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Abstract

Expert knowledge consists of statements Sj (facts and rules). The
facts and rules are often only true with some probability. For example,
if we are interested in oil, we should look at seismic data. If in 90% of
the cases, the seismic data was indeed helpful in locating oil, then we
can say that if we are interested in oil, then with probability 90% it is
helpful to look at the seismic data. In more formal terms, we can say that
the implication “if oil then seismic” holds with probability 90%. Another
example: a bank A trusts a client B, so if we trust the bank the bank A,
we should trust B too; if statistically, this trust was justified in 99% of
the cases, we can conclude that the corresponding implication holds with
probability 99%.

If a query Q is deducible from facts and rules, what is the resulting
probability p(Q) in Q? We can describe the truth of Q as a propositional
formula F in terms of Sj , i.e., as a combination of statements Sj linked
by operators like &, ∨, and ¬; computing p(Q) exactly is NP-hard, so
heuristics are needed.

Traditionally, expert systems use technique similar to straightforward
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interval computations: we parse F and replace each computation step with
corresponding probability operation. Problem: at each step, we ignore
the dependence between the intermediate results Fj ; hence intervals are
too wide. Example: the estimate for P (A ∨ ¬A) is not 1. Solution:
similarly to affine arithmetic, besides P (Fj), we also compute P (Fj & Fi)
(or P (Fj1 & . . . & Fjd)), and on each step, use all combinations of l such
probabilities to get new estimates. Results: e.g., P (A ∨ ¬A) is estimated
as 1.

1 Formulation of the Problem

Expert knowledge usually consists of statements Sj : facts and rules. The main
objective is, given a query Q, to check whether Q follows from the expert knowl-
edge. In this paper, we will use the standard Prolog-type notations, in which a
statement that a is true is described as a ←, and a rule “if a1, a2, . . . , and am

are true then b must be true” is described as b ← a1, a2, . . . , am.
For example, in the knowledge base

S1 : a ← b, S2 : b ←, S3 : a ← c, S4 : c ←

S1 is a rule “if b then a”, S3 is a rule “if c then a”, S2 is a fact (b is true), and
S4 is a fact (c is true). If we ask a query Q

def= “a?”, then the answer is “yes”:
since we know that b is true, and that b implies a, we can conclude that a is
true. In other words, Q follows from S1 and S2. Prolog-type inference engines
are tools that provide such inference; see, e.g., [10].

The problem with this approach is that the experts’ facts and rules are often
only true with some probability. If a query Q is deducible from facts and rules,
what is the resulting probability p(Q) that Q is actually true? For example,
in a geophysical situation, we may have the following two rules: to find oil, we
must look for certain subterranean structures; to find these structures, we must
analyze gravity data. If these rules were absolutely true, then we would be able
to conclude that to find oil, we must analyze gravity data. In reality, we know
that in search for oil, looking for specific subterranean structures is only helpful
in 80% of the cases, so the first rule is true with probability 0.8. We also know
that the gravity data can detect only 90% of such structures, so the second rule
is only true with probability 0.9. What is the resulting probability that gravity
data will help in a specific search for oil?

Let us describe this problem in more precise terms. We can usually de-
scribe deducibility of Q as a propositional formula F in terms of Sj , i.e., as a
combination of statements linked by operators like “and” (&), “or” (∨), and
“not” (¬). For example, for the above knowledge base, for Q to be true, ei-
ther both S1 and S2 must be true, or both S3 and S4 must be true. In this
case, F = (S1 & S2) ∨ (S3 & S4). The general algorithm for describing such a
propositional formula is given in [7].
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As a result, we arrive at the following problem:

• we have a propositional combination F of known statements Sj ;

• we know the probabilities p(Sj) of different statements;

• we must determine the probability p(F ).

Since the events Sj may be statistically dependent, we may get different values
for p(F ) depending on whether the values are independent or, say, positively
correlated. So, to be more precise:

• we must determine the interval p(F ) of possible values of p(F ).

How is this problem solved now?

2 Traditional Approach

It is known that in general, the problem of finding the exact bounds for p(F )
is NP-hard; see, e.g., [10]. This problem is NP-hard even if all the probabilities
p(Sj) are equal to 1, because it is equivalent to the propositional satisfiability
problem, a known NP-hard problem.

Traditionally, expert systems use technique similar to straightforward inter-
val computations [6]. Namely, for simple formulas we know the corresponding
probability bounds [12]: if we know the bounds [a, a] for p(A) and [b, b] for p(B),
then:

• p(¬A) is in the interval [1− a, 1− a];

• p(A & B) is in the interval [max(a + b− 1, 0), min(a, b)];

• p(A ∨B) is in the interval [max(a, b), min(a + b, 1)].

In the general case, we parse F and replace each computation step with the
corresponding probability operation.

For example, let F = (A & B) ∨ (A&¬B) and p(A) = p(B) = 0.6. The
compiler would start with F1 = A and F2 = B, then it would compute F3 = ¬B,
F4 = F1 & F2, F5 = F1 & F3, and finally F = F4 ∨ F5. Thus, according to
the above procedure, we first find the bounds for p(F3) = p(¬B), then for
p(F4) = p(A & B) and p(F5) = p(A &¬B), and finally, the bounds for p(F ). As
a result, we get p(¬B) = 1− 0.6 = 0.4,

p(A & B) = [max(0.6 + 0.6− 1, 0), min(0.6, 0.6)] = [0.2, 0.6],

p(A &¬B) = [max(0.6 + 0.4− 1, 0),min(0.6, 0.4)] = [0, 0.4],

p(F ) = [max(0, 0.2), min(0.4 + 0.6, 1)] = [0.2, 1.0].
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What is the actual range of p(F )? In this problem, F is equivalent to A, so
p(F ) = 0.6. Thus, similarly to interval computations, we can see that the
resulting interval contains excess width.

The second example is to estimate p(A ∨ ¬A) for p(A) = 0.6. The desired
answer is, of course, p(A ∨ ¬A) = 1. However, when parsing A ∨ ¬A, we get
F1 = A, F2 = ¬A, and F = F1∨F2. So, in the traditional approach, we estimate
p(F1) = 0.6, p(F2) = 1− p(F1) = 1− 0.6 = 0.4, and

p(F1 ∨ F2) = [max(0.4, 0.6), min(0.4 + 0.6, 1)] = [0.6, 1]

– excess width again.

3 How We Can Improve the Interval Estimates:
Idea

We have just seen, on two examples, that the traditional approach leads to excess
width. In order to see how we can improve this approach, let us trace where
the excess width appears in the estimation of p(A∨¬A). We know p(A) = 0.6;
so, since F1 = A, we know the exact value of p(F1): p(F1) = [0.6, 0.6].

Next, in the traditional approach, we use the known interval p(F1) to esti-
mate the interval p(F2) for F2 = ¬F1. Here, p(F2) = 1 − [0.6, 0.6] = [0.4, 0.4].
This is also the exact value of the corresponding probability.

Finally, in the traditional approach, we use the known bounds p(F1) =
[0.6, 0.6] and p(F2) = [0.4, 0.4] to estimate the bound for F = F1 ∨ F2. At
this stage, we do get excess width. The reason for this excess width is that we
use a general formula for p(A ∨ B), the formula that only takes into account
the intervals p(F1) and p(F2) and that does not take into account that in this
particular case, there is a special relation between the events F1 and F2 – these
events are incompatible.

In order to take this missing information into account, it is desirable, once
we come to a new intermediate result Fj , to not only estimate the interval
p(Fj), but to also estimate intervals p(Fj & Fk), p(Fj ∨Fk) of possible values of
the probabilities of different propositional combinations of Fj and the previous
intermediate results Fk.

Next, when we turn to computing similar probabilities involving the next
intermediate result Fj , we taken into account not only the known bounds p(Fk)
for k < j, but also the known bounds on the probabilities of propositional
combinations p(Fk & Fl), p(Fk ∨ Fl), etc., for different pairs k, l < j.
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4 Our Inspiration: Affine and Taylor Arith-
metic Techniques

In interval computations, one way to decrease the excess width is to use affine
or Taylor arithmetic; see, e.g., [3, 4, 8]. The main reason for excess width is
that when we apply operations from interval arithmetic step-by-step, we only
take into account the intervals of possible values of the previous result, and
we ignore the possible relation between these results. For example, when we
use straightforward interval computations to estimate the range of the function
y = x1 · (1− x1) on the interval [0, 1], then we parse the function into r1 := x1,
r2 := 1 − r1, y := r1 · r2, and replace each operation with real numbers by the
corresponding operation from interval arithmetic. As a result, we get r1 := [0, 1];
r2 := 1 − [0, 1] = [0, 1], and y := [0, 1] · [0, 1] = [0, 1] – while the exact range is
[0, 0.25]. The main reason for the excess width is that when we estimated the
range of y = r1 · r2, we took into account the ranges for r1 and r2, but not the
fact that these variables are actually strongly related: in this particular case,
r2 = 1− r1.

To take this relation into account, in affine arithmetic, for each intermediate
result yj , we not only keep the interval yj of its possible values, we also keep

the relation between this value yj and the values ∆xi
def= xi − x̃i (where x̃i

is a midpoint of the input interval xi) – in the form of a linear dependence
yj = a0j +a1j ·∆x1+. . .+anj ·∆xn+εj , where aij are exactly known coefficients
and for the remainder term εj , we know the interval bounds [−∆j , ∆j ]. We start
with the original inputs xi presented in this form, i.e., as

xi = x̃i + 0 ·∆x1 + . . . + 0 ·∆xi−1 + (−1) ·∆xi + 0 ·∆xi+1 + . . . .

Then, on each intermediate step, when we use an arithmetic operations ⊕ to
compute the next intermediate result yj as yk⊕yl, where k, l < j, we use known
linear representations for yk and yl to find a similar representation for yk. For
example, if we know that

yk = a0k + a1k ·∆x1 + . . . + ank ·∆xn + εk

and
yl = a0l + a1l ·∆x1 + . . . + anl ·∆xn + εl,

with εk ∈ [−∆k,∆k] and εl ∈ [−∆l, ∆l], then for ⊕ = +, we get

yj = a0j + a1j ·∆x1 + . . . + anj ·∆xn + εj

with εj ∈ [−∆j , ∆j ], where aij = aik+akj and ∆j = ∆k+∆l. For multiplication
⊕ = ·, the corresponding formula is more complex because the new bound ∆j

must also include the bound for the new quadratic terms.
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The coefficients aij describe the relation between the intermediate result yj

and the input values x1, . . . , xn – and thus, also between different intermediate
results.

Our main idea is similar to affine arithmetic: for each intermediate result Fj ,
in addition to an interval of possible values for p(Fj), we also compute intervals
of possible values for pairs: p(Fj &Fi), p(Fj ∨ Fi) for all previous expressions
Fi and for all possible propositional functions of two variables. These intervals
describe the relation between the intermediate results.

Affine arithmetic only takes linear dependencies into account; to account for
more complex dependencies, we can use, e.g., quadratic Taylor models, in which
we also keep track of the quadratic terms in the dependence of yj on the inputs
x1, . . . , xn, i.e., of terms of the type ajkl · xk · xl. It is also possible to use cubic
terms, etc.

Similarly, in our case, in addition to keeping track of the probabilities of
propositional combinations of pairs Fj and Fk, we can pick an order d ≥ 2,
and also, on each step, estimate intervals for propositional combinations of k
intermediate results, such as p(Fj1 & . . . &Fjd

). Similar to Taylor techniques,
the higher the order d, the more we take dependencies into account (so, in
general, the more accurate the results), but the longer the computations (since
we must compute more terms).

5 How We Can Implement This Idea

In order to implement the above idea, we must be able to use the previously
known bounds to compute the new ones. This can be done by using linear
programming; see, e.g., [12]. Indeed, we can describe both known and estimated
probabilities as sums of probabilities of atomic statements F ε1

i1
& . . . &F εm

im
,

where ε ∈ {−, +}, F+ means F , and F− means ¬F . Then, we use linear
programming (LP) to get desired bounds on the unknown probability. There
exist efficient polynomial-time algorithms for solving LP problems, so these
bounds can be computed efficiently.

Let us first illustrate the use of LP on the example when we already know
the analytical solution: we know p(A) = a = 0.6 and p(B) = b = 0.6 and we
want to estimate p(A ∨ B). Here, we have two basic statement A and B, so
both the known probabilities p(A), p(B), and the desired probability p(A ∨B)
can be describe in terms of the probabilities of 4 possible atomic statements:
p++

def= p(A & B), p+−
def= p(A &¬B), p−+

def= p(¬A &B), p−−
def= p(¬A &¬B).

These probabilities must be non-negative, and they must add up to 1.
Specifically, p(A) = p(A &B)+ p(A &¬B), p(B) = p(A &¬B)+ p(¬A & B),

and p(A∨B) = p(A &B)+p(A&¬B)+p(¬A & B). So, the known information
about the 4 probabilities p++, . . . , can be described in terms of the following
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constraints:

p++ + p+− = a; p++ + p−+ = b; p++ + p+− + p−+ + p−− = 1;

p++ ≥ 0; p+− ≥ 0; p−+ ≥ 0; p−− ≥ 0.

To find the largest possible value p(A∨B) of the probability p(A∨B), we must
thus maximize the expression p++ + p+− + p−+ under the above constraints.
Similarly, to find the smallest possible value p(A∨B) of p(A∨B), we must thus
minimize the expression p++ + p+− + p−+ under the above constraints.

In both cases, we must optimize an objective function which is a linear
combination of the 4 unknowns p++, . . ., under constraints each of which is
either a linear equality or linear inequality. So, both problems are LP problems.

It is known that in general, the solution of a LP problem is attained at one
of the vertices of the corresponding set, i.e., when the largest possible number
of inequalities become equalities. In this particular case, we have 4 inequalities
p.. ≥ 0 which can become equalities. One can easily check that p(A ∨B) is the
smallest when p−+ = 0, and p(A ∨ B) is the largest when p−− = 0. In both
cases, we get the desired bounds max(a, b) = 0.6 and min(a + b, 1) = 1.

6 Examples

Let us show that by estimating the bounds for probabilities of pairs, we indeed
get narrower intervals.

Let us first show this on the example of F = A∨¬A for p(A) = 0.6, in which
the parsing leads to F1 = A, F2 = ¬A, and F = F1 ∨ F2. In the traditional
approach, we estimated p(F1), p(F2), and then used these two intervals to
estimate the bounds for p(F1 ∨ F2).

In the new approach, we similarly start with p(F1) = [0.6, 0.6]. On the first
step, we handle the intermediate statement F2. In the traditional approach, we
use the logical relation F2 = ¬F1 between the new intermediate result F2 and
the previous result F1 to estimate the range of possible values for p(F2). In
the new approach, we use this logical relation not only estimate the bound for
p(F2), but also to estimate the bounds for p(F1⊕F2) for different propositional
combinations F1⊕F2 of F1 and F2 (such as F1 & F2, F1∨F2, etc.). Because of this
relation between Fi, we have p(F1 & F2) = 0, p(F1 &¬F2) = 0.6, p(¬F1 &F2) =
0.4, p(F1∨F2) = 1, p(F1∨¬F2) = 0.6, p(¬F1∨F2) = 0.4, and p(¬F1∨¬F2) = 1.

According to the new approach, on the next step, when we estimate p(F ) for
F = F1 ∨F2, we take into account not only the previously computed bounds on
p(F1) and p(F2), but also the previously computed bounds on the propositional
combinations of F1 and F2. Since we already know, from the previous step, that
p(F1 ∨ F2) = 1, we thus conclude that p(F ) = 1. As a result, we get the exact
desired probability, with no excess width.
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Comment. A general argument against expert systems and fuzzy logic (see, e.g.,
[9]) is that, e.g., p(A∨¬A) is estimated based only on the probabilities p(A) and
p(¬A) – e.g., as max(p(A), p(¬A)), while the correct value of p(A ∨ ¬A) is 1.
Our solution: in addition to probabilities of individual intermediate statements,
keep probabilities of pairs, triples, etc.

For (A &B) ∨ (A &¬B), we have 6 intermediate statements Fj , so it is dif-
ficult to describe all corresponding propositional combinations of pairs without
making the paper too long. Let us show, however, that the resulting bound is
indeed narrower than the interval [0.2, 1]. Indeed, since F4 = F1 & F2, on the
corresponding step, we conclude that p(¬F1 &F4) = 0; this conclusion can be
confirmed if we explicitly describe the corresponding LP problem. Similarly,
since F5 is defined as F1 & F3, we conclude that p(¬F1 &F5) = 0. So, when we
estimate the probability p(F ) = p(F4 ∨ F5), we can take into consideration not
only bounds for p(F4) and p(F5) (as in the traditional approach), but also the
values p(F1) = 0.6, p(¬F1 &F4) = 0, and p(¬F1 & F5) = 0.

For the three variables F1, F4, and F5, we can form 8 atomic probabilities
p+++ = p(F1 & F4 & F5), p++− = p(F1 &F4 &¬F5), etc. It is easy to see that,
due to conditions p(¬F1 &F4) = p−++ + p−+− = 0 (hence p−++ = p−+− = 0)
and p(¬F1 &F5) = p−++ + p−+− = 0 (hence p−+− = 0), all the terms in
the remaining the expression for p(F4 ∨ F5) = p+++ + p++− + p+−+ are also
included in the expression for p(F1) = p+++ + p++− + p+−+ + p+−− = 0.6,
hence p(F4 ∨ F5) ≤ 0.6.

This estimate is better than the traditional estimate in which we were only
able to conclude that p(F4 ∨ F5) ≤ 1.

A detailed analysis shows (see, e.g., [1]) that if we only use probabilities
for pairs of statements, we still get excess width. However, for triples, we can
already get the exact probability: indeed, each intermediate statement Fj is
obtained by applying a propositional operation (we will denote it by ⊕) to two
previous statements Fk and Fl (k, l < j). In this case, we get the constraint
p(Fj &¬(Fk ⊕ Fl)) = 0 and p(¬Fj &(Fk ⊕ Fl)) = 0; these constraints are, in
effect, equivalent to stating that Fj is equivalent to Fk ⊕ Fl. Thus, LP under
these constraints is equivalent to computing the exact bounds on the desired
probability p(Q).

Similarly, for (A & B)∨(A & C), the traditional method leads to excess width
in comparison with A∨(B &C); if we keep probabilities of triples of statements,
we get the exact interval for p((A & B) ∨ (A &C)) – i.e., we get distributivity.

7 Computational Complexity of the New
Method and How to Make It Feasible

If we use pairs, then, on the j-th stage of the new procedure, we know the bounds
on the probabilities of the previous intermediate statements F1, . . . , Fj−1, and
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on the probabilities of the propositional combinations Fk⊕Fl for all pairs (k, l)
for which k, l < j.

According to the above approach, to find such bounds, we must consider 2j−1

atomic statements F ε1
1 & . . . & F

εj−1
j−1 . At the last stage, we need to consider

a LP problem with exponentially many (2n) variables; solving this problem
requires exponential time.

To reduce the computation time to a feasible amount, i.e., to the time which
is polynomial in the length n of the input formula F , we propose to do the
following. In addition to the parameter d which describes whether we consider
only bounds on probabilities p(Fi) (when d = 1), or also bounds on pairs p(Fj⊕
Fk) (when d = 2), or probabilities on triples (when d = 3), we introduce another
parameter l with the following meaning.

At the j-th step, when we look for the bounds for p(Fj), we have O(jd)
constraints corresponding to propositional combinations of groups of d previous
statements Fk. Instead of considering all these constraints, we pick l of them,
and solve the problem of minimizing and maximizing the desired probabilities
p(Fj), p(Fj ⊕ Fk), etc., under the selected l constraints. As a result, we get an
interval that is guaranteed to contain the range for the desired probability.

We repeat this procedure for each subset of l constraints, and take the in-
tersection of the resulting estimates. Let us show that for every l, we get
a polynomial-time algorithm. Indeed, in each estimation, we have a formula
whose probability we are estimating, and l formulas coming from l known con-
straints (i.e., l formulas for which we have already computed the probability
bounds on the previous stages). Each of the l + 1 propositional combinations
involves ≤ d statements Fk, so overall, they involve m ≤ (l + 1) · d expres-
sions Fk1 , . . . , Fkm . So, the corresponding LP problem contains 2m variables –
probabilities of atomic statements F ε1

i1
& . . . & F εm

im
.

What is the running time of this algorithm? A propositional function
f(x1, . . . , xd) of d propositional variables can be described as a function from
the set {0, 1}d of 2d possible combinations xi to the set {0, 1} of possible truth
values. Thus, there are exactly 22d

such functions. For fixed d and l, this means
that we have O(1) such functions.

One the j-th step, we have j intermediate results F1, . . . , Fj . We have O(jd)
possible combinations of ≤ d such values, so we have O(jd) probability bounds.
To compute each of O(jd) new bounds, we consider all possible subsets of l
probabilities. There are O((jd)l) = O(jd·l) such subsets. For each subset, for
fixed d and l, the value m is bounded by a constant: m = O(1). There are
2m = O(1) possible combinations, so each LP requires O(1) time. So, overall,
on step j, we need O(jd) · O(jd·l) ≤ M · jd·(l+1) steps for some constant M .
Overall, we need ≤ M(1d·(l+1) + . . . + nd·(l+1)) steps, where the number n of
parsing steps is bounded by the length of the formula F . It is known that
1a + 2a + . . . + na = O(na+1), so overall, this algorithm requires O(nd·(l+1)+1)
steps. In other words, the running time grows polynomially with the length of
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the formula F – so this algorithm is feasible.
It is worth mentioning that when d → ∞ and l → ∞, we get exact results;

however, computation time grows exponentially with d and l, so we cannot
realistically use too large values d and l.

8 Case Study: Computer Security

Up to now, we considered a general problem of handling interval-valued prob-
abilistic uncertainty in expert systems. In general, as we have mentioned, the
problem of computing the exact interval of possible values of probability is NP-
hard, so we proposed heuristic algorithms which provide reasonable enclosures
for this interval.

NP-hardness means that (unless P=NP), there is no hope of finding an
efficient algorithm which would solve all the problems from this class. However,
for many practically useful subclasses, it is often possible to design efficient
algorithms. In this section, we describe a class of problems for which there
is an efficient algorithm for handling interval-valued uncertainty. This class of
problems is related to computer security and trust in general.

In the traditional approach to trust, we either trust an agent or not. If
we trust an agent, we allow this agent full access to a particular task. For
example, I trust my bank to handle my account; the bank (my agent) outsources
money operations to another company (sub-agent), etc. The problem with this
approach is that I may have only 99.9% trust in bank, bank in its contractor,
etc. As a result, for long chains, the probability of a security leak may increase
beyond any given threshold. To resolve this problem, we must keep track of
trust probabilities.

Let us describe this idea in precise terms. We have a finite set A; its elements
are called agents. For some pairs (a, b) of agents, we know that an agent a has
some degree of direct trust in an agent b. We will denote the set of all such pairs
by E. For each pair (a, b) ∈ E, we know the probability p0(a, b) with which a
directly trusts b. We can estimate this probability, e.g., as a frequency in which
a similar trust was justified.

Our objective is to describe, for given two agents f and s, the resulting
probability pt(f, s) with which the agent f should trust the agent s.

Let us show how this problem can be described in precise terms. The pair
(A,E), where E ⊆ A×A, forms a graph in which agents are nodes and possible
trust pairs are edges. To each edge (a, b), we associate a value p0(a, b) ∈ [0, 1].

Some of the trusts may be misplaced: an agent a may trust an agent b with
a certain probability, but b may be misusing a’s trust. Let E′ ⊆ E denote the
(unknown) set of pairs in which the trust is justified; we will call this set the
actual trust set.

We do not know for sure who is trustworthy and who is not, so at best, we
can find some information about the probabilities p(E′) of different trust sets
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E′. First, these probabilities must add up to 1:
∑
E′

p(E′) = 1. Second, for every

pair (a, b) ∈ E, the probability that a directly trusts b, i.e., the probability that
the edge (a, b) belongs to the actual trust set E′, should be equal to p0(a, b):∑

E′:(a,b)∈E′ p(E′) = p0(a, b).
Once the probability distribution p(E′) is fixed, we can determine the prob-

ability pt(f, s) with which f should trust s as the probability that in the actual
trust set E′, there is a path leading from f to s. If we denote the existence of

such a path by f
E′→ s, then the desired probability pt(f, s) can be described as∑

E′:f
E′→s

p(E′).

We may have different probability distributions p(E′) which are consistent
with the data p0(a, b); for different distributions, we may have different values of
the trust pt(f, s). In security situations, it is desirable to find the guaranteed level
of trust, i.e., the smallest possible value of pt(f, s) over all possible probability
distributions which are consistent with the data p0(a, b). We will denote this
smallest possible value by p

t
(f, s); in these terms, our objective is to compute

p
t
(f, s).
This problem can be viewed as a particular case of the general problem of

dealing with probabilities in expert systems. Indeed, here, for every agent a, we
have a statement “a” meaning that f trusts a. We have a fact f → meaning
that f trust himself. For each edge (a, b) ∈ E (meaning that a trusts b), we
have a rule b ← a (meaning that if f trusts a, he should also trust b), which
holds with probability p0(a, b). The query is “s?” – i.e., with what probability
should we trust s.

Let us show that in this particular problem, we can efficiently compute the
desired probability. Namely, let us define the length (“distrust”) of an edge as
d0(a, b) def= 1 − p0(a, b). We can naturally extend this definition to paths, i.e.,
sequences (a0, . . . , an) in which (ai, ai+1) ∈ E for all i. Namely, the length `(γ)

of a path γ = (a0, . . . , an) is defined as usual: `(γ) def=
n−1∑
i=0

d0(ai, ai+1). The

length of the shortest path from f to s is defined as follows:

dt(f, s) def= min{`(γ) | γ is a path from f to s}.
Proposition. p

t
(f, s) = max(1− dt(f, s), 0).

So, we can use Dijkstra’s algorithm (see, e.g., [2]) to find the shortest path in a
graph, and then compute p

t
(f, s).

Proof. Let us first prove that if the probability distribution p(E′) is consistent
with the given information, then dt(f, s) ≤ dt(f, s), where dt(f, s) def= 1−pt(f, s).

Indeed, let γ0 = (a0, a1, . . . , an) be the shortest path from a0 = f to an = s;
then, dt(f, s) = d0(a0, a1) + . . . + d0(an−1, an).

If in the actual trust set E′, there is a path from each node ai to the next one
ai+1, then, combining these nodes, we will have a path from a0 = f to an = s.
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Thus, if there is no path from f to s, this means that at least one of the
connections (ai, ai+1) is not present in E′. Let us denote, by Nt(f, s), the
condition that there is no path in E′ from f to s, and by N0(ai, ai+1), the
condition that in the actual trust set E′, there is no direct connection between
ai and ai+1. In terms of these notations, the above statement takes the following
form:

Nt(f, s) ⊃ (N0(a0, a1) ∨ . . . ∨N0(an−1, an)).

Hence, dt(f, s) = p(Nt(f, s) ≤ p(N0(a0, a1) ∨ . . . ∨ N0(an−1, an)). It is known
that p(A ∨ B) ≤ p(A) + p(B), and that p(N0(ai, ai+1)) = d0(ai, ai+1). So,
dt(f, s) ≤ d0(a0, a1) + . . . + d0(an−1, an). Due to our choice of ai, we know
that the right-hand side of this inequality is equal to dt(f, s). Thus, indeed
dt(f, s) ≤ dt(f, s).

To complete the proof, we produce a distribution p(E′) for which pt(f, s) ≤
max(1− dt(f, s), 0). To describe this distribution, we start with a random vari-
able ω which is uniformly distributed on the interval [0, 1]. For each value
ω ∈ [0, 1], we define the set E′(ω) ⊆ E as follows. Let π(x) def= x − bxc. We
then define E′(ω) as the set of all edges (a, b) ∈ E for which ω 6∈ π(I(a, b)),
where I(a, b) def= [dt(f, a), dt(f, a) + d0(a, b)]. As a result of this definition, we
get different sets E′ ⊆ E with different probabilities p(E′). Since π(I(a, b)) has
width p0(a, b), the distribution p(E′) is consistent with p0(a, b).

Induction proves (see [5] for details) that for every path starting at a0 = f ,
if all its edges (ai, ai+1) are in E(ω), then ω ≥ dt(a0, an). Hence,

pt(f, s) ≤ max(1− dt(f, s), 0).

The statement is proven, so the above algorithm has been justified.
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