
Fast Algorithm for Computing the Upper

Endpoint of Sample Variance for Interval Data:

Case of Sufficiently Accurate Measurements

Gang Xiang
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

gxiang@utep.edu

Abstract

When we have n results x1, . . . , xn of repeated measurement of the
same quantity, traditional statistical approach usually starts with com-
puting their sample average E and their sample variance V . Often, due
to the inevitable measurement uncertainty, we do not know the exact val-
ues of the quantities, we only know the intervals xi of possible values of
xi. In such situations, for different possible values xi ∈ xi, we get different
values of the variance. We must therefore find the range V of possible
values of V . It is known that in general, this problem is NP-hard. For the
case when the measurements are sufficiently accurate, so that for some in-
teger c, no sub-collection of > c “narrowed” intervals of xi has a common
intersection, it is known that we can compute the interval V in quadratic
time O(n2). For large amount of data, i.e., for large n, it is desirable to
speed up the computations. In this paper, we describe a new algorithm
for computing V that requires time O(n · log(n)) (which is much faster
than O(n2)).

1 Introduction

Computing sample variance is important. When we have n results
x1, . . . , xn of repeated measurement of the same quantity (at different points,
or at different moments of time), traditional statistical approach usually starts
with computing their sample average

E =
x1 + . . . + xn

n
(1)
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and their (sample) variance

V =
1
n
·

n∑

i=1

(xi − E)2 =
x2

1 + . . . + x2
n

n
− E2 (2)

(or, equivalently, the sample standard deviation σ =
√

V ); see, e.g., [12].

Often, we only know measured values with interval uncertainty. Mea-
surement are never 100% accurate, so in reality, the actual value xi of i-th mea-
sured quantity can differ from the measurement result x̃i. Therefore, the result
ỹ = f(x̃1, . . . , x̃n) of data processing is, in general, different from the actual
value y = f(x1, . . . , xn) of the desired quantity y [12].

It is desirable to describe the error ∆y
def= ỹ − y of the result of data pro-

cessing. To do that, we must have some information about the errors of direct
measurements.

What do we know about the errors ∆xi of direct measurements? The man-
ufacturer of the measuring instrument must supply us with an upper bound ∆i

on the absolute value of the measurement error ∆xi
def= x̃i − xi. (If no such

upper bound was supplied, this would mean that no accuracy is guaranteed,
and the corresponding “measuring instrument” would be practically useless.)
Since the upper bound ∆i is supplied, once we performed a measurement and
got a measurement result x̃i, we know that the actual (unknown) value xi of
the measured quantity belongs to the interval xi = [xi, xi], where xi = x̃i −∆i

and xi = x̃i + ∆i.
In some practical situations, we not only know the interval [−∆i,∆i] of pos-

sible values of the measurement error; we also know the probability of different
values ∆xi within this interval. In other practical situations, however, we have
no information about the probabilities of ∆xi; the only information we have is
the upper bound on the measurement error.

In the latter case, after we performed a measurement and got at measurement
result x̃i, the only information that we have about the actual value xi of the
measured quantity is that it belongs to the interval xi = [x̃i −∆i, x̃i + ∆i].

Resulting problem: computing sample variance under interval uncer-
tainty. When we do not know the exact values of the quantities x1, . . . , xn,
but we only know the intervals x1, . . . ,xn of possible values of xi, then, for
different possible values xi ∈ xi, we get different values of E and V .

In such situations, our objective is to compute the intervals E and V of
possible values of E and V :

V = [V , V ] def=
{

x1 + . . . + xn

n
|x1 ∈ x1 & . . . & xn ∈ xn

}
;
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V = [V , V ] def=
{

x2
1 + . . . + x2

n

n
− E2 |x1 ∈ x1 & . . . & xn ∈ xn

}
.

Practical usefulness: examples. The practical importance of the problem
of computing sample variance under interval uncertainty was emphasized, e.g.,
in [5, 6] on the example of processing geophysical data and in [2] on the example
of processing environmental data.

What is known. For E, the straightforward interval computations [7, 8, 9, 11]
leads to the exact range:

E =
x1 + . . . + xn

n
, i.e., E =

x1 + . . . + xn

n
, and E =

x1 + . . . + xn

n
.

For V , straightforward interval computations lead to an excess width, and more-
over, the problem of computing the range V is, in general, NP-hard [3].

In [3], it was shown that we can compute the lower endpoint V of the desired
range in quadratic time O(n2). For the upper bound V of the desired range, in
[3], it was proven that we can compute it in quadratic time if the measurements
are sufficiently accurate in the sense that different measurement results can
still be distinguished from each other – i.e., when intervals xi corresponding to
different measurement do not intersect.

Moreover, it was proven that a quadratic time algorithm is possible not only
when the original intervals [x̃i − ∆i, x̃i + ∆i] do not intersect, but also in a
more general case when the “narrowed” intervals [x̃i −∆i/n, x̃i + ∆i/n] do not
intersect. In fact, this quadratic time algorithm even works in the case when for
some integer c, no sub-collection of > c narrowed intervals of xi has a common
intersection [3].

For large amount of data (i.e., for large n), n2 is a lot of time; it is there-
fore desirable to speed up the computations. In [4], it was shown that we can
compute V in time O(n · log(n)) – which is much faster than O(n2). A natural
question is: can we speed up the computation of V ?

What we are planning to do. In this paper, we describe a new algorithm for
computing V that requires time O(n · log(n)) in the case when for some integer
c, no sub-collection of > c narrowed intervals of xi has a common intersection.

2 Previously Known Quadratic-Time Algo-
rithm: A Brief Reminder

The input to our problem is a finite list of intervals xi = [xi, xi]. There are two
standard ways to represent an interval in the computer:

• first, by describing two real numbers xi and xi;
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• second, by describing the midpoint x̃i
def= (xi + xi)/2 and the half-width

∆i
def= (xi − xi)/2 of this interval.

Once we know the midpoint and the half-width, we can reconstruct the end-
points of the interval as xi = x̃i −∆i and xi = x̃i + ∆i.

We have already mentioned that we consider the case when for some given
integer c, no sub-collection of > c narrowed intervals [x̃i−∆i/n, x̃i + ∆i/n] has
a common intersection.

For this situation, the following quadratic-time algorithm for computing V
was described in [3]:

• First, we sort all 2n endpoints of the narrowed intervals x̃i − ∆i/n and
x̃i + ∆i/n into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n). This enables us
to divide the real line into 2n + 1 zones [x(k), x(k+1)], where we denoted

x(0)
def= −∞ and x(2n+1)

def= +∞.

• Second, we compute E and E and pick all zones [x(k), x(k+1)] that intersect
with [E,E].

• For each of remaining zones [x(k), x(k+1)], for each i from 1 to n, we pick
the following value of xi:

• if x(k+1) ≤ x̃i −∆i/n, then we pick xi = xi;
• if x̃i + ∆i/n ≤ x(k), then we pick xi = xi;
• for all other i, we consider both possible values xi = xi and xi = xi.

• As a result, we get one or several sequences of xi. For each of these
sequences, we check whether the average E of the selected values x1, . . . , xn

is indeed within this zone, and if it is, compute the variance by using the
formula (2).

• Finally, we return the largest of the computed variances as V .

The proof that this algorithm requires only O(n2) time is based on the fact
that for each zone, there are at most c indices i for which i-th narrowed interval
[x̃i − ∆i/n, x̃i + ∆i/n] contains this zone and therefore, at most c indices for
which we had to consider both choices xi and xi. As a result, for each zone,
there are at most 2c corresponding sequences xi.

3 New Algorithm

1◦. Let us first sort the lower endpoints x̃i − ∆i/n of the narrowed intervals
into an increasing sequence. Without losing generality, we can therefore assume
that these lower endpoints are ordered in increasing order:

x̃1 −∆1/n ≤ x̃1 −∆2/n ≤ . . .
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It is well known that sorting requires time O(n · log(n)); see, e.g., [1].

2◦. Then, similar to the previously known algorithm, we sort all the endpoints
of the narrowed intervals into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(k) ≤ . . . ≤ x(2n).
Sorting means that for every i, we know which element k−(i) represents the
lower endpoint of the i-th narrowed interval and which element k+(i) represents
the upper endpoint of the i-th narrowed interval.

This sorting also requires O(n · log(n)) steps.

3◦. On the third stage, we produce, for each of the resulting zones [x(k), x(k+1)],
the set Sk of all the indices i for which the i-th narrowed interval

[x̃i −∆i/n, x̃i + ∆i/n]

contains this zone.
As we have mentioned, for each i, we know the value k = k−(i) for which

x̃i−∆i/n = x(k). So, for each i, we place i into the set Sk−(i) corresponding to
the zone [x(k−(i)), x(k−(i)+1)], into the set corresponding to the next zone, etc.,
until we reach the zone for which the upper endpoint is exactly x̃i + ∆i/n.

Here, we need one computational step for each new entry of i into the set
corresponding to a new zone. Therefore, filling in all these sets requires as many
steps as there are items in all these sets. For each of 2n + 1 zones, as we have
mentioned, there are ≤ c items in the corresponding set; therefore, overall, all
the sets contain ≤ c · (2n + 1) = O(n) steps. Thus, this stage requires O(n)
time.

4◦. On the fourth stage, for all integers p from 0 to n, we compute the sums

Ep
def=

1
n
·

p∑

i=1

xi +
1
n
·

n∑

i=p+1

xi;

Mp
def=

1
n
·

p∑

i=1

(xi)
2 +

1
n
·

n∑

i=p+1

(xi)2.

We compute these values sequentially. Once we know Ep and Mp, we can
compute Ep+1 and Mp+1 as Ep+1 = Ep + xp+1 − xp+1 and Mp+1 = Mp +
(xp+1)

2 − (xp+1)2.
Transition from Ep and Mp to Ep+1 and Mp+1 requires a constant number

of computational steps; so overall, we need O(n) steps to compute all the values
Ep and Mp.

5◦. Finally, for each zone k, we compute the corresponding values of the vari-
ance. For that, we first find the smallest index i for which x(k+1) ≤ x̃i −∆i/n.
We will denote this value i by p(k).

Since the values x̃i −∆i/n are sorted, we can find this i by using bisection
[1]. It is known that bisection requires O(log(n)) steps, so finding such p(k) for
all 2n + 1 zones requires O(n · log(n)) steps.
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Once i ≥ p(k), then x̃i−∆i/n ≥ x̃p(k)−∆p(k)/n ≥ x(k+1). So, in accordance
with the above justification for the quadratic-time algorithm, we should select
xi = xi, as in the sums Ep(k) and Mp(k).

In accordance with the same justification, the only values i < p(k) for which
we may also select xi = xi are the values for which i-th narrowed intervals
contains this zone. These values are listed in the set Sk of ≤ c such intervals.
So, to find all possible values of V , we can do the following.

We then consider all ≤ 2c subsets s ⊆ Sk of the set Sk. For each subset s,
we replace, in Ep(k) and Mp(k), values xi and (xi)

2 corresponding to all i ∈ s,
with, correspondingly, xi and (xi)2.

Each replacement means subtracting ≤ c terms and then adding ≤ c terms,
so each computation requires ≤ 2c steps. Once we have E and V corresponding
to the subset s, we can check whether E belongs to the analyzed zone and, if
yes, compute V = M − E2.

For each subset, we need ≤ 2c + 2 computations, so for all ≤ 2c subsets, we
need ≤ (2c + 2) · 2c computations. For a fixed c, this value does not depend on
n; in other words, for each zone, we need O(1) steps.

To perform this computation for all 2n + 1 zones, we need (2n + 1) ·O(1) =
O(n) steps.

6◦. Finally, we find the largest of the resulting values V – this will be the desired
value V .

Finding the largest of O(n) values requires O(n) steps.

Overall, we need

O(n · log(n))+O(n · log(n))+O(n)+O(n)+O(n · log(n))+O(n) = O(n · log(n))

steps. Thus, we have proven that our algorithm computes V in O(n · log(n))
steps.
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