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Abstract— Due to measurement uncertainty, often, instead of
the actual valuesxi of the measured quantities, we only know the
intervals xi = [x̃i−∆i, x̃i +∆i], where x̃i is the measured value
and ∆i is the upper bound on the measurement error (provided,
e.g., by the manufacturer of the measuring instrument). These
intervals can be viewed asrandom intervals, i.e., as samples from
the interval-valued random variable. In such situations, instead
of the exact value of a sample statistic such as covarianceCx,y,
we can only have an interval Cx,y of possible values of this
statistic.

In this paper, we extend the foundations of traditional statistics
to statistics of such set-valued data, and describe how this
foundation can lead to efficient algorithms for computing the
corresponding set-valued statistics.

I. STATISTICAL ESTIMATION :
AN IMPORTANT REAL-L IFE PROBLEM

In many real-life situations, we have a large population
whose characteristics vary randomly. For example, the hu-
mankind is a group of people with different height, weight,
etc.; a galaxy is a group of stars with different masses,
brightnesses, etc. We would like to know certain characteristics
of the corresponding probability distribution: we may be
interested in the average height of humans, in the variance
of the star mass, in the correlation between the star’s mass
and brightness, etc.

When the population is small, we can simply compute,
e.g., the average height by simply adding all the heights
and dividing the result by the total number of people. If the
population is large, we cannot compute the average directly.
Instead, we take a sample, and estimate the average (or any
other desired characteristic) based on the valuesx1, . . . , xn

corresponding to this sample.
Let us recall how this problem is usually formulated in

precise mathematical terms; see, e.g., [38], [42].

II. T RADITIONAL STATISTICS: BRIEF REMINDER

We have a sequence of independent identically distributed
(i.i.d.) variablesx1, . . . , xn, . . . We are interested in a certain
characteristicC of the corresponding probability distribution,
e.g., in the expected valueE[f(x)] of a given functionf(x)
of the corresponding random variable.

To estimate this characteristic, we select astatistic, i.e.,
a sequence of functionssn(x1, . . . , xn) (n = 1, 2, . . .) for

which, under reasonable assumptions,

sn(x1, . . . , xn) → C;

(e.g.,sn(x1, . . . , xn) → C with probability 1).
For example, to estimate the meanC = E[x] of the

distribution, we can take, as the corresponding statistic, the
arithmetic average

sn(x1, . . . , xn) =
x1 + . . . + xn

n
. (1)

For distributions with finite variance

σ2 def= E[(x− E[x])2] < +∞,

the difference
x1 + . . . + xn

n
− E[x]

is, in the limit n → ∞, normally distributed with 0 average
and variance

E

[(
x1 + . . . + xn

n
− E[x]

)2
]

=
σ2

n
→ 0.

As a result, we can conclude. e.g., that for largen, we have
∣∣∣∣
x1 + . . . + xn

n
− E[x]

∣∣∣∣ ≤ 2 · σ√
n

with probability 95%.

III. T RADITIONAL STATISTICS: PRECISEDEFINITIONS

Notations.
• In the following text, we will assume that we have fixed

a setΩ and aσ-algebraA of subsets of the setΩ.
• By a probability distributionP , we will mean a prob-

ability measure on(Ω,A), i.e., a σ-additive function
P : A → [0, 1] for which P (Ω) = 1.

• We will also assume that a classP of probability distri-
butions is fixed.

Definition 1. By a characteristicC of a probability distribu-
tion, we mean a mappingC : P → IR.

Definition 2. By a statistic, we mean a sequence{sn}n of
functionssn : Ωn → IR.



Definition 3. We say that a statistic{sn}n approximatesa
characteristicC if for every distributionP ∈ P, we have

sn(x1, . . . , xn) →n→∞ C

with probability 1.

Comment.Here, for a given probability measureP on Ω, we
define the corresponding probability measure on the setΩω

of all infinite sequences(x1, . . . , xn, . . .), xi ∈ Ω in the usual
way.

IV. EXAMPLES

• It is known that forΩ = IR, under reasonable assump-
tions onP, the population average (1) approximates the
meanC = E[x].

• It is also known that the population variance

sn(x1, . . . , xn) =
(x1 − x̄)2 + . . . + (xn − x̄)2

n
,

where
x̄

def=
x1 + . . . + xn

n
,

approximates the varianceC = E[(x− E[x])2].
• Similarly, for the case whenΩ = IR2, the population

covariance

sn((x1, y1) . . . , (xn, yn)) =

(x1 − x̄) · (y1 − ȳ) + . . . + (xn − x̄) · (yn − ȳ)
n

approximates the covariance

C = E[(x− E[x]) · (y − E[y])].

V. I NTERVAL UNCERTAINTY

(AND , MORE GENERALLY, SET UNCERTAINTY):
A M ORE REALISTIC SITUATION

In traditional statistics, we implicitly assume that the values
xi are directly observable. In real life, due to (inevitable)
measurement uncertainty (see, e.g., [34]), often, what we
actually observe is asetXi that contains the actual (unknown)
value ofxi. This phenomenon is calledcoarsening; see, e.g.,
[16]. Due to coarsening, instead of the actual valuesxi, all we
know is the setsX1, . . . , Xn, . . . that are known the contain
the actual (un-observable) valuesxi: xi ∈ Xi.

In this case, inputs are setsXi. The set uncertainty in the
inputs lead, in general, to a similar set uncertainty in the
value of the desired characteristic. As a result, in this case,
the estimate for the desired characteristics – i.e., the value
Sn(X1, . . . , Xn) of the corresponding statistic – should also
be a (non-empty) set.

It is reasonable to require that when the valuesxi are known
exactly, i.e., whenXi = {xi} for some valuesxi, then the
set corresponding setSn({x1}, . . . , {xn}) should become a
single-value set.

It is also reasonable to require that when we increase the
uncertainty, i.e., replace the original setsXi with larger sets

X ′
i ⊇ Xi, then the uncertainty in the resulting estimate should

also increase:

Sn(X ′
1, . . . , X

′
n) ⊇ Sn(X1, . . . , Xn).

As a result, we arrive at the following definitions.

VI. SET-VALUED STATISTICS: DEFINITIONS

Notations. In the following text, we will assume that we have
fixed a classS of subsets of the setX. This class should
include all one-element sets{x} wherex ∈ Ω.

Definition 4. By a set-valued statistic, we mean a sequence
{Sn}n of functionsSn : Sn → 2IR − {∅} that satisfies the
following two properties:

• when each of then setsX1, . . . , xn is a one-element set,
then the value of the statistic is also a 1-element set, i.e.,
for everyn and for everyx1, . . . , xn,

Sn({x1}, . . . , {xn}) = {sn(x1, . . . , xn)} (2)

for some real numbersn(x1, . . . , xn) depending onxi;
• if X1 ⊆ X ′

1, X2 ⊆ X ′
2, . . . , andXn ⊆ X ′

n, then

Sn(X1, . . . , Xn) ⊆ Sn(X ′
1, . . . , X

′
n). (3)

Comment.According to Definition 4, for every set-valued
statistic {Sn}, there exists a (normal) statistic{sn} that
satisfies condition (2). We will say that:
• the statistic{sn} is a restrictionof the set-valued statistic
{Sn}; and

• the set-valued statistic{Sn} is anextensionof the statis-
tic {sn}.

For set-valued statistics – i.e., in the presence of uncertainty
– we may not get the exact values of the characteristic even
in the limit, but we should be sure that the resulting bounds
contains the actual value of the desired characteristic:

Definition 5. We say that set-valued statistic{Sn}n approxi-
matesa characteristicC if for every distributionP ∈ P, and
for every sequence of setsXi 3 xi, we have

C ∈ [
limn→∞Sn(X1, . . . , Xn), limn→∞Sn(X1, . . . , Xn)

]

with probability 1, where, for every setS ⊂ IR of real
numbers,S means its infimum andS means its supremum.

Comment.In particular, when the setX is an interval, i.e.,
X = [x, x], then the valuesX and X coincide with the
endpoints of this interval, i.e.,X = x andX = x.

VII. I MPORTANT COMMENT:
RESULTING DEFINITIONS

OF SET-VALUED STATISTICS

DIFFER FROM THEDEFINITIONS

MOTIVATED BY STATISTICS OFSHAPES

Uncertainty is not the only reason why we may want to
consider set-valued statistics; see, e.g., [14], [27]. For example,
we may be interested in statistics of shapes. In this case, the



setsX1, . . . , Xn. . . . describe different shapes: e.g., different
skull shapes of different proto-humans. In such situation, we
may be interested in finding out what is the average shape,
what is the range of the deviation between the actual shape
and the average shape, etc.; see, e.g., [1], [3], [8], [13], [24],
[29], [36], [39], [40], [41], [45], [46].

Let us show that, in general, shape-related problems lead
to different set-valued statistics than uncertainty-related prob-
lems. This difference can be illustrated on the simplest 1-D
example, when all the sets are identical, e.g.,X1 = X2 =
. . . = Xn = . . . = [0, 1].

For shapes, this equality means that all the objects have
exactly the same shape. So:

• the average shape is exactly the same shape[0, 1], and
• the actual shapes do not deviate from the average shape,

so the variance – the measure of such deviation – should
be identically equal to 0.

In case ofuncertainty, however, we get a completely dif-
ferent result, because it is possible that the actual values are
different: e.g., we could havex1 = x3 = x5 = . . . = x2k+1 =
. . . = 0 and x2 = x4 = x6 = . . . = x2k = . . . = 1 In
this case, the averagēx is 0.5. The square(xi − x̄)2 of the
difference between the actual valuexi and the averagēx is
thus always equal to 1/4, so the variance can be equal to 1/4.

So, in case of uncertainty, we can have variance equal to 0
– if all the valuesxi ∈ Xi are identical – or we could have the
variance equal to 1/4. Thus, in case of uncertainty, we have an
entire interval of possible values of variance – in contrast to
the shape-motivated definitions, where the variance is always
equal to 0.

VIII. A DDITIONAL REQUIREMENT FORSET-VALUED

STATISTICS: THAT THEY ARE THE LEAST UNCERTAIN

For a traditional statistic, the main request is that it should
converge to the desired characteristic. The faster it converges,
the better the statistic.

For a set-valued statistic, we also have a similar problem:

• just like the first estimates1(x1) for, e.g., average may
be far away from the actual mean,

• similarly, the first interval-valued estimateS1(X1) for the
average may not include the actual mean.

It is therefore important to know how fast we get an intervals
Sn(X1, . . . , Xn) that actually contains the desired valueC.

Here lies the difference between the traditional (number-
valued) statistics and the set-valued statistics:

• in the traditional statistics, once the estimate
sn(x1, . . . , xn) is sufficiently close to the desired
characteristicC, we have achieved our objective – of
estimatingC;

• on the other hand, for a set-valued statistic, if we can
guarantee thatC belongs to the intervalSn(X1, . . . , Xn),
it may mean that we have achieved our objective, but it
may also mean that the estimate provided by this statistic
is too wide.

If we simply artificially “expand” each interval
Sn(X1, . . . , Xn) by a factor of two, i.e.:
• represent each intervalS = [S, S] as [S̃ − ∆, S̃ + ∆],

where

S̃ =
S + S

2
and∆ =

S − S

2
,

• and then replace it with a twice wider interval

[S̃ − 2∆, S̃ + 2∆] ⊃ S

with the same center,
then we will probably get the actual valueC into the interval
Sn faster – but the resulting estimate forC will be twice wider
– hence, twice less accurate than before.

To avoid this artificial expansion, it is reasonable to require
that our set-valued statistics bethe least uncertainin the
following precise sense.

Definition 6.
• We say that a set-valued statistic{Sn} is less uncertain

that the statistic{S′n} if the following two conditions are
satisfied:

– for everyn and for all possible setsX1, . . . , Xn ∈ S,
we have

Sn(X1, . . . , Xn) ⊆ S′n(X1, . . . , Xn);

– there exists an integern and setsX1, . . . , Xn ∈ S
for which

Sn(X1, . . . , Xn) 6= S′n(X1, . . . , Xn).

• We say that a set-valued statistics{Sn} is the least
uncertainif no other set-valued statistic is less uncertain
than {Sn}.

IX. M AIN RESULT: FORMULATION

Our main result is that we can always replace our original
statistic with the least uncertain one and retain the property of
approximating the desired characteristic:

Proposition. Let {Sn} be a set-valued statistic that approxi-
mates a characteristicC and that is not the least uncertain.
Then, there exists a statistic{Tn} that satisfies the following
three properties:
• {Tn} is less uncertain than{Sn},
• {Tn} is the least uncertain, and
• {Tn} approximatesC.

X. M AIN RESULT: PROOF

1◦. We will show that the desired statistic is as follows:

Tn(X1, . . . , Xn) =

{sn(x1, . . . , xn) |x1 ∈ X1, . . . , xn ∈ Xn} (4)

wheresn(x1, . . . , xn) is a restriction of the original set-valued
statistic{Sn}.

It is easy to check that the expression (4) satisfies the
properties required by Definition 4, i.e., it is indeed a set-
valued statistic.



2◦. Let us first prove that for everyn and for all possible sets
X1, . . . , Xn ∈ S, we have

Tn(X1, . . . , Xn) ⊆ Sn(X1, . . . , Xn).

Indeed, let t be an arbitrary element of the set
Tn(X1, . . . , Xn); let us show thatt ∈ Sn(X1, . . . , Xn).

By definition of the set-valued statisticTn (formula (4)), the
fact thatt ∈ Tn(X1, . . . , Xn) means that there exist elements
x1 ∈ X1, . . . , xn ∈ Xn for which

t = sn(x1, . . . , xn). (5)

Since
x1 ∈ X1, . . . , xn ∈ Xn,

we have
{x1} ⊆ X1, . . . , {xn} ⊆ Xn.

Then, due to Definition 4 of a set-valued statistic, formula (3)
is true, according to which

Sn({x1}, . . . , {xn}) ⊆ Sn(X1, . . . , Xn). (6)

By definition of a set-valued statistic (formula (2)), we have

Sn({x1}, . . . , {xn}) = {sn(x1, . . . , xn)},
so the formula (6) turns into

{sn(x1, . . . , xn)} ⊆ Sn(X1, . . . , Xn),

or, equivalently,

sn(x1, . . . , xn) ∈ Sn(X1, . . . , Xn). (7)

By our choice of x1, . . . , xn (formula (5)), we have
sn(x1, . . . , xn) = t, so (7) turns intot ∈ Sn(X1, . . . , Xn).

The statement is proven.

3◦. Because of the result proven in Part2◦ of this proof, we
can conclude that:

• either{Tn} is less uncertain than{Sn},
• or {Tn} coincides with{Sn}.

We assumed that the original set-valued statistic{Sn} is not
the least uncertain. Thus, if we prove that{Tn} is the least
uncertain, then we will be able to exclude the second case and
conclude that{Tn} is less uncertain than{Sn}.

Let us prove it.

4◦. Let us first prove that the set-valued statistic{Tn} is the
least uncertain.

We need to prove that no other statistic{Un} is less
uncertain than{Tn}. Specifically, we will prove that if{Un} is
a set-valued statistic for which, for everyn and for all possible
setsX1, . . . , Xn ∈ S, we have

Un(X1, . . . , Xn) ⊆ Tn(X1, . . . , Xn), (8)

then{Un} is the same statistic as{Un}, i.e.,

Un(X1, . . . , Xn) = Tn(X1, . . . , Xn)

for all n and for allXi.
Indeed, let{Un} satisfy the property (8). In particular, for

everyx1, . . . , xn ∈ Ω, the formula (8) holds forX1 = {x1},
. . . , Xn = {xn}:

Un({x1}, . . . , {xn}) ⊆ Tn({x1}, . . . , {xn}). (9)

For these one-element sets, according to the definition of a
set-valued statistic, we have

U({x1}, . . . , {xn}) = {un(x1, . . . , xn)},
where un is a restriction of{Un}. By definition of {Tn}
(formula (4)), we know that

T ({x1}, . . . , {xn}) = {sn(x1, . . . , xn)}.
Thus, the formula (9) means

un(x1, . . . , xn) = sn(x1, . . . , xn)

for all x1, . . . , xn – i.e., that the set-valued statistic{Un} has
the same restriction as the original set-valued statistic{Sn}
and as the newly constructed set-valued statistic{Tn}.

Similarly to Part2◦ of the proof, we can now show that for
every integern and for every sequence of setsX1, . . . , Xn, we
haveTn(X1, . . . , Xn) ⊆ Un(X1, . . . , Xn). Since we assumed
that Un(X1, . . . , Xn) ⊆ Tn(X1, . . . , Xn) (formula (8)), we
conclude thatTn(X1, . . . , Xn) = Un(X1, . . . , Xn) for all n
and for all setsX1, . . . , Xn, i.e., that the statistics{Tn} and
{Un} indeed coincide:{Un} = {Un}.

Thus, we have proven that the set-valued statistic{Tn} is
the least uncertain. In view of Part3◦ of this proof, we can
thus conclude that{Tn} is less uncertain than{Sn}.
5◦. To complete the proof, it is sufficient to prove that
the new set-valued statistic{Tn} approximates the desired
characteristicC. We will prove it in two steps:

• first, we will prove that the statistic{sn} – the restriction
of the original set-valued statistic{Sn} – approximates
C;

• from this, we will conclude that the new set-valued
statistic{Tn} also approximatesC.

6◦. Let us first prove that the restriction{sn} of the original
set-valued statistic{Sn} approximatesC.

By Definition 5, if we takeXi = {xi}, then we conclude
that with probability 1,

C ∈
[
lim Sn({x1}, . . . , {xn}), lim Sn({x1}, . . . , {xn})

]
. (10)

For one-element sets,

Sn({x1}, . . . , {xn}) = {sn(x1, . . . , xn)}.
Since the setSn({x1}, . . . , {xn}) is a one-element set, its
infimum and supremum both coincide with this same element:

Sn({x1}, . . . , {xn}) = Sn({x1}, . . . , {xn}) =

sn(x1, . . . , xn).



Thus, the condition (10) turns into:

C ∈ [
lim sn(x1, . . . , xn), lim sn(x1, . . . , xn)

]
. (11)

Since the interval is non-empty, we conclude that

lim sn(x1, . . . , xn) ≤ lim sn(x1, . . . , xn).

Since we always have

lim sn(x1, . . . , xn) ≤ lim sn(x1, . . . , xn),

we thus conclude that

lim sn(x1, . . . , xn) = lim sn(x1, . . . , xn),

and therefore, that the sequencesn(x1, . . . , xn) converges:

lim sn(x1, . . . , xn) = lim sn(x1, . . . , xn) =

lim sn(x1, . . . , xn). (12)

In view of the formula (12), the condition (11) takes the form

C ∈ [lim sn(x1, . . . , xn), lim sn(x1, . . . , xn)] ,

i.e., the formC = lim sn(x1, . . . , xn).
Thus, by Definition 3, the restriction{sn} of the original

set-valued statistic{Sn} approximates the characteristicC.
The statement is proven.

7◦. Let us now prove that the new set-valued statistic{Tn}
approximates the desired characteristicC.

Indeed, letxi be a sequence of values andxi ∈ Xi. Due to
Part6◦ of this proof, the statistic{sn} approximatesC hence
sn(x1, . . . , xn) → C with probability 1.

By definition ofTn (formula (4)), we havesn(x1, . . . , xn) ∈
Tn(X1, . . . , Xn); this means that

Tn(X1, . . . , Xn) ≤ sn(x1, . . . , xn) ≤
Tn(X1, . . . , Xn). (13)

From Tn(X1, . . . , Xn) ≤ sn(x1, . . . , xn), we conclude that

lim Tn(X1, . . . , Xn) ≤
lim sn(x1, . . . , xn) = lim sn(x1, . . . , xn) = C. (14)

Similarly, from (13), we conclude that

sn(x1, . . . , xn) ≤ Tn(X1, . . . , Xn)

and therefore, that

lim sn(x1, . . . , xn) = C ≤ lim Tn(X1, . . . , Xn). (15)

The inequalities (14) and (15) mean that

C ∈ [
lim Tn(X1, . . . , Xn), lim Tn(X1, . . . , Xn)

]
,

i.e., according to Definition 5, that the set-valued statistic{Tn}
approximatesC.

The statement is proven, and so is our main result.

XI. RESULTING COMPUTATIONAL PROBLEM

AND HOW TO SOLVE IT

According to our result, the optimal (least uncertain) set-
valued statistic (4) is uniquely determined by the correspond-
ing traditional statisticsn(x1, . . . , xn) – its restriction to the
case when we know the exact valuesxi (i.e., whenXi =
{xi}).

Specifically, once the statisticsn(x1, . . . , xn) is known,
we can describe the corresponding optimal statistic{Tn} as
follows: it assigns, to every setsX1, . . . , Xn, the range of

sn(X1, . . . , Xn) def=

{sn(x1, . . . , xn) |x1 ∈ X1, . . . , xn ∈ Xn}
of the statisticsn(x1, . . . , xn) whenxi ∈ Xi.

So, from the computational viewpoint, the problem of com-
puting the value of the set-valued statisticSn(X1, . . . , Xn) can
be reformulated as the problem as the problem of computing
the range of a given functionsn(x1, . . . , xn) whenxi ∈ Xi.

For a practically important case when the setsXi are
intervals, the problem of computing the range is one of the
main problems solved byinterval computations[17], [18],
[19], [30]. It is known that in general, the problem is NP-
hard (see, e.g., [22]).

Comment.NP-hard means, crudely speaking, that no feasible
algorithm can compute the exact range ofsn(x1, . . . , xn) for
all possible functionssn(x1, . . . , xn) (even for all possible
polynomials sn(x1, . . . , xn)) and for all possible intervals
X1, . . . , Xn.

For a specific case whensn is a statistic, this problem been
described, in a general context, in the monographs [26], [43];
for further developments, see, e.g., [2], [4], [5], [6], [7], [9],
[10], [11], [12], [15], [20], [21], [23], [25], [28], [31], [32],
[33], [35], [37], [44] and references therein.

For example, for the population average

E(x1, . . . , xn) =
x1 + . . . + xn

n
,

this function sn is an increasing function of each of its
variables, hence its range is equal to[E, E], where

E =
x1 + . . . + xn

n
, andEx =

x1 + . . . + xn

n
.

For the population varianceV , all known algorithms lead
to an excess width. Specifically, there exist feasible algorithms
for computing the lower endpointV (see, e.g., [10]), but in
general, the problem of computingV is NP-hard [10].

It is also known that in some practically important cases,
feasible algorithms for computingV are possible. One such
practically useful case is when the measurement accuracy is
good enough so that we can tell that the different measured val-
uesx̃i are indeed different – e.g., the corresponding intervals
xi do not intersect. In this case, there exists a quadratic-time
algorithm for computingV ; see, e.g., [10].

There exist other practically useful cases when efficient
aslgorithms are possible; see above references.
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