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Abstract

To determine the geophysical structure of a region, we measure seismic
travel times and reconstruct velocities at different depths from this data.
There are several algorithms for solving this inverse problem, but these
algorithms do not tell us how accurate these reconstructions are.

Traditional approach to accuracy estimation assumes that the mea-
surement errors are independently normally distributed. Problem: the
resulting accuracies are not in line with geophysical intuition. Reason: a
typical error is when we miss the first arrival of the seismic wave; it is not
normal (bounded by the wave period A) and not independent.

Typically, all we know is the upper bound A on the measurement error,
so when the measured value is Z, we conclude that = € [z — A,z + A]. For
this interval uncertainty, the resulting velocity accuracy is, qualitatively,
in much better accordance with geophysics.

Interval uncertainty naturally appears in other applications as well.
In this paper, we describe Monte-Carlo-Type techniques for processing
interval uncertainty, and their geophysical and engineering applications.
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1 Introduction to the Problem

Uncertainty is important. In engineering, decisions about the best design
are usually made under uncertainty. The main source of uncertainty is mea-
surement errors. Additional source of uncertainty is that we do not know how
exactly the devices will be used. For example, when designing a building, we
have limits L; on the loads [; in different rooms i, but we do not know how ex-
actly these loads will be distributed, and we want to make sure that our design
is safe for all possible [; < L;.

General problem: uncertainty of the result of data processing. In
data processing, we input the measurement results z; and output the estimate
value of an engineering and/or physical quantity y. We know the algorithm

f(z1,...,x,), we know the measured values 71, ...,Z,, and we have some in-

. . def ~ .
formation about the uncertainty Awx; = ¥; — x; of each direct measurement.

Based on this information, how can we estimate the uncertainty Ay =y — y of
the algorithm’s output?

Types of uncertainty. The answer to the above question depends on what
we know about the uncertainty of Ax;. In general, to get a complete information
about the uncertainty of each Az, we must know what are the possible values
of Az, and how often can different possible values occur.

So, in the ideal case of full information about uncertainty, we know the cdf

Fi(¢) def Prob(xz; < t) for each variable z; (and we usually know that z; are

independent).

As we have mentioned, often, in applications, we encounter an interval case
when we have no information about the probabilities; for each input z;, we
only know the interval [z;, ;] of possible values of each x;. For example, if
we know the result Z; of measuring z;, and we know the upper bound A; on
the measurement error Ax; of i-th measurement, then we know that the actual
value z; must lie in the interval [Z; — A;, Z; + A].

The general case is when we have partial information about the probabilities.
Since a full description of a probability distribution means that for every ¢, we
know the exact value of the cdf F;(t), the partial information means that for
every t, we know an interval [F;(t), F;(t)] that contains F;(t). This interval-
valued cdf is called a p-boz; see, e.g., [2].

An important particular case is Dempster-Shafer uncertainty, when for each

variable z; and for every t, we have finitely many intervals [ggk) (t),fl(-k) (t)] with
probabilities pgk) attached to them, and we know that z; € [@Ek)(t),fz(-k) (t)] with
probability pgk).

In general, we may have different types of information for different inputs

z;, and we may have dependent Ax;.



Black box. Traditional interval computations approach to solving the above
problem is to parse the algorithm f and to apply f step-by-step to the corre-
sponding “uncertain numbers”: intervals [4], probability distributions, p-boxes
[2], etc.

The problem is that in several practical situations, f is given as a black box:
we do not know the sequence of steps forming f, we can only plug in different
values into f and see the results. For example, commercial software is often
given as a black box, to safeguard against competitors; classified security-related
software is given as a black box to safeguard against adversary.

An additional problem is that sometimes, applying the algorithm f takes
so much time that it is only possible to run it a few times. This happens, for
example, in many geophysical applications.

2 Existing Methods for Solving this Problem

Sensitivity analysis: reminder. One of the standard engineering tech-
niques for solving such problems is the technique of sensitivity analysis. This
techniques is applicable when the algorithm f(x1,...,x,) is monotonic (increas-
ing or decreasing) with respect of each of its variables — when z; € [z;,%;]. For
example, this monotonicity property is true if we can linearizable f, i.e., replace
it with a linear function without losing accuracy.

In this case, e.g., if we know the intervals [Z; — A;, Z; + A;] of possible values
of z;, we can find the range [y,7] of y = f(z1,...,x,) as follows:

e First, compute y = f(Z1,...,T,).

e Then, for each ¢, we determine whether f is increasing or decreasing in z;

by computing y; def f(@1,..., 2, T; + h,Tiy1,...,Ty,) for some h > 0.
e Finally, we compute y = f(z7,...,2;,) and §J = flzf, ..., zf), where:
e if y/ > 7, then z; =z, and 2] = T;;
e if y/ <y, then z; =7; and z; = z,.

The only problem with this approach is that we need n + 3 calls to f, and in
many problems, n is very large: e.g., in ultrasonic testing, we record (= measure)
signal values at thousands moments of time. For large n and for complex f, this
method is too slow.

Cauchy deviate method. To speed up the computations, in [6, 7], we de-
scribe a faster Monte-Carlo-type techniques based on Cauchy distributions.
This technique is applicable when the algorithm f is linearizable, i.e., when
of
).

Ay =c1 - Azy + ...+ ¢, - Az, for some coeflicients ¢; (namely, for ¢; = 3
z;




In this case, the range of y can be described as [y, 7] = [y — A,y + A], where
i=1

Cauchy distribution is a distribution with the probability density p(z) =

A
————— . We use this distribution because it is known that if &q,...,
- (IQ + AQ) W 61 é-n
n
are independent Cauchy with parameters A;, then Y ¢; - & is also Cauchy
i=1

distributed with the parameter A = 3" |¢;|- A;. This fact leads to the following

=1
algorithm for estimating A. We fix the number of simulations N; then:

e for every ¢ and for k =1,..., N, we simulate Cauchy distributed random
variables as 51’§k) = A; -tan(m - (r; —0.5)), where r; = UJ[0, 1] is uniformly
distributed over the interval [0, 1];

e compute dy*) def f@ + 5375}9), N 6$$Lk)) -

e use the Cauchy-distributed sample 6y*) to find the parameter A by using
the Maximum Likelihood Method, which, for Cauchy distribution, leads
to the following equation:

1 1 N

— ottty
sy sy
T+ 7x L+ =&~

The advantage of this method is that the required the number N of calls to
a model f depends only on the desired accuracy € and not on the number of
inputs n.

For example, after N = 200 runs, we get 20% accuracy 0.2 - A with 95%
certainty (corresponding to 20.). So, if n > 200, the Cauchy deviate method is
much faster that sensitivity analysis.

3 Applications: Brief Overview

Cauchy deviate techniques are used in several applications [5, 6, 7]. In environ-
mental and power engineering, the Cauchy deviate method is used to provide
safety analysis of complex systems. In civil engineering, it is used to provide
building safety; here, f is a Finite Element Method. In petroleum and geotech-
nical engineering, f is an algorithm that solves inverse problem, i.e., reconstructs
the density (or, to be more accurate, the velocity of sound) at different points
from the times x; that it takes a seismic signal to travel from the source to the
sensor [1, 3, 8].



As a result, in the environmental and civil engineering, same results as sen-
sitivity analysis, but faster. In geotechnical engineering, the dependence of the
accuracy on the location and depth fits much better with the geophysicists’
understanding than statistical estimates.

4 Limitations of Cauchy Deviate Techniques

The Cauchy deviate technique is based on the following assumptions:

e that the measurement errors are small, so we can safely linearize the prob-
lem;

e that we only have interval information about the uncertainty, and
e that we can actually call the program f 200 times.

In real-life engineering problems, these assumptions are often not satisfied. In
this paper, we describe how we can modify the Cauchy techniques to overcome
these limitations.

5 What If We Cannot Perform Many Iterations

As we have mentioned, in many real-life engineering problems, we cannot run
f 200 times. What can we do?

Our idea is to use Cauchy estimates with the available amount of N < 200
iterations, but use new formulas for A. The possibility of using this idea is
based on the fact that, due to the Central Limit Theorem, for reasonable large
N, the distribution for A — A is approximately Gaussian, with relative standard
deviation y/2/N. So, we can conclude that with certainty 95% (corresponding

- [2
to 20), we have A < A-[ 1+ kg - N (where kg = 2). To get 99.9% certainty

(corresponding to 30), we can take ko = 3.

For example, for N = 50, we conclude that A <1.4- 5, which is not a bad.
estimate. _

For smaller N, the difference A — A is not Gaussian, so we must empirically
find the corresponding factor.

6 Dempster-Shafer (DS) Knowledge Bases

In the DS approach, for each 4, instead of a single interval x;, we have several
intervals xgk) with probabilities pz(-k). In principle, we could consider all possible

combinations of these intervals and apply the above approach to each such



combination. However, even if we have 2 intervals for n = 50 inputs, we have
an astronomical number of 2°0 ~ 10'® output intervals.
To handle the DS situation, let us recall that when x; = [#d—A; aMid 4y A]
then y = [y™id — A y™id + A} where y™i4 = 7+ Y ¢; - (24 — 7;) and A =
i=1

1
n
S |eil - As. In the DS case, we have different pairs (y™d(*) Agk)) with different
i=1
probabilities.

Our main idea is that, due to the Central Limit Theorem, (y™<4 A) is ap-
proximately normally distributed. (It is worth mentioning that the distribution
is not ezactly normal since A > 0.) How can we use this idea?

In the Cauchy approach, we used Cauchy distribution with given A; its
characteristic function is Elexp(i-w-¢)] = exp(—|w|-A). Now, we have a Gaus-
sian mixture of several Cauchy distributions, with different A. The resulting
characteristic function has the form:

Blewpli-w-8)] = [ e (~ L) (ol 8 an.

Explicitly integrating over A, we arrive at the following simplified expression:
Elexp(i-w - )] = exp (502 w? — p- |w|) . Thus, we can apply the following

algorithm:
e For different real values wy,...,w; > 0, compute I(wy) def —In(c(wyg)),
of 1 X
where c¢(wy,) Lf . S cos(w - y).

N =
e Use the Least Squares Method to find the values 1 and o for which

1
W wg — 502 w2 l(wy).
The resulting value p is the average A.
We repeat the above algorithm twice: for samples for which y™id < E[ymid],
and for samples for which y™i¢ > E[y™d]. Based on two pu’s, we compute FE[A]
and o[A].

What about p-boxes? It is known that a p-box can be described as a DS
knowledge base. Specifically, a p-box [F(t), F(t)] can be described by listing,
for each p, the interval [f(p), f(p)] of the possible quantile values:

e the function f(p) is an inverse function to F(t), and

e the function f(p) is an inverse function to F(t).

So, whatever method we have for DS knowledge bases, we can apply it to p-boxes
as well.

Similarly, if we have different types of uncertainty for different x;, we can
translate them into p-boxes, and apply the above technique.



7 Cauchy Method for Quadratic f

So far, we have considered the method for the case when the algorithm f is
linearizable, i.e., when quadratic and higher order terms can be ignored. A
natural next case is when linear terms are still prevailing, but quadratic terms
can no longer be ignored, i.e.,

Ay déf ici . A(El +iiczj . A(E1 . A(Ej.
1=1

i=1 j=1

In this case, since linear terms are prevailing, max and min of Ay are attained

when Az; = £A,; (depending on ¢; ef sign(c;)):

A+Zilci\-Ai+ii%'€i'5a‘ﬂrﬁj%
i=1

i=1 j=1

A_:i|ci|'Ai_iicij'gi'Ej'Ai-Aj.
=1

i=1 j=1

We can explicitly use this formula, but for large n, literal computation takes
too long. It is therefore desirable to design a Cauchy-type method for this case.

This algorithm can indeed be designed. It uses the following auziliary al-
gorithm z = (z1,...,2,) — g(z): we apply the linear Cauchy deviate method

1 ~ ~

to the auxiliary function ¢ — 3 (f@+2z+4+1t)— f(T+ 2z—1t)) and the values
t; € [_AzaAz]

Now, the main algorithm is as follows:

e We apply the algorithm g(z) to the vector 0 = (0,...,0), thus computing
the value g(0).

e We apply the linear Cauchy deviate method to the auxiliary function

h(z) = 5 - (9(2) =g(0) + f(Z + 2) — f(Z = 2));

N | =

the result is the desired value At.
e Finally, we compute A~ as 2g(0) — A™.

Using the known properties of the Cauchy deviate method, it is easy to check
that this algorithm indeed leads to the desired values of A~ and A™T.

This method uses N calls to g, each of which means n calls to f, so overall,
we need 2N?2 calls to f. Thus, for N = 200, this method is more efficient than
sensitivity analysis if
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