Fast Algorithm for Computing the Upper Endpoint of Sample Variance for Interval Data: Case of Sufficiently Accurate Measurements

Gang Xiang
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
gxiang@utep.edu

Abstract

When we have n results x_1, \ldots, x_n of repeated measurement of the same quantity, traditional statistical approach usually starts with computing their sample average E and their sample variance V. Often, due to the inevitable measurement uncertainty, we do not know the exact values of the quantities, we only know the intervals \mathbf{x}_i of possible values of x_i . In such situations, for different possible values $x_i \in \mathbf{x}_i$, we get different values of the variance. We must therefore find the range \mathbf{V} of possible values of V. It is known that in general, this problem is NP-hard. For the case when the measurements are sufficiently accurate, so that for some integer c, no sub-collection of c "narrowed" intervals of \mathbf{x}_i has a common intersection, it is known that we can compute the interval \mathbf{V} in quadratic time $O(n^2)$. For large amount of data, i.e., for large n, it is desirable to speed up the computations. In this paper, we describe a new algorithm for computing \mathbf{V} that requires time $O(n \cdot \log(n))$ (which is much faster than $O(n^2)$).

1 Introduction

Computing sample variance is important. When we have n results x_1, \ldots, x_n of repeated measurement of the same quantity (at different points, or at different moments of time), traditional statistical approach usually starts with computing their sample average

$$E = \frac{x_1 + \ldots + x_n}{n} \tag{1}$$

and their (sample) variance

$$V = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E)^2 = \frac{x_1^2 + \dots + x_n^2}{n} - E^2$$
 (2)

(or, equivalently, the sample standard deviation $\sigma = \sqrt{V}$); see, e.g., [12].

Often, we only know measured values with interval uncertainty. Measurement are never 100% accurate, so in reality, the actual value x_i of *i*-th measured quantity can differ from the measurement result \tilde{x}_i . Therefore, the result $\tilde{y} = f(\tilde{x}_1, \dots, \tilde{x}_n)$ of data processing is, in general, different from the actual value $y = f(x_1, \dots, x_n)$ of the desired quantity y [12].

It is desirable to describe the error $\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y$ of the result of data processing. To do that, we must have some information about the errors of direct measurements.

What do we know about the errors Δx_i of direct measurements? The manufacturer of the measuring instrument must supply us with an upper bound Δ_i on the absolute value of the measurement error $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i - x_i$. (If no such upper bound was supplied, this would mean that no accuracy is guaranteed, and the corresponding "measuring instrument" would be practically useless.) Since the upper bound Δ_i is supplied, once we performed a measurement and got a measurement result \widetilde{x}_i , we know that the actual (unknown) value x_i of the measured quantity belongs to the interval $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$, where $\underline{x}_i = \widetilde{x}_i - \Delta_i$ and $\overline{x}_i = \widetilde{x}_i + \Delta_i$.

In some practical situations, we not only know the interval $[-\Delta_i, \Delta_i]$ of possible values of the measurement error; we also know the probability of different values Δx_i within this interval. In other practical situations, however, we have no information about the probabilities of Δx_i ; the only information we have is the upper bound on the measurement error.

In the latter case, after we performed a measurement and got at measurement result \tilde{x}_i , the only information that we have about the actual value x_i of the measured quantity is that it belongs to the interval $\mathbf{x}_i = [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$.

Resulting problem: computing sample variance under interval uncertainty. When we do not know the exact values of the quantities x_1, \ldots, x_n , but we only know the intervals $\mathbf{x}_1, \ldots, \mathbf{x}_n$ of possible values of x_i , then, for different possible values $x_i \in \mathbf{x}_i$, we get different values of E and E.

In such situations, our objective is to compute the intervals ${\bf E}$ and ${\bf V}$ of possible values of E and V:

$$\mathbf{V} = [\underline{V}, \overline{V}] \stackrel{\text{def}}{=} \left\{ \frac{x_1 + \ldots + x_n}{n} | x_1 \in \mathbf{x}_1 \& \ldots \& x_n \in \mathbf{x}_n \right\};$$

$$\mathbf{V} = [\underline{V}, \overline{V}] \stackrel{\text{def}}{=} \left\{ \frac{x_1^2 + \ldots + x_n^2}{n} - E^2 \,|\, x_1 \in \mathbf{x}_1 \,\&\, \ldots \,\&\, x_n \in \mathbf{x}_n \right\}.$$

Practical usefulness: examples. The practical importance of the problem of computing sample variance under interval uncertainty was emphasized, e.g., in [5, 6] on the example of processing geophysical data and in [2] on the example of processing environmental data.

What is known. For E, the straightforward interval computations [7, 8, 9, 11] leads to the exact range:

$$\mathbf{E} = \frac{\mathbf{x}_1 + \ldots + \mathbf{x}_n}{n}, \text{ i.e., } \underline{E} = \frac{\underline{x}_1 + \ldots + \underline{x}_n}{n}, \text{ and } \overline{E} = \frac{\overline{x}_1 + \ldots + \overline{x}_n}{n}.$$

For V, straightforward interval computations lead to an excess width, and moreover, the problem of computing the range V is, in general, NP-hard [3].

In [3], it was shown that we can compute the lower endpoint \underline{V} of the desired range in quadratic time $O(n^2)$. For the upper bound \overline{V} of the desired range, in [3], it was proven that we can compute it in quadratic time if the measurements are sufficiently accurate in the sense that different measurement results can still be distinguished from each other – i.e., when intervals \mathbf{x}_i corresponding to different measurement do not intersect.

Moreover, it was proven that a quadratic time algorithm is possible not only when the original intervals $[\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$ do not intersect, but also in a more general case when the "narrowed" intervals $[\tilde{x}_i - \Delta_i/n, \tilde{x}_i + \Delta_i/n]$ do not intersect. In fact, this quadratic time algorithm even works in the case when for some integer c, no sub-collection of c narrowed intervals of c has a common intersection [3].

For large amount of data (i.e., for large n), n^2 is a lot of time; it is therefore desirable to speed up the computations. In [4], it was shown that we can compute \underline{V} in time $O(n \cdot \log(n))$ – which is much faster than $O(n^2)$. A natural question is: can we speed up the computation of \overline{V} ?

What we are planning to do. In this paper, we describe a new algorithm for computing V that requires time $O(n \cdot \log(n))$ in the case when for some integer c, no sub-collection of > c narrowed intervals of \mathbf{x}_i has a common intersection.

2 Previously Known Quadratic-Time Algorithm: A Brief Reminder

The *input* to our problem is a finite list of intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$. There are two standard ways to represent an interval in the computer:

• first, by describing two real numbers \underline{x}_i and \overline{x}_i ;

• second, by describing the midpoint $\widetilde{x}_i \stackrel{\text{def}}{=} (\underline{x}_i + \overline{x}_i)/2$ and the half-width $\Delta_i \stackrel{\text{def}}{=} (\overline{x}_i - \underline{x}_i)/2$ of this interval.

Once we know the midpoint and the half-width, we can reconstruct the endpoints of the interval as $\underline{x}_i = \widetilde{x}_i - \Delta_i$ and $\overline{x}_i = \widetilde{x}_i + \Delta_i$.

We have already mentioned that we consider the case when for some given integer c, no sub-collection of > c narrowed intervals $[\widetilde{x}_i - \Delta_i/n, \widetilde{x}_i + \Delta_i/n]$ has a common intersection.

For this situation, the following quadratic-time algorithm for computing \overline{V} was described in [3]:

- First, we sort all 2n endpoints of the narrowed intervals $\widetilde{x}_i \Delta_i/n$ and $\widetilde{x}_i + \Delta_i/n$ into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$. This enables us to divide the real line into 2n + 1 zones $[x_{(k)}, x_{(k+1)}]$, where we denoted $x_{(0)} \stackrel{\text{def}}{=} -\infty$ and $x_{(2n+1)} \stackrel{\text{def}}{=} +\infty$.
- Second, we compute \underline{E} and \overline{E} and pick all zones $[x_{(k)}, x_{(k+1)}]$ that intersect with $[\underline{E}, \overline{E}]$.
- For each of remaining zones $[x_{(k)}, x_{(k+1)}]$, for each i from 1 to n, we pick the following value of x_i :
 - if $x_{(k+1)} \leq \widetilde{x}_i \Delta_i/n$, then we pick $x_i = \overline{x}_i$;
 - if $\widetilde{x}_i + \Delta_i/n \le x_{(k)}$, then we pick $x_i = \underline{x}_i$;
 - for all other i, we consider both possible values $x_i = \overline{x}_i$ and $x_i = \underline{x}_i$.
- As a result, we get one or several sequences of x_i . For each of these sequences, we check whether the average E of the selected values x_1, \ldots, x_n is indeed within this zone, and if it is, compute the variance by using the formula (2).
- Finally, we return the largest of the computed variances as \overline{V} .

The proof that this algorithm requires only $O(n^2)$ time is based on the fact that for each zone, there are at most c indices i for which i-th narrowed interval $[\widetilde{x}_i - \Delta_i/n, \widetilde{x}_i + \Delta_i/n]$ contains this zone and therefore, at most c indices for which we had to consider both choices \underline{x}_i and \overline{x}_i . As a result, for each zone, there are at most 2^c corresponding sequences x_i .

3 New Algorithm

1°. Let us first sort the lower endpoints $\tilde{x}_i - \Delta_i/n$ of the narrowed intervals into an increasing sequence. Without losing generality, we can therefore assume that these lower endpoints are ordered in increasing order:

$$\widetilde{x}_1 - \Delta_1/n \le \widetilde{x}_1 - \Delta_2/n \le \dots$$

It is well known that sorting requires time $O(n \cdot \log(n))$; see, e.g., [1].

2°. Then, similar to the previously known algorithm, we sort *all* the endpoints of the narrowed intervals into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(k)} \leq \ldots \leq x_{(2n)}$. Sorting means that for every i, we know which element $k^-(i)$ represents the lower endpoint of the i-th narrowed interval and which element $k^+(i)$ represents the upper endpoint of the i-th narrowed interval.

This sorting also requires $O(n \cdot \log(n))$ steps.

3°. On the third stage, we produce, for each of the resulting zones $[x_{(k)}, x_{(k+1)}]$, the set S_k of all the indices i for which the i-th narrowed interval

$$[\widetilde{x}_i - \Delta_i/n, \widetilde{x}_i + \Delta_i/n]$$

contains this zone.

As we have mentioned, for each i, we know the value $k = k^-(i)$ for which $\widetilde{x}_i - \Delta_i/n = x_{(k)}$. So, for each i, we place i into the set $S_{k^-(i)}$ corresponding to the zone $[x_{(k^-(i))}, x_{(k^-(i)+1)}]$, into the set corresponding to the next zone, etc., until we reach the zone for which the upper endpoint is exactly $\widetilde{x}_i + \Delta_i/n$.

Here, we need one computational step for each new entry of i into the set corresponding to a new zone. Therefore, filling in all these sets requires as many steps as there are items in all these sets. For each of 2n+1 zones, as we have mentioned, there are $\leq c$ items in the corresponding set; therefore, overall, all the sets contain $\leq c \cdot (2n+1) = O(n)$ steps. Thus, this stage requires O(n) time.

 4° . On the fourth stage, for all integers p from 0 to n, we compute the sums

$$E_p \stackrel{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^p \underline{x}_i + \frac{1}{n} \cdot \sum_{i=p+1}^n \overline{x}_i;$$

$$M_p \stackrel{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^p (\underline{x}_i)^2 + \frac{1}{n} \cdot \sum_{i=p+1}^n (\overline{x}_i)^2.$$

We compute these values sequentially. Once we know E_p and M_p , we can compute E_{p+1} and M_{p+1} as $E_{p+1} = E_p + \underline{x}_{p+1} - \overline{x}_{p+1}$ and $M_{p+1} = M_p + (\underline{x}_{p+1})^2 - (\overline{x}_{p+1})^2$.

Transition from E_p and M_p to E_{p+1} and M_{p+1} requires a constant number of computational steps; so overall, we need O(n) steps to compute all the values E_p and M_p .

5°. Finally, for each zone k, we compute the corresponding values of the variance. For that, we first find the smallest index i for which $x_{(k+1)} \leq \tilde{x}_i - \Delta_i/n$. We will denote this value i by p(k).

Since the values $\tilde{x}_i - \Delta_i/n$ are sorted, we can find this i by using bisection [1]. It is known that bisection requires $O(\log(n))$ steps, so finding such p(k) for all 2n + 1 zones requires $O(n \cdot \log(n))$ steps.

Once $i \geq p(k)$, then $\tilde{x}_i - \Delta_i/n \geq \tilde{x}_{p(k)} - \Delta_{p(k)}/n \geq x_{(k+1)}$. So, in accordance with the above justification for the quadratic-time algorithm, we should select $x_i = \overline{x}_i$, as in the sums $E_{p(k)}$ and $M_{p(k)}$.

In accordance with the same justification, the only values i < p(k) for which we may also select $x_i = \overline{x}_i$ are the values for which *i*-th narrowed intervals contains this zone. These values are listed in the set S_k of $\leq c$ such intervals. So, to find all possible values of V, we can do the following.

We then consider all $\leq 2^c$ subsets $s \subseteq S_k$ of the set S_k . For each subset s, we replace, in $E_{p(k)}$ and $M_{p(k)}$, values \underline{x}_i and $(\underline{x}_i)^2$ corresponding to all $i \in s$, with, correspondingly, \overline{x}_i and $(\overline{x}_i)^2$.

Each replacement means subtracting $\leq c$ terms and then adding $\leq c$ terms, so each computation requires $\leq 2c$ steps. Once we have E and V corresponding to the subset s, we can check whether E belongs to the analyzed zone and, if yes, compute $V = M - E^2$.

For each subset, we need $\leq 2c + 2$ computations, so for all $\leq 2^c$ subsets, we need $\leq (2c + 2) \cdot 2^c$ computations. For a fixed c, this value does not depend on n; in other words, for each zone, we need O(1) steps.

To perform this computation for all 2n+1 zones, we need $(2n+1)\cdot O(1) = O(n)$ steps.

6°. Finally, we find the largest of the resulting values V – this will be the desired value \overline{V} .

Finding the largest of O(n) values requires O(n) steps.

Overall, we need

$$O(n \cdot \log(n)) + O(n \cdot \log(n)) + O(n) + O(n) + O(n \cdot \log(n)) + O(n) = O(n \cdot \log(n))$$

steps. Thus, we have proven that our algorithm computes \overline{V} in $O(n \cdot \log(n))$ steps.

Acknowledgments.

This work was supported in part by the Army Research Laboratories grant DATM-05-02-C-0046.

References

- [1] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*, MIT Press, Cambridge, MA, 2001.
- [2] S. Ferson, RAMAS Risk Calc 4.0: Risk Assessment with Uncertain Numbers, CRC Press, Boca Raton, Florida, 2002.

- [3] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, "Computing Variance for Interval Data is NP-Hard", ACM SIGACT News, 2002, Vol. 33, pp. 108–118.
- [4] L. Granvilliers, V. Kreinovich, and N. Müller, "Novel Approaches to Numerical Software with Result Verification", In: R. Alt, A. Frommer, R. B. Kearfott, and W. Luther (eds.), Numerical Software with Result Verification, Springer Lectures Notes in Computer Science, 2004, Vol. 2991, pp. 274–305.
- [5] P. Nivlet, F. Fournier, and J. Royer, "A new methodology to account for uncertainties in 4-D seismic interpretation", Proceedings of the 71st Annual International Meeting of the Society of Exploratory Geophysics SEG'2001, San Antonio, Texas, September 9–14, 2001, pp. 1644–1647.
- [6] P. Nivlet, F. Fournier, and J. Royer, "Propagating interval uncertainties in supervised pattern recognition for reservoir characterization", Proceedings of the 2001 Society of Petroleum Engineers Annual Conference SPE'2001, New Orleans, Louisiana, September 30-October 3, 2001, paper SPE-71327.
- [7] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer, London, 2001.
- [8] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht, 1996.
- [9] R. B. Kearfott and V. Kreinovich (eds.), Applications of Interval Computations, Kluwer, Dordrecht (1996)
- [10] R. E. Moore, *Interval Analysis*, Prentice-Hall, Englewood Cliffs, NJ, 1966.
- [11] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.
- [12] S. Rabinovich, Measurement Errors: Theory and Practice, American Institute of Physics, New York, 1993.