other words, ifµx = µ , then the
probability that we accidentally gett1 > 2 is 2.5%. So,
if we do observe thatt1 > 2, we conclude that the new
method is better with probability100%−2.5%.

Let us now consider what happens when we perform
several (m) experiments. In each of the experiments, the
probability thatti > 2 is still 2.5%. However, in contrast to

the traditional case of a single experiment, we now make
a conclusion that the new method is better when at least
one of themvalues oft exceeds 2. What is the probability
p that this accidentally happens when actuallyµx = µ?
This probabilityp can be estimated as1−q, whereq is
the probability that none of the valuesti exceeds 2, i.e.,
thatti ≤ 2 for all i.

For eachi, the probability thatti ≤ 2 is equal to 0.975.
Since the valuesti are almost independent, this prob-
ability q is approximately equal to the product of the
correspondingm probabilities, i.e., to0.975m. Hence,
p≈ 1−0.975m:

• for m= 1, we getp = 2.5%;

• for m= 2, we getp≈ 5%;

• for still largerm, we getp≈m·2.5%– up to≈ 25%
for m= 10.

So, if performm = 10 experiments and getti > 2, the
probability of this accidentally happening whenµx = µ
is not 2.5% (as researchers may erroneously conclude), it
is actually 25%, 10 times larger. Thus, if we getti > 2,
our confidence that the new method is better is not 97.5%
– it is 100%−25%= 75%, much smaller and much less
reliable than one may think based on the uncritical appli-
cation of the traditional hypothesis testing techniques.

11. What We Propose to Do:
Derivation of the New Method

We have already mentioned that when the new method
is not better than the old one (i.e., whenµx = µ), then, for
largen, the distribution of the statistict is, in effect, nor-
mal, with 0 average and standard deviation 1. Therefore,
the probability that in one experiment,t exceeds some

valuev, is equal to1−F0(v), whereF0(v)
def= Prob(t < v)

is the cumulative distribution function (cdf) of a Gaussian
distribution with 0 average and standard deviation 1.

Thus, for a sample sizeni , if we select a thresholdvi ,
then the probability that forµx = µ, accidentally, the cor-
respondingt-value ti exceeds this threshold, is equal to
1−F0(vi), and the probability thatti ≤ vi is equal toF0(vi).

If we repeat experiments with several sample sizes

n1 ¿ . . .¿ nm,

then the corresponding statisticsti are practically indepen-
dent. Therefore, if we select the corresponding thresholds
v1, . . . ,vm, then the probabilityq that all the corresponding
t-valuest1, . . . , tm do not exceed the selected thresholds
can be estimated as the product of the of the correspond-
ing probabilities:

q≈
m

∏
i=1

F0(vi).

Thus, the probabilityp that forµx = µ , one of thet values
ti accidentally exceeds the corresponding thresholdvi can
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be estimated as

p = 1−q≈ 1−
m

∏
i=1

F0(vi).

So, if thus computed probabilityp is smaller than or
equal to the required probability of errorp0 (p ≤ p0),
we conclude that the new method is better with certainty
≥ 1− p0.

As a result, we arrive at the following method:

12. New Method: Summary

To test whether a new method is better than the previ-
ously used one, we do the following:

• we select a sequence of increasing sizesn1 ¿ . . .¿
nm;

• we select the certainty levelp0 ¿ 1, and

• we select the corresponding threshold levels
v1, . . . ,vm in such a way that

1−
m

∏
i=1

F0(vi)≤ p0,

i.e., equivalently, that

m

∏
i=1

F0(vi)≥ 1− p0.

For example, we can takevi = F−1
0 ( m

√
1− p0). Then, we

sequentially perform experiments with samples of sizes
n1, n2, . . .

After performing each experiment, we compute the cor-
responding valueti of thet statistic, and then:

• If we get ti > vi , we stop the experiments and con-
clude that the new method is better, with certainty
≥ 1− p0.

• If we get ti ≤ vi and i < m, we continue the experi-
ment with the sample of sizeni+1.

If in all m experiments, we getti ≤ vi , then we conclude
that the new method is not better than the previously used
one.
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“Eliminating Duplicates Under Interval and Fuzzy Uncertainty: An
Asymptotically Optimal Algorithm and Its Geospatial Applications”,
Reliable Computing, Vol. 10, 401–422 (2004).
• S. A. Starks and V. Kreinovich, “Aerospace applications of soft
computing and interval computations (with an emphasis on simulation and
modeling)”, Systems Analysis Modelling Simulation, Vol. 42, 713–734
(2002).
Membership in Learned Societies:
• American Society for Engineering Education
• North American Fuzzy Information Processing Society

Vol.0 No.0, 200x Journal of Advanced Computational Intelligence 5
and Intelligent Informatics


