
From Intervals to Domains: Towards a General

Description of Validated Uncertainty, with

Applications to Geospatial and Meteorological

Data

Vladik Kreinovich1, Olga Kosheleva1, Scott A. Starks1,
Kavitha Tupelly1, Graçaliz P. Dimuro2,

Antônio Carlos da Rocha Costa2, and Karen Villaverde3

1NASA Pan-American Center for Earth and Environmental
Studies, El Paso, TX 79968, USA, vladik@cs.utep.edu

2Escola de Informática, Univeridade Católica de Pelotas
96.010-000 Pelotas, RS, Brazil

4Department of Computer Science,
New Mexico State University, Las Cruces, NM 88003, USA

Abstract

When physical quantities xi are numbers, then the corresponding mea-
surement accuracy can be usually represented in interval terms, and in-
terval computations can be used to estimate the resulting uncertainty in
y = f(x1, . . . , xn).

In some practical problems, we are interested in more complex struc-
tures such as functions, operators, etc. Examples: we may be interested
in how the material strain depends on the applied stress, or in how a
physical quantity such as temperature or velocity of sound depends on a
3-D point.

For many such structures, there are ways to represent uncertainty, but
usually, for each new structure, we have to perform a lot of complex anal-
ysis from scratch. It is desirable to come up with a general methodology
that would automatically produce a natural description of validated un-
certainty for all physically interesting situations (or at least for as many
such situations as possible). In this talk, we describe the foundations for
such a methodology; it turns out that this problem naturally leads to the
technique of domains first introduced by D. Scott in the 1970s.

In addition to general domain techniques, we also describe applications
to geospatial and meteorological data.

1

Keywords: interval computations, domains, geospatial data, meteorological
data

1 From Intervals to Domains

Formulation of the problem. Usually, physical quantities xi are numbers.
In this case, intervals provide a reasonable description of measurement accu-
racy. Sometimes, however, we are interested in more complex structures such
as functions, operators, etc. For example, in meteorology, we are interested in
knowing how the temperature depends on a 3-D point. At present, for each new
structure, we have to invent a new representation of uncertainty. It is therefore
desirable to come up with a general description of validated uncertainty.

In this paper, we show that a natural approach leads to Scott’s domains.
We will also show how this general approach can be applied to meteorology.

Binary domains. In real-life measurements, a measurement result has to be
represented in a computer. Thus, it has to be represented as a sequence of 0s
and 1s, and the length of this sequence is bounded. There are only finitely many
such sequences, so we have a finite set X of possible measurement results.

Measurement uncertainty means, in particular, that when measuring the
value of the same quantity with the same measurement result, we may get
different values. Thus, a natural way to describe uncertainty is to describe a
binary relation a ∼ b on the set X, a relation in which a ∼ b if and only if the
same object can lead to both a and b.

Let us show how the standard interval uncertainty fits into this general
picture. For example, suppose that we measure temperature with the accuracy
1◦, and the scale consists of the values X = {0, 1, 2, 3 . . . , T}. Here, e.g., t̃ = 0
means that the actual temperature t is in the interval [−1, 1]; so, a ∼ b if the
corresponding intervals [a−1, a+1] and [b−1, b+1] intersect, i.e., if |a−b| ≤ 2.

An even simpler example comes from counting. Every actual counting
device has a limitation of how many objects we can count, so here, X =
{1, 2, . . . , n, many}, where “many” means that we have exhausted this device,
and there are still objects to count. Here, a ∼ b if and only if a = b.

Yet another example comes from “yes”-“no” questions; here, possible re-
sults are “false” (usually denoted by 0), “true” (usually denoted by 1), and
“unknown” (we will denote it by U). Here, X = {0, 1, U}, and the relation ∼
has the form 0 ∼ U ∼ 1.

In general, a measuring instrument can be described by a pair 〈X,∼〉. Such
pairs are called graphs, binary domains, or webs.

Simplicial complexes. To get a better description of a measuring instru-
ment, it is desirable to know not only which pairs are “compatible”, but also
which triples etc. can comes from the same object. If a ∼ b, b ∼ c, and a ∼ c,

2

then for some measuring instruments, all three values are possible outcomes for
some object, while for others, no single object can lead to these three outcomes.

Let us say that a set S ⊆ X is compatible if for some object, all values from S
are possible. Then, a measuring instrument can be represented as a pair 〈X,S〉,
where X ⊆ S ⊆ 2X is the class of all compatible sets. Clearly, if a set S is
compatible then each subset of S is compatible too. In mathematical terms,
such a pair is called a simplicial complex: X is the set of vertices, and S is the
set of faces.

For example, if X = {a, b, c}, a ∼ b, b ∼ c, a ∼ c, and there is an ob-
ject for which all three outcomes are possible, then the corresponding simpli-
cial complex is a filled triangle S = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.
Alternatively, if no such object exists, then we have an empty triangle S =
{{a}, {b}, {c}, {a, b}, {b, c}, {a, c}}.

How to describe actual values of measured quantities. A single mea-
surement only leads to an approximate value of the measured quantity. To de-
scribe the actual value of the measured quantity, we must consider a sequence
of more and more accurate measuring instruments.

Let Xk describes results of first k measurements. Then, for every k < l,
there exists a natural “forgetful functor” πlk : Xl → Xk that simply erases the
results of the last l − k measurements. It is easy to see that this projection π
satisfies the following properties:

• if a′ ∼′ b′, then π(a′) ∼ π(b′);

• if a ∼ b, then ∃a′, b′ such that π(a′) = a, π(b′) = b, and a′ ∼′ b′.

We will call a mapping that satisfies these properties a projection.
We thus arrive at the following definition: a physical quantity is described

by a sequence of graphs with projections: X1
π2,1← X2

π3,2← X3 . . . An actual value
of the quantity is a sequence x = (x1, x2, . . .) such that πlk(xl) = xk for all
k < l. The set X of all such values is called a projective limit of the sequence
Xi.

On this set X, equivalence is naturally defined as follows: a ∼ b if and only
if ai ∼i bi for all i.

We can also naturally defined a neighborhood of a value a as Nn(a) def=
{b | b ∼n a}. Since we have neighborhoods, we can now define a limit in a
standard way: a(k) → a if and only if ∀n ∃m ∀k > m (a(k)

n ∼n a).
It is easy to see that if we consider interval-related sets Xi with a better and

better accuracy and broader and broader span, then X is the set of the real
number with a natural topology. To be more precise, we also get the values −∞
and +∞.

If we start with n-dimensional “boxes”, we naturally end up with the set
Rn.

For “yes”-“no” questions, we have:

3

• X1: 0 ∼ U ∼ 1;

• X2: 0 ∼ U0 ∼ UU ∼ U1 ∼ 1, 0 ∼ UU ∼ 1;

etc. Thus, the projective limit consists of three different elements with the
equivalence relation 0 ∼ U ∼ 1.

Unusual property: compactness. One can show that for every such pro-
jective limit X, every sequence a(k) has a convergent subsequence.

Indeed, since the set X1 is finite, and there are infinitely many elements a(k)

in the sequence, then there exist at least one value x ∈ X1 for which infinitely
many elements a(k) have a

(k)
1 = x. We can therefore consider a subsequence

consisting of such elements. Let us fix the first element in this new subsequence.
There are infinitely many elements in the remaining part of the subsequence,
and only finitely many elements in X2. Thus, we can select a sub-subsequence
in which all elements but one have the same value of a2, etc. As a result, we
get a convergent subsequence.

In mathematical terms, this property is called compactness. For example, for
real numbers, instead of the set R, we have a compactification R∪ {−∞, +∞}.

Compactness is important for solving inverse problems; see, e.g., [6]. The
main reason why we have measurements is that we want to reconstruct the
actual values of the measured quantities. In general, we observe f(x) for some
continuous f : X → Y , and we want to reconstruct x. For example, we want
to reconstruct an image x, but what we observe is an image f(x) distorted by
the inaccuracies of the lens. The problem is that even in the presence of noise,
when the mapping f is 1-1, the function f−1 is often discontinuous, so a small
measurement error y can lead to a large error in reconstructing x. A known
solution is to restrict ourselves to compact sets X because for compact sets, the
inverse f−1 to a continuous mapping is continuous as well.

The problem is that, e.g., the set X of all images is not compact under
standard mathematical metrics such as L2 or L∞. Our result shows that this set
is compact if we consider a topology that naturally comes from measurements.

Functions. Once we have a description of the set A and of the set B, how can
we describe, in these terms, the set of all functions from A to B? For example,
if we know how to describe time t and how to describe spatial coordinate x, how
can we then describe a trajectory x(t), i.e., a function that maps t into x?

In physical terms, a function f : A → B means that, once we know an
approximation an to a, we can find some approximation bm to b. Thus, we
arrive at the following definition: a function f : A → B is a mapping from ∪An

to ∪Bn such that:

• a ∼ a′ implies f(a) ∼ f(a′);

• if a = π(a′), then f(a) = π(f(a′)).

4

It is worth mentioning that functions may be partial, so the results do not
converge: e.g., due to Heisenberg inequality, we cannot determine both x(t) and
v(t) with arbitrary accuracy.

One can prove, by using compactness and reduction to a contradiction, that
if f : X → R is everywhere defined, then f is continuous:

∀n ∃m ((xm ∼m x′m) → f(xm) ∼n f(x′m)).

Let us show how this general vision can be applied to practical problems.

2 Towards Meteorological and Geophysical Ap-
plications

Data compression: formulation of the problem. At present, a large
amount of data is coming from measuring instruments. It is often necessary to
compress this data before storing and processing. We can gain some storage
space by using lossless compression. However, often, the gain available via
lossless compression is is not sufficient. So, we must use lossy compression as
well.

For image compression, the JPEG2000 standard uses wavelet transform (and
other efficient compression techniques) to provide a very efficient compression of
2D images. Its important characteristic is bitrate, i.e., number of bits per pixel
that is required, on average, for the compressed image. Within JPEG2000,
we can select different bitrates. The highest possible bitrate leads to lossless
compression, when image is reconstructed precisely. When we decrease the
bitrate, we get a lossy compression; the smaller the bitrate, the more the com-
pressed/decompressed image will differ from the original image.

Known methods of data compression. In principle, it is possible to use
JPEG2000 compression techniques to compress 2D measurement data as well.
In some cases, we have 3D data: e.g., meteorological measurements taken in
different places (x, y) at different heights z. To compress 3D data, in principle,
we can simply apply the 2D JPEG2000 compression to each horizontal layer
f(x, y, z0). However, a better compression is achieved if we use KLT transform:

We compute the average value f̄(z) = N−1 ·
∑
x,y

f(x, y, z) of the analyzed

quantity at a given height z, where N is the overall number of horizontal points
(x, y).

We then compute the covariances between different heights:

V (z1, z2) =
1
N
·
∑
x,y

(f(x, y, z1)− f̄(z1)) · (f(x, y, z2)− f̄(z2)).

5

We find the eigenvectors λk and the eigenvectors ek(z) of the covariance
matrix V (z1, z2), and sort these eigenvalues into a sequence e1(z), e2(z), . . . so
that |λ1| ≥ |λ2| ≥ . . .;

Finally, we represent the original 3D data values f(x, y, z) as a linear com-
bination of the eigenvectors ek(z): f(x, y, z) = f̄(z) +

∑
k

ak(x, y) · ek(z), and to

each “slice” ak(x, y), we apply a 2D JPEG2000 compression with the appropri-
ate bit rate bk.

Specifics of data compression. There is a difference between image and
data compression. In image compression, image quality is main objective,
and the visual image quality is well described by the mean square difference
(MSE) between the original image I(x, y) and the compressed-decompressed
image Ĩ(x, y).

In data compression, we want to reproduce each measurement result with a
certain accuracy. For example, we want to know wind, temperature, pressure
along the trajectory of a plane: if along this line, the values are not reconstructed
accurately enough, the plane may crash, and the fact that on average, we get a
good reconstruction, does not help.

Thus, we need a compression that guarantees the accuracy ∆: ‖f− f̃‖L∞
def=

max
x,y,z

|f(x, y, z)− f̃(x, y, z)| ≤ ∆. Among all such compressions, we must find the

one for which b
def= (1/Nz) ·

∑

k

bk → min .

In some cases, the bandwidth is limited: b ≤ b0. In such cases, among
all compression schemes with b ≤ b0, we must find a one for which the L∞

compression/decompression error is the smallest possible. In this paper, we
describe new efficient (suboptimal) techniques for data compression under such
interval uncertainty.

2D case. We want to find the b for which D(b) ≤ ∆, where D(b) def=
max
x,y

∣∣∣f̃ [b](x, y)− f(x, y)
∣∣∣ . We know that bopt ∈ [b−, b+], where b− = 0 and

b+ = B (lossless), and that D(b) ↓ when b ↑. So, we can use the following
bisection algorithm: on each iteration, we start with an interval [b−, b+] that
contains bopt.

We take bmid
def= (b− + b+)/2, apply JPEG2000 compression with b = bmid,

and compute D(bmid). If D(bmid) ≤ ∆, we replace the original interval
[b−, b+] with the half-size interval [b−, bmid]. Otherwise, we replace [b−, b+] with
[bmid, b+].

After each iteration, the size of the interval halves. So, after k iterations, we
get bopt with accuracy 2−k.

6

3D case: idea. We want to find the bitrate allocation b = (b1, . . . , bNz) for
which b → min among all b for which D(b1, b2, . . .) ≤ ∆. Minimizing a function
of many variables is difficult – running time grows exponentially with Nz.

To overcome this difficulty, we borrow the idea from interval computations.
There, the problem is, given a function f(x1, . . . , xn) and intervals xi, to com-
pute the range y def= {f(x1, . . . , xn) |x1 ∈ x1 & . . . & xn ∈ xn}, and the difficulty
is that computing this range exactly is NP-hard – crudely speaking, no algo-
rithm always computes y in reasonable time. The solution is that since we
cannot find the exact range y, we compute an enclosure Y ⊇ y.

Similarly, in our case, since it is difficult to minimize D(b1, . . .), we find
easier-to-optimize upper estimate D̃(b1, b2, . . .) ≥ D(b1, b2, . . .), and then find
the values bi that minimize D̃(b1, . . .). As a result, we find bi for which
D̃(b1, . . .) ≤ D̃min hence D(b1, . . .) ≤ D̃min.

Since, in general, D(b1, . . .) ≤ D̃(b1, . . .), the resulting allocation is only
suboptimal with respect to D(b1, . . .).

Explicit formulas. Once we know the L∞-norms

Dk(bk) def= max
x,y

|ak(x, y)− ã
[bk]
k (x, y)|

of the compression/decompression errors of each slice, we can conclude that
|ak(x, y)− ã

[bk]
k (x, y)| ≤ Dk(bk). Hence,

|(ak(x, y)− ã
[bk]
k (x, y)) · ek(z)| ≤ Dk(bk) · Ek,

where Ek
def= max

z
|ek(z)|. Thus, the desired L∞ error is bounded by

D̃(b1, . . .)
def=

∑
k

Dk(bk) · Ek.

To minimize D̃(b1, . . .) =
∑

k

Dk(bk)·Ek under the condition
∑

k

bk = Nz ·b0,

we can use the Lagrange multiplier approach [1, 2]. As a result, we arrive at
the following algorithm:

Algorithm. Once we know how Dk(b) depends on the bitrate b, it is sufficient
to find the Lagrange multiplier λ; then, |D′

k(bk)| = λ/Ek. We find λ for which
the average bitrate is b0 by bisection.

How can we find Dk(b)? We can try, for each layer k, all possible bitrates
b. Alternatively, we have shown that Bk(b) = A1 · (b − b0)α for b ≤ b0 and
Bk(b) = A2 · 2−b for b ≥ b0; thus, we need to try a few b to find Ai, b0, and α.

Results. We tested our algorithm on 3-D meteorological data: temperature
T, pressure P, the components U, V, and W of the wind speed vector, and the
waver vapor ratio WV.

7

For meteorological data, the resulting compression indeed leads to a much
smaller L∞ error bound ∆new than the L∞ error bound ∆MSE corresponding
to the bitrate allocation that optimizes MSE error. The ratio ∆new/∆MSE

decreases from 0.7 for b0 = 0.1, to 0.5 for b0 = 0.5, to ≤ 0.1 for b0 ≥ 1.

Acknowledgments

This work was supported by NSF Grant CDA-9522207, by the ARO grants
DAA H04-95-1-0494 and DAA D19-99-1-0012, by the Texas Instruments Grant,
and by NASA under cooperative agreement NCC5-209. This work was partly
performed during O.K.’s visit to Brazil; this visit was sponsored by the Brazilian
funding agency CTINFO/CNPq.

References

[1] O. Kosheleva, Task-Specific Metrics and Optimized Rate Allocation Applied
to Part 2 of JPEG2000 and 3-D Meteorological Data, Ph.D. Dissertation,
University of Texas at El Paso, August 2003.

[2] O. Kosheleva, B. Usevitch, S. Cabrera, and E. Vidal, Jr. “MSE Optimal Bit
Allocation in the Application of JPEG2000 Part 2 to Meteorological Data”,
Proceedings of the 2004 IEEE Data Compression Conference DCC’2004,
Snowbird, Utah, March 23–25, 2004, p. 546.

[3] V. Kreinovich, G. P. Dimuro, and A. C. d. Rocha Costa, From Intervals
to? Towards a General Description of Validated Uncertainty”, Catholic
University of Pelotas, Brazil, Technical Report, January 2004; available as
http://www.cs.utep.edu/vladik/2004/tr04-06.pdf

[4] J. Lorkowski and V. Kreinovich, “If we measure a number, we get an inter-
val. What if we measure a function or an operator?”, Reliable Computing,
1996, Vol. 2, No. 3, pp. 287–298.

[5] D. S. Scott, “Lectures on a mathematical theory of computation”, In: The-
oretical Foundations of Programming Methodology, D. Reidel Publ., 1982,
pp. 145–292.

[6] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posaed Problems,
W. H. Whinston & Sons, Washington, D.C., 1977.

[7] G.-Q. Zhang, Logic of Domains, Birkhäuser, Boston, 1991.

8

